
Rack Scalable OS for The Machine
and the Case for Capabilities

Dejan Milojicic, Hewlett Packard Labs

(The First?) CHERI Microkernel Workshop

Cambridge University, April 23rd, 2016

2

Memory-centric rack-scale architectures

UC Berkeley

Firebox

Intel

Rack Scale

Architecture

HP

The Machine

3

“Private”
memory

SoC Bridge

Fabric-attached memory

SoC +
private
memory

Bridge

Fabric-
attached
memory

“Private”

SoC Bridge

SoC Bridge

Fabric-attached memory

“Private”
memory

4

Node:

• SoC

• Local “private” memory

• Bridge to memory fabric

• Fabric-attached memory

• Ethernet

Enclosure:

• 10 nodes in 5U enclosure

Rack:

• 8 enclosures

• 320 TB fabric-attached
memory

• 80 SoCs

Prototype of The Machine

• No cache coherence between SoCs
• Explicit software coherence model aided by

• Synchronization features designed into fabric
• Libraries

5

Shared everything

N
et

w
o

rk

Physical Server

SoC
Local DRAM

Local NVM

SoC
Local DRAM

Local NVM

Co
h

er
en

t
In

te
rc

o
n

n
ec

t

Shared nothing

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

SoC

SoC

Local DRAM

Local DRAM

Local NVM

Local NVM

N
et

w
o

rk

Physical
Server

Physical
Server

Traditional system architectures

6

Converging memory and storage

Byte-addressable non-volatile memory (NVM)
replaces hard drives and SSDs

Shared memory pool

NVM pool is accessible by all compute resources

Optical networking advances provide near-
uniform latency

“Private” memory provides lower-latency
“performance tier”

Heterogeneous compute resources
distributed closer to data

Future memory-centric architecture

Shared something

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

N
et

w
o

rk

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

8

Distribution of memory management functionality

Memory management functions move from processor-centric OS to distributed services

Allocation, protection, synchronization, de/encryption, (de)compression, error handling

Policy services: quotas, QoS

Cluster: memory-side controllers, accelerators and more novel computational elements

9

Motivation for CHERI Capabilities

CHERI Capabilities

• Separate translation from protection in OSes through hardware-software co-design

• Serve as non-forgeable handles to access memory

• Have tremendous potential for fine grain security, eliminating viruses/bugs

The Machine has vast amounts of memory

• Need to manage it (allocate, free, deal with failures, etc.)

• Programmatic access

• Need to share it

• Need to protect it

Physical
Server

Physical
Server

SoC

SoC

Local DRAM

Local DRAM

N
e
tw

o
rk

SoC

SoC

Local DRAM

Local DRAM

Memory Pool

NVM

NVM

NVM

NVM

L4

Composite

Barrelfish

capabilities

11

What is needed

Our priorities

• Persistency

• Kernel compartmentalization

• Opportunities for the memory side management functions

A series of research efforts and development experiments needed

• Making L4 kernel capabilities persistent (in progress with Dresden)

• Making CHERI capabilities persistent (Alex’s work)

• Exploring CHERI support for kernel capabilities (in progress here and elsewhere)

• Distributed capabilities (non-trivial task)

• Exploring global memory and interconnect support for CHERI (big task)

Thank you

Q&A

Dejan Milojicic

dejan.milojicic@hpe.com

