
CTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

SRI: P. Neumann, P. Lincoln, J. Rushby, H. Saidi Cambridge: R. Watson, R. Anderson, J. Anderson, T. Finch, S. Hand, A. Madhavapeddy, A. Moore, S. Moore, S. Murdoch, P. Paeps, M. Roe, J. Woodruff.

Approved for Public Release, Distribution Unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should
not be interpreted as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

checked(v)

accessed(v)

System call entry System call return

T
F

T
F

T
F

audited(v)

Missing audit
event enqueue

if (check_access(...))
{
 err = grant_access(...);
 if (err != OK)
 goto fail;

 audit_access(...);
}

Capability Hardware Enhanced RISC Instructions (CHERI) is a hybrid
FPGA soft core blending a paged virtual memory (VM) design with
hardware capabilities:
• Program security structure is exposed by the compiler to (and

enforced by) hardware: general-purpose RISC registers
supplemented by capability registers and tagged memory.

• Capabilities are scoped by address spaces; each address space has
an executive that manages allocation and capability semantics.

• Massive multithreading implements procedure capabilities with
hardware message passing rather than expensive virtual memory
context switches.

• Hybrid design allows individual address spaces to blend general-
purpose registers and capabilities, or be capability-only.

The CHERI development platform is the Terasic DE4 Altera FPGA board
combined with the Cambridge TIGER MIPS soft core. The DE4 board
can be inserted in a PC, or used as a stand-alone computer.

Temporally Enforced Security Logic Assertions (TESLA) applies
ideas from model checking to runtime software validation:
• Assertions employ C and DTrace language constructs: types, etc.
• Temporal quantifiers capture temporal security and safety principles:

 accessed(v) → FINALLY audited(v)
 ¬accessed(c, v) UNTIL checked(c, v)
• TESLA enhancements to the clang/LLVM compiler suite mechanically

instrument code with DTrace probes supporting continuous validation.
• Hardware-enhanced TESLA employs tightly coupled hardware

threads within a single core to improve performance, robustness.
TESLA can be used in testing, but also in production. TELSA will fail-stop
the system on violation of design principles — or in supporting runtimes,
an exception can be thrown that can be caught and handled.

CTSRD architecture is a hybrid design supporting high-assurance code
compiled to use CHERI and TESLA, as well as legacy code:
• Code may be compiled to use general-purpose registers for

addressing, capability registers, or both.
• Each address space has an executive, responsible for the memory

model and capability creation.
• Thread contexts may be limited to only use capability addressing.
• "Pools of capabilities" allow capability code to operate within hybrid

processes: the Capsicum kernel, libraries, script interpreters, etc.
• High-assurance components, such as the separation kernel and

MirageOS stack, use only capability registers. They are also compiled
with TESLA assertions to detect violations of design principles.

CTSRD supports critical TCB components: separation kernels, kernels,
language runtimes, and particularly exposed and frequently vulnerable
software components. Formal verification gives confidence in its design
and implementation; TESLA picks up at runtime where proof leaves off.

CTSRD is a principled, formally supported, and robust hardware/software platform designed for technology transfer. Security
design principles and program security structure are reinforced by Temporally Enforced Security Logic Assertions
(TESLA) and Capability Hardware Enhanced RISC Instructions (CHERI). The CTSRD architecture is hybrid design, able to
run existing operating systems and applications while supporting a gradual adoption path for advanced security features.

Capability
TCB Type Base Length

R1

R2

R3

R4

R32

C1

C2

C16

General-Purpose
Registers

Capability
Registers

...

...

C3

R5

TID mode SP IP

accessed(v) → FINALLY audited(v)

Hybrid code blending general-purpose
registers and capabilities

Legacy application code compiled for
general-purpose registers

Per-address space memory
management and capability executive

High-assurance capability-only code;
stand-alone or in "pools of capabilities"

Capsicum
kernel

Kernel address space executive

Device
drivers

Network
stack

Chromium
web browser

Java
Script

Separation kernel

C++ RT

MirageOS:
provable
OCaml

application +
kernel
stacklibc executive libc executive

CHERI

OCaml runtime

In
de

pe
nd

en
t c

ap
ab

ilit
y

do
m

ai
ns

Separation kernel executive

Classic
UNIX

application

OCaml runtime

OCaml
application

stack

zlib

Mask

CTSRD

TESLA

CHERI

