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A P P L I C AT I O N S  A R E  I N C R E A S I N G LY 
turning to privilege separation, or 
sandboxing, to protect themselves from 
malicious data, but these protections are 
built on the weak foundation of primitives 
such as chroot and setuid. Capsicum is a 
scheme that augments the UNIX security 
model with fine-grained capabilities and 
a sandboxed capability mode, allowing 
applications to dynamically impose 
capability discipline on themselves. 
This approach lets application authors 
express security policies in code, ensuring 
that application-level concerns such 
as Web domains map well onto robust 
OS primitives. In this article we explain 
how Capsicum functions, compare it to 
other current sandboxing technologies in 
Linux, Mac OS, and Windows, and provide 
examples of integrating Capsicum into 
existing applications, from tcpdump and 
gzip to the Chromium Web browser. 

Compartmentalization

Today’s security-aware applications are increasingly 
written as compartmentalized applications, a 
collection of cooperating OS processes with 
different authorities. This structure, which we term 
a “logical application” and illustrate in Figure 1, is 
employed to mitigate the harm that can be done 
if inevitable vulnerabilities in application code are 
exploited. 

F I G U R E  1 :  C A P S I C U M  H E L P S  A P P L I C A T I O N S 
S E L F - C O M P A R T M E N T A L I Z E .

For instance, in the Chromium Web browser, a 
malicious image that exploits a libpng vulnerability 
can be confined to a renderer process responsible 
for converting Web content such as HTML and 
compressed images into pixels. Such a process has 
less access to OS services such as the file system 
and network stack than the main browser process, 
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so the damage that can be done by malicious content is limited. Other 
widespread examples of software using this technique include PackageKit, 
Apple’s Security Server, and OpenSSH’s sshd. 

Unfortunately, self-compartmentalizing code is very difficult to write, as 
contemporary commodity operating systems are firmly engrained with the 
notion of ambient authority: applications running with the full authority of 
the user who launched them. Creating a sandbox thus involves restricting 
existing access to user- or system-level rights, a process which frequently 
itself requires system privilege. 

Capabilities

At the other end of the authority spectrum are capability systems, such 
as CMU’s Hydra operating system [1], that support true least-privilege 
discipline in their applications. In such a system, application code can only 
exercise authority (e.g., access user files) through fine-grained capabilities, 
unforgeable tokens of authority, which have been delegated to it. 

Capability systems are designed around delegation, since they allow tasks 
to selectively share fine-grained rights with other tasks through inheritance 
and explicit assignment. In this model, the operating system enforces the 
isolation of tasks and the restriction-associated capabilities, but semantically 
rich policy—what the capability means and who should have access to it—is 
defined by applications. This separation of mechanism and policy is very 
useful, and it is one which we sought to enhance on the UNIX platform by 
the addition of capability features. 

Capsicum

Capsicum is a new approach to application compartmentalization. It is a 
blend of capability and UNIX semantics which, we believe, has some of the 
best characteristics of both. It allows applications to share fine-grained rights 
among several rigorously sandboxed processes, but preserves existing UNIX 
APIs and performance. Capsicum also provides application writers with a 
gradual adoption path for capability-oriented software design. 

DESIGN

Capsicum extends, rather than replaces, standard UNIX APIs by adding 
new kernel primitives and userspace support code to help applications self-
compartmentalize. 

The most important new kernel primitives include a sandboxed capability 
mode, which limits process access to all global OS namespaces, and 
capabilities, which are UNIX file descriptors with some extra constraints. The 
userspace additions include libcapsicum, a library which wraps the low-level 
kernel features and a capability-aware run-time linker. 

CAPABILITY MODE

Capability mode is a process credential flag set by a new system call, cap_
enter, available to all users. Once set, the flag is inherited by all descendent 
processes and cannot be cleared. Processes in capability mode are denied 
access to global namespaces such as the file system, PIDs and SystemV IPC 
namespaces. 
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Access to system calls in capability mode is also restricted: some system 
calls requiring global namespace access are unavailable, while others 
are constrained. For instance, sysctl can be used to query process-local 
information such as address space layout, but also to monitor a system’s 
network connections. We have constrained sysctl by explicitly marking ≈30 
of 3000 parameters as permitted in capability mode; all others are denied. 

The system calls requiring constraints include sysctl, shm_open, which is 
permitted to create anonymous memory objects, but not named ones, and the 
openat family of system calls. The *at calls already accept a file descriptor 
argument as the directory relative to  which to perform the open, rename, 
etc.; in capability mode, they are constrained so that they can only operate 
on objects “under” this descriptor. For instance, if file descriptor 4 is a 
capability allowing access to /lib, then openat(4, “libc.so.7”) will succeed, 
whereas openat(4, “../etc/passwd”) and openat(4, “/etc/passwd”) will not. 
This allows partial namespace delegation, as shown in Figure 2. 

F I G U R E  2 :  A U T H O R I T Y  O V E R  P O R T I O N S  O F  T H E  F I L E  S Y S T E M  C A N  B E 
D E L E G A T E D .

CAPABILITIES

In Capsicum, a capability is a type of file descriptor that wraps another 
file descriptor and constrains the methods that can be performed on it, as 
shown in Figure 3. 

F I G U R E  3 :  C A P A B I L I T I E S  “ W R A P ”  N O R M A L  F I L E  D E S C R I P T O R S , 
M A S K I N G  T H E  S E T  O F  P E R M I T T E D  M E T H O D S .

File descriptors already have some properties of capabilities: they are 
unforgeable tokens of authority and can be inherited by a child process or 
passed between processes that share an IPC channel. Unlike true object 
capabilities, however, they confer very broad rights as a side effect: even if 
a file descriptor is read-only, operations on metadata such as fchmod are 
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permitted. Capsicum restricts these operations by wrapping the descriptor 
in a capability descriptor, checking the mask of allowable operations 
whenever the file object is looked up. For instance, when the read system 
call is invoked with a capability, that capability can only be converted to a 
file object if its mask includes CAP_READ. 

Capabilities are created via the cap_new system call, which accepts an 
existing file descriptor and a mask of rights as arguments. If the original 
descriptor is a capability, the result will be a new capability with a subset 
of the original’s rights; applications may always reduce the privilege of a 
file descriptor, but they may never escalate it. Like other file descriptors, 
capabilities may be inherited across fork and exec, as well as passed via 
UNIX domain sockets. 

There are approximately 60 rights which a capability can mask, striking 
a balance between pure message-passing (two rights: send and receive) 
and MAC systems (hundreds of access control checks). We have selected 
rights which align with logical methods on file descriptors; some system 
calls require multiple rights, and calls implementing semantically identical 
operations require the same rights. For example, pread (read to memory) 
and preadv (read to a memory vector) both require CAP_READ in a 
capability’s rights mask, while read (read bytes using the file offset) requires 
CAP_READ|CAP_SEEK. 

Capability rights are checked by fget, the in-kernel function for converting 
file descriptor numbers into in-kernel references. This strategy—
implementing checks at a single point of service deep in the kernel, rather 
than in several system calls—is repeated throughout Capsicum, providing 
assurance that no alternate code paths exist which could be used to bypass 
checks. 

Many past security extensions have composed poorly with UNIX security, 
leading to vulnerabilities. As a result, we disallow privilege elevation via 
fexecve using setuid and setgid binaries in capability mode. This restriction 
does not prevent setuid binaries from using sandboxes. 

RUN-TIME ENVIRONMENT

Even with Capsicum’s kernel primitives, creating sandboxes without leaking 
undesired resources via file descriptors, memory mappings, or memory 
contents is difficult. Processes, including libraries they use, may access 
resources with overly broad rights, or fail to relinquish access when it is 
no longer needed. Furthermore, introducing robust sandboxing forces 
fundamental changes to the UNIX run-time environment: even fork and 
exec rely on global namespaces—process IDs and the filesystem namespace. 

libcapsicum therefore provides an API for starting sandboxed processes 
and ensuring that they only possess authority which has been explicitly 
delegated to them. 

