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DARPA CRASH

If you could revise the
fundamental principles of
computer-system design
to improve security…

…what would you change?
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Principle of least privilege

Every program and every privileged user 
of the system should operate using the 
least amount of privilege necessary to 

complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)



Principle of least privilege (2)
• Access control

• Minimize privileges held by users (and hence their 
processes) in accordance to policy

• Fault tolerance

• Limit the impact of software/hardware faults

• Vulnerability and Trojan mitigation

• Constrain rights gained as a result of software supply-chain 
compromise (Karger IEEE S&P 1987)

• Motivation for sandboxing, privilege separation, and software 
compartmentalization used to mitigate vulnerabilities in 
contemporary applications
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What is CHERI?
• CHERI is a capability architecture supporting fine-grained, 

pointer-based memory protection in hardware:

• pointer integrity (e.g., no return-address corruption)

• bounds checking (e.g., prevent buffer overflows)

• permission checking (e.g., W^X for pointers)

• compartmentalization (efficient, fine-grained sandboxing 
within address spaces)

• Requires modest additions to the:

• Instruction set, processor, compiler, OS

• Aims to mitigate known and unknown classes of memory – and 
other – exploit techniques
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CHERI design goals
• Target C/C++-language software TCBs

• Strong in-address-space protection

• Robust memory safety for data pointers

• CFI-like protection for code pointers

• Fine-grained, scalable compartmentalisation

• Compose naturally with MMU-based designs

• Reference- rather than address-centric protection

• Supplement paging-based protection as page sizes grow

• RISC prototyping approach, applied to 64-bit MIPS

• Underlying model could be applied to many ISAs
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New fundamental type: the capability

• capability = tag + virtual address + bounds + permissions

• all in 128(+1) bits

• Spatial protection for pointers to data and code

• Managed by software

• Directed by OS, compiler, application

• Enforced by hardware

• Held in registers or memory

• Strong integrity guarantees, ISA-level enforcement

• Higher performance, strong atomicity guarantees
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Hardware Guarantees
• Capabilities can only be used (dereferenced) if:

• Valid – derived from past pointers through only permitted 
manipulation and without in-memory corruption

• In bounds – no overflow/underflow of allocations or 
compartments

• Permitted – authorized for {load, store, execute, …}

• Unsealed – no bypass of encapsulation for software-
defined objects

• Guarded manipulation: monotonic rights decrease

• capabilities delegation narrows permitted access

• enforced provenance tree: pointers come from pointers
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Capabilities are for the compiler
• Capabilities refer to virtual addresses:

• Implement explicit pointers and implied addresses

• OS/run-time linker provide initial capabilities

• OS + compiler + runtime + software determine how 
capabilities are refined, delegated, utilized

• E.g., to heap/stack allocations, memory mappings

• MMU still implements virtual addresses:

• Page tables retained (pretty much) as-is

• Still supports processes, full-system virtualization

• Each address space is a “virtual capability machine”
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Status
• Prototype implementations:

• Single- and multicore CHERI pipelines on FPGA

• Qemu fast ISA simulator; L3 formal model of ISA

• Language support:

• C using LLVM; C++ in progress

• Most C code can be recompiled to benefit from memory protection

• Compartmentalization requires programmer intervention

• OS support:

• FreeBSD + MIPS hybrid capability process environment

• FreeBSD + CheriABI pure-capability process environment

• Just starting on CheriOS microkernel prototype (CMW tomorrow)

• It works and is efficient…
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Q&A
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