
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and 
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions, 
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official 
views or policies of the Department of Defense or the U.S. Government.

Introducing CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M. Watson
Simon W.Moore, Peter G. Neumann, JonathanWoodruff, JonathanAnderson, Hadrien Barral, 
Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis, Lawrence Esswood, Khilan Gudka, 

Alexandre Joannou, Chris Kitching, Ben Laurie, A.Theo Markettos, Alan Mujumdar, 
Steven J.Murdoch, Robert Norton, Philip Paeps, Alex Richardson, Michael Roe, 

Colin Rothwell, Hassen Saidi, Stacey Son, Munraj Vadera, Hongyan Xia, and Bjoern Zeeb

University of Cambridge, SRI International

CHERI Microkernel Workshop – 23 April 2016



2

DARPA CRASH

If you could revise the
fundamental principles of
computer-system design
to improve security…

…what would you change?



3

Principle of least privilege

Every program and every privileged user 
of the system should operate using the 
least amount of privilege necessary to 

complete the job.

Saltzer 1974 - CACM 17(7)
Saltzer and Schroeder 1975 - Proc. IEEE 63(9)

Needham 1972 - AFIPS 41(1)



Principle of least privilege (2)
• Access control

• Minimize privileges held by users (and hence their 
processes) in accordance to policy

• Fault tolerance

• Limit the impact of software/hardware faults

• Vulnerability and Trojan mitigation

• Constrain rights gained as a result of software supply-chain 
compromise (Karger IEEE S&P 1987)

• Motivation for sandboxing, privilege separation, and software 
compartmentalization used to mitigate vulnerabilities in 
contemporary applications

4



What is CHERI?
• CHERI is a capability architecture supporting fine-grained, 

pointer-based memory protection in hardware:

• pointer integrity (e.g., no return-address corruption)

• bounds checking (e.g., prevent buffer overflows)

• permission checking (e.g., W^X for pointers)

• compartmentalization (efficient, fine-grained sandboxing 
within address spaces)

• Requires modest additions to the:

• Instruction set, processor, compiler, OS

• Aims to mitigate known and unknown classes of memory – and 
other – exploit techniques

5



CHERI design goals
• Target C/C++-language software TCBs

• Strong in-address-space protection

• Robust memory safety for data pointers

• CFI-like protection for code pointers

• Fine-grained, scalable compartmentalisation

• Compose naturally with MMU-based designs

• Reference- rather than address-centric protection

• Supplement paging-based protection as page sizes grow

• RISC prototyping approach, applied to 64-bit MIPS

• Underlying model could be applied to many ISAs

6



New fundamental type: the capability

• capability = tag + virtual address + bounds + permissions

• all in 128(+1) bits

• Spatial protection for pointers to data and code

• Managed by software

• Directed by OS, compiler, application

• Enforced by hardware

• Held in registers or memory

• Strong integrity guarantees, ISA-level enforcement

• Higher performance, strong atomicity guarantees

7



Hardware Guarantees
• Capabilities can only be used (dereferenced) if:

• Valid – derived from past pointers through only permitted 
manipulation and without in-memory corruption

• In bounds – no overflow/underflow of allocations or 
compartments

• Permitted – authorized for {load, store, execute, …}

• Unsealed – no bypass of encapsulation for software-
defined objects

• Guarded manipulation: monotonic rights decrease

• capabilities delegation narrows permitted access

• enforced provenance tree: pointers come from pointers

8



Capabilities are for the compiler
• Capabilities refer to virtual addresses:

• Implement explicit pointers and implied addresses

• OS/run-time linker provide initial capabilities

• OS + compiler + runtime + software determine how 
capabilities are refined, delegated, utilized

• E.g., to heap/stack allocations, memory mappings

• MMU still implements virtual addresses:

• Page tables retained (pretty much) as-is

• Still supports processes, full-system virtualization

• Each address space is a “virtual capability machine”

9



Status
• Prototype implementations:

• Single- and multicore CHERI pipelines on FPGA

• Qemu fast ISA simulator; L3 formal model of ISA

• Language support:

• C using LLVM; C++ in progress

• Most C code can be recompiled to benefit from memory protection

• Compartmentalization requires programmer intervention

• OS support:

• FreeBSD + MIPS hybrid capability process environment

• FreeBSD + CheriABI pure-capability process environment

• Just starting on CheriOS microkernel prototype (CMW tomorrow)

• It works and is efficient…
10



Q&A

11