After creating a new process with the descriptor-oriented pdfork, libcapsicum 
cuts off the sandbox’s access to global namespaces via cap_enter. In order to 
ensure that rights are not accidentally leaked from parent to child, it then 
closes all inherited file descriptors that have not been positively identified 
for delegation and flushes the address space via fexecve. Sandbox creation 
returns a UNIX domain socket that applications can use for inter-process 
communication (IPC) and for sharing additional rights between host and 
sandbox. 
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Starting a process inside a sandbox requires a Capsicum-aware run-time 
linker, which loads dynamic libraries from read-only directory descriptors 
rather than the global filesystem namespace. The main function of a program 
can call lcs_get to determine whether it is in a sandbox, retrieve sandbox 
state, query creation-time delegated capabilities, and retrieve an IPC handle 
so that it can process RPCs and receive runtime delegated capabilities. This 
allows a single binary to execute both inside and outside of a sandbox, 
diverging its behavior based on its execution environment. 

APPLICATIONS

Adapting applications for use with sandboxing is a non-trivial task, 
regardless of the framework, as it requires analyzing programs to 
determine their resource dependencies, and adopting a distributed system 
programming style in which components must use message passing or 
explicit shared memory rather than relying on a common address space 
for communication. Capsicum does not solve this problem; what it does do 
is make it easy for an application writer, having decided where a security 
boundary should lie, to enforce it by creating a robust sandbox and sharing 
fine-grained, least-privileged rights with it. 

We describe in this article two applications that we have modified to take 
advantage of Capsicum’s features, one small and conceptually simple, 
tcpdump, and one large and complex, Chromium. For more case study 
details, please see our 2010 USENIX Security Symposium paper [2]. 

TCPDUMP

tcpdump provides an excellent example of Capsicum primitives offering 
immediate security benefits through straightforward changes. Historically, 
tcpdump has been a breeding ground for serious security vulnerabilities, 
as it has both root privilege and complex packet-parsing code. It is also a 
very simple program, however, which lends itself handily to sandboxing: 
resources are acquired early with ambient system privilege, after which 
packet processing depends only on open file descriptors. 

True privilege dropping for tcpdump is accomplished with eight lines of 
code, shown in Figure 4. Verifying that unneeded privileges have been 
dropped can be done with the procstat tool; Figure 5 shows that the rights 
on STDIN have been appropriately constrained. 

@@ -1197,6 +1199,14 @@
 (void)fflush(stderr);
 }
  #endif /* WIN32 */
+ if (lc_limitfd(STDIN_FILENO, CAP_FSTAT) < 0)
+  error(“lc_limitfd: unable to limit STDIN_FILENO”);
+ if (lc_limitfd(STDOUT_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+  error(“lc_limitfd: unable to limit STDIN_FILENO”);
+ if (lc_limitfd(STDERR_FILENO, CAP_FSTAT | CAP_SEEK | CAP_WRITE) < 0)
+  error(“lc_limitfd: unable to limit STDERR_FILENO”);
+ if (cap_enter() < 0)
+  error(“cap_enter: %s”, pcap_strerror(errno));
 status pcap_loop(pd, cnt, callback, pcap_userdata);
 if (WFileName =NULL) {  

F I G U R E  4 :  T C P D U M P  D R O P S  A L L  U N N E E D E D  P R I V I L E G E  W I T H  E I G H T 
L I N E S  O F  C O D E .
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PIDCOMM FD T FLAGS CAPABILITIES PRO NAME
1268 tcpdump 0 v rw------c fs - /dev/pts/0
1268 tcpdump 1 v -w------c wr,se,fs - /dev/null 
1268 tcpdump 2 v -w------c wr,se,fs -  /dev/null
1268 tcpdump 3 v rw-------  - - /dev/bpf 

F I G U R E  5 :  P R O C S T A T  - F C  D I S P L A Y S  C A P A B I L I T I E S  H E L D  B Y  T C P D U M P. 
I N  T H E  C A S E  O F  S T D I N ,  O N LY  F S T A T  ( F S )  I S  P E R M I T T E D .

CHROMIUM

Google’s Chromium Web browser already uses a compartmentalized multi-
process architecture similar to a Capsicum logical application on several 
operating systems [3], so it is an excellent platform for comparing Capsicum 
with other sandboxing techniques. 

