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if (check_access(...))
{
    err = grant_access(...);
    if (err != OK)
        goto fail;

    audit_access(...);
}

Capability Hardware Enhanced RISC Instructions (CHERI) is a hybrid 
FPGA soft core blending a paged virtual memory (VM) design with 
hardware capabilities:
• Program security structure is exposed by the compiler to (and 

enforced by) hardware: general-purpose RISC registers 
supplemented by capability registers and tagged memory.

• Capabilities are scoped by address spaces; each address space has 
an executive that manages allocation and capability semantics.

• Massive multithreading implements procedure capabilities with 
hardware message passing rather than expensive virtual memory 
context switches.

• Hybrid design allows individual address spaces to blend general-
purpose registers and capabilities, or be capability-only.

The CHERI development platform is the Terasic DE4 Altera FPGA board 
combined with the Cambridge TIGER MIPS soft core. The DE4 board 
can be inserted in a PC, or used as a stand-alone computer.

Temporally Enforced Security Logic Assertions (TESLA) applies 
ideas from model checking to runtime software validation:
• Assertions employ C and DTrace language constructs: types, etc.
• Temporal quantifiers capture temporal security and safety principles:

                 accessed(v) → FINALLY audited(v)
                 ¬accessed(c, v) UNTIL checked(c, v)
• TESLA enhancements to the clang/LLVM compiler suite mechanically 

instrument code with DTrace probes supporting continuous validation.
• Hardware-enhanced TESLA employs tightly coupled hardware 

threads within a single core to improve performance, robustness.
TESLA can be used in testing, but also in production. TELSA will fail-stop 
the system on violation of design principles — or in supporting runtimes, 
an exception can be thrown that can be caught and handled.

CTSRD architecture is a hybrid design supporting high-assurance code 
compiled to use CHERI and TESLA, as well as legacy code:
• Code may be compiled to use general-purpose registers for 

addressing, capability registers, or both.
• Each address space has an executive, responsible for the memory 

model and capability creation.
• Thread contexts may be limited to only use capability addressing.
• "Pools of capabilities" allow capability code to operate within hybrid 

processes: the Capsicum kernel, libraries, script interpreters, etc.
• High-assurance components, such as the separation kernel and 

MirageOS stack, use only capability registers. They are also compiled 
with TESLA assertions to detect violations of design principles.

CTSRD supports critical TCB components: separation kernels, kernels, 
language runtimes, and particularly exposed and frequently vulnerable 
software components. Formal verification gives confidence in its design 
and implementation; TESLA picks up at runtime where proof leaves off.

CTSRD is a principled, formally supported, and robust hardware/software platform designed for technology transfer. Security 
design principles and program security structure are reinforced by Temporally Enforced Security Logic Assertions 
(TESLA) and Capability Hardware Enhanced RISC Instructions (CHERI). The CTSRD architecture is hybrid design, able to 
run existing operating systems and applications while supporting a gradual adoption path for advanced security features.
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