Rack Scalable OS for The Machine and the Case for Capabilities

Dejan Milojicic, Hewlett Packard Labs

(The First?) CHERI Microkernel Workshop
Cambridge University, April 23rd, 2016
Memory-centric rack-scale architectures

Intel Rack Scale Architecture

UC Berkeley Firebox

HP The Machine
SoC Bridge Fabric-attached memory

"Private" memory

SoC Bridge Fabric-attached memory

"Private" memory

Bridge SoC + private memory

Fabric-attached memory
Prototype of The Machine

Node:
- SoC
- Local “private” memory
- Bridge to memory fabric
- Fabric-attached memory
- Ethernet

- No cache coherence between SoCs
- Explicit software coherence model aided by
 - Synchronization features designed into fabric
 - Libraries

Enclosure:
- 10 nodes in 5U enclosure

Rack:
- 8 enclosures
- 320 TB fabric-attached memory
- 80 SoCs
Traditional system architectures

Shared everything

Shared nothing
Future memory-centric architecture

Converging memory and storage
Byte-addressable non-volatile memory (NVM) replaces hard drives and SSDs

Shared memory pool
NVM pool is accessible by all compute resources
Optical networking advances provide near-uniform latency
“Private” memory provides lower-latency “performance tier”

Heterogeneous compute resources distributed closer to data
Distribution of memory management functionality

Memory management functions move from processor-centric OS to distributed services
Allocation, protection, synchronization, de/encryption, (de)compression, error handling
Policy services: quotas, QoS
Cluster: memory-side controllers, accelerators and more novel computational elements
Motivation for CHERI Capabilities

CHERI Capabilities
• Separate translation from protection in OSes through hardware-software co-design
• Serve as non-forgeable handles to access memory
• Have tremendous potential for fine grain security, eliminating viruses/bugs

The Machine has vast amounts of memory
• Need to manage it (allocate, free, deal with failures, etc.)
• Programmatic access
• Need to share it
• Need to protect it
What is needed

Our priorities

• Persistency
• Kernel compartmentalization
• Opportunities for the memory side management functions

A series of research efforts and development experiments needed

• Making L4 kernel capabilities persistent (in progress with Dresden)
• Making CHERI capabilities persistent (Alex’s work)
• Exploring CHERI support for kernel capabilities (in progress here and elsewhere)
• Distributed capabilities (non-trivial task)
• Exploring global memory and interconnect support for CHERI (big task)
Thank you

Dejan Milojicic
dejan.milojicic@hpe.com