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6. TCB security policy implementations are often artifacts of security 
policy rather than its direct representation as security policies. Testing 
the correspondence between a policy and its implementation is often 
difficult, as security policies are often temporal properties, and 
software assertions test only instantaneous properties. Programmers 
must resort to verbose, time-consuming, and error-prone manual 
instrumentation and state management to test critical properties such as:
• Check before use (¬accessed(c, v) UNTIL checked(c, v))
• Eventual audit (accessed(v) → FINALLY audited(v))
• Software and protocol state machines
• Security meta-data life cycles and memory safety

1. The Capability Hardware Enhanced RISC Instructions (CHERI) CPU 
architecture is motivated by the compartmentalisation problem: current 
instruction set architectures (ISAs) are unable to easily or efficiently 
represent decomposed software designs implementing the principle of 
least privilege. This problem results from conceptual mismatch with 
Memory Management Unit (MMU)-based virtual address separation: 
Translation Look-aside Buffer (TLB)-related performance costs scale 
disproportionately to increase in compartmentalisation granularity. Virtual 
addressing also makes it harder to develop and debug compartmentalised 
software. As a result, software developers are deterred from decomposing 
applications to mitigate security vulnerabilities or map distributed system 
security policies into local enforcement primitives.

CTSRD is a principled, formally supported, robust, programmer-friendly, high-performance, and incrementally adoptable hardware/software platform designed for efficient software implementation of the principle of least privilege. Software security structures and design principles are reinforced by Capability 
Hardware Enhanced RISC Instructions (CHERI) and Temporally Enforced Security Logic Assertions (TESLA). CTSRD adopts a hybrid approach, able to run existing operating systems and applications while supporting gradual adoption of advanced security features beginning with critical trusted computing bases 
(TCBs) and high-risk software components. CTSRD allows programmers to wipe the slate clean — one piece at a time.

#define tassert_syscall(exp)                        \
  tesla_assert(                                     \
    TESLA_THREAD,   /* per-thread events */         \
    syscallenter(), /* start event */               \
    syscallret(),   /* stop event */                \
    (exp))          /* assertion to test */  

int 
vn_rdwr(enum uio_rw rw, struct vnode *vp, ...,
  struct ucred *active_cred, struct ucred *file_cred,
  ...)
{
  if (rw == UIO_WRITE) {
    tassert_syscall(previously(mac_vnode_check_write(
      active_cred, file_cred, vp) == 0));
    tassert_syscall(eventually(audit_submit()));
  }
  ...
}
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#include <netinet/tcp_fsm.h>

automaton tcp_connect() {

  void active_close(struct tcpcb *tp) {
    tp->t_state = TCPS_FIN_WAIT_1;
    either {
      tp->t_state = TCPS_CLOSING;
      tp->t_state = TCPS_TIME_WAIT;
    } or {
      tp->t_state = TCPS_FIN_WAIT_2;
      tp->t_state = TCPS_TIME_WAIT;
    }
    tp->t_state = TCPS_CLOSED;
    tcp_free(tp); exit;
  };

  void established(struct tcpcb *tp) {
    tp->t_state = TCPS_ESTABLISHED;
    either {
      active_close(tp->t_state);
    } or {
      tp->t_state = TCPS_CLOSE_WAIT;
      tp->t_state = TCPS_LAST_ACK;
      optional { tp->t_state = TCPS_CLOSED; }
    }
    tcp_free(tp); exit;
  };

  void main(struct tcpcb *tp) {
    tp->t_state = TCPS_CLOSED;
    either {
      tp->t_state = TCPS_LISTEN;
      optional { tp->t_state = TCPS_CLOSED; }
      tcp_free(tp);
    } or {
      optional { tp->t_state = TCPS_SYN_SENT; }
      either {
        tp->t_state = TCPS_SYN_RECEIVED;
        either {
          established (tp->t_state);
        } or {
          active_close(tp->t_state);
        }
      } or {
        established (tp->t_state);
      }
    } or {
      tcp_free(tp); exit;
    }
}
}
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int
vn_rdwr(enum uio_rw, struct vnode *vp, ...,
  struct ucred *active_cred, struct ucred 
  *file_cred, ...)
{
  if (rw == UIO_WRITE) {
    tassert_syscall(previously(mac_vnode_check_write(
      active_cred, file_cred, vp) == 0));
    tassert_syscall(eventually(audit_submit());
  ...
}
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5. CHERI's 64-bit MIPS-derived CPU prototype is written in the Bluespec 
hardware description language (HDL), which facilitates rapid prototyping 
and design space exploration. As a starting point for our hybrid software 
stack, we have selected Cambridge's FreeBSD-derived Capsicum hybrid 
capability operating system. We are adapting the clang and LLVM 
compiler suite to directly support protection features in a modified IR. This 
software foundation will allow us to experiment with new ISA security 
features while running with a complete software stack from day one.
We are investigating a mapping from Bluespec into SRI's Evidentiary Tool 
Bus (ETB), including PVS, SAL, and the Yices SMT solver, offering the 
promise of a formal grounding from hardware up — a technique we also 
hope to extend to verifying hardware and software in composition.
CHERI is incrementally adoptable with immediate security benefits, 
while still offering a long-term capability system vision motivated by the 
principle of least privilege. System developers will be able to wipe the slate 
clean — one piece at a time. 

10. TESLA is implemented using a clang/LLVM-based C instrumentation 
framework and the libtesla run-time library. Assertions are converted into 
C, and the TESLA clang plug-in instruments function prologues, epilogues, 
assignment through types, and other language-visible events. libtesla 
provides synchronisation and state management for in-flight automata. 
Fired assertions can trigger a kernel panic, stack trace, or DTrace probes 
that perform programmer, administrator, or user-scripted actions.

8. TESLA's simple assertion language adds temporal quantifiers 
previously and eventually to the C assertion syntax, allowing assertions 
to refer to past and future events scoped to a timeline and programmer-
selected ordering (per-thread or global).
Assertions can also be expressed directly as automata using the TESLA 
Assertion Language (TEAL). Below, TESLA validates FreeBSD's TCP 
implementation by checking that assignments to the tcpcb.t_state field 
conform to the the TCP protocol specification. This technique can also be 
used to validate cryptographic protocol conformance (e.g., IPSEC or SSH).

9. We plan to add new assertion types checking sampled data 
distributions over time and real-time properties. This will allow us to 
validate cryptographic and network protocol properties such as sequence 
number non-reuse within a window, and timely protocol rekeying.
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2. CHERI addresses these problems through efficient and compiler-
friendly hardware primitives to support the object-capability security 
model. In CHERI, manipulation of protection properties is as natural and 
lightweight as code and data manipulation is in commodity CPUs today.
Capability registers supplement general-purpose registers, allowing 
protection to be managed directly by the compiler. CHERI's capability 
features allow a large number of simultaneous and frequently switching 
security domains to co-exist efficiently, utilising more scalable data and 
code caches in the CPU rather than the TLB. Tagged memory allows 
capabilities, code, and data to co-exist in system memory.
CHERI takes a reduced instruction set computer (RISC) approach to 
capabilities, providing tools for compiler and operating system writers 
while minimising hardware complexity. CHERI's primitives allow 
simultaneous implementation of different security models, reflecting 
diverse OS, programming language, and application requirements.

3. CHERI targets low-level software TCBs: OS kernels, language run-
times, and web browsers, as well as high-risk data processing such as 
video decoding. CHERI's hybrid capability architecture allows 
capabilities to be adopted one software component at a time, transparently 
to other components. CHERI sandboxes unmodified RISC code by 
indirecting loads and stores via general-purpose registers through a 
reserved capability register. CHERI's composition of capabilities and the 
MMU places capability environments "above" the virtual address space. 
Subdivision of address spaces using capabilities allows compartmentalised 
applications to operate efficiently, but also play by single address space 
rules, avoiding distributed system programming problems.

4. Within an address space, a thread's security context is entirely 
captured by its capability register set: thread context switches are security 
context switches. CHERI is a multithreaded processor supporting low-
latency message passing of general-purpose and capability registers. 
This translates into efficient protected subsystem invocation, orders of 
magnitude faster than can be supported in MMU-based hardware designs.

7. Temporally Enforced Security Logic Assertions (TESLA) employs 
ideas from model checking, projecting assertions into software as 
continuously validated automata. Programmers represent properties in a 
simple temporal assertion language or explicit automata:
• close to the code they describe,
• at arbitrary points in control flow,
• using similar syntax, types, and identifiers, as the program, and
• with to reference local and global program state.