Once the FreeBSD port of Chromium was modified to use POSIX rather 
than System V shared memory (the former, from the Mac OS X port, 
is descriptor-oriented and thus permitted in Capsicum sandboxes), 
approximately 100 additional lines of code were required to limit access to 
file descriptors inherited by and passed to sandbox processes and to call 
cap_enter. 

The result was a robust sandbox that, unlike porous approaches which 
require hundreds of lines of handcrafted, security-critical assembly code, 
could be completed in just two days. 

Comparison

A plethora of existing security technologies have been used to construct 
sandboxes in security-aware applications such as Chromium. Each 
technology has its place—we do not claim that UNIX users and system 
integrity policies are obsolete—but each also has significant limitations 
when used for application sandboxing. 

We compare Capsicum with five sandboxing mechanisms already employed 
by Chromium (see Table 1). Each mechanism is used to split the browser 
into a main browser process, which draws the browser’s chrome and 
interacts with objects such as files, and several renderer processes, which 
execute untrusted code to uncompress images, interpret JavaScript, etc. 

Operating system Model Line count Description 

Windows ACLs 22,350 Windows ACLs and SIDs 

Linux chroot 605 SUID-root sandbox helper 

Mac OS X Seatbelt 560 Path-based MAC sandbox 

Linux SELinux 200 Type Enforcement sandbox domain 

Linux seccomp 11,301 seccomp and userspace syscall wrapper 

FreeBSD Capsicum 100 Capsicum sandboxing using cap_enter

T A B L E  1 :  S A N D B O X I N G  M E C H A N I S M S  E M P L O Y E D  B Y  C H R O M I U M

Of the six mechanisms employed by Chromium, two are rooted in 
Discretionary Access Control (users and permissions), two in Mandatory 
Access Control (labels and system policies), and two in capabilities 
(unforgeable tokens of authority which are passed between or inherited by 
processes). 
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DISCRETIONARY ACCESS CONTROL

In Discretionary Access Control (DAC), the owners of objects specify what 
rights other users have on those objects; one common example of DAC is 
the UNIX permissions scheme. Such protections can be used to constrain 
application behavior if code runs with the authority of a user—such as 
“nobody” in traditional UNIX systems—with less privilege than the user 
running the application. 

Chromium uses DAC to construct sandboxes on both Windows and Linux. 
In both cases, inter-user mechanisms fail to provide effective intra-user 
protections: the robustness of the sandbox is limited, because every user 
possesses some ambient authority. 

Windows ACLs
On Windows, Chromium uses access control lists (ACLs) and security 
identifiers (SIDs) to effectively run renderer processes as an anonymous user 
who cannot access objects which belong to “real” users [3]. The unsuitability 
of the approach is demonstrated well; the model is both incomplete and 
unwieldy. 

The approach is incomplete because objects which are not associated with 
any user do not receive the protections afforded to objects with ACLs. Some 
workarounds are possible—for instance, an alternate, invisible desktop 
is used to protect the user’s GUI environment—but many objects remain 
completely unprotected, including FAT file systems on USB sticks and TCP/
IP sockets. Thus, a “sandboxed” renderer process can communicate with any 
server on the Internet, or even the user’s Intranet via a configured VPN! 

The approach is also unwieldy in that many legitimate system calls by the 
sandbox are denied, and must be forwarded to a trusted process which 
services them on the sandbox’s behalf. This forwarding, filtering, and 
servicing code comprises most of the 22,500 lines of code in the Windows 
sandbox module, and all of it is absolutely security-critical. 

chroot
Chromium’s suid sandbox on Linux also attempts to create a privilege-
free sandbox using legacy DAC-based access control; the result is similarly 
porous, and it brings an additional requirement of system privilege. 

In this model, access to the file system is limited to a virtual root directory 
via chroot, but access to other namespaces, including the network and 
System V shared memory (where the user’s X window server can be 
contacted), is unconstrained. 

This sandboxing mechanism also carries an additional requirement: system 
privilege is required to initiate chroot, so Chromium includes a SUID-root 
binary which is responsible for starting sandboxes. Thus, sandboxing can 
only be done with the permission of the system administrator, and any 
compromise of the setuid binary would have more disastrous consequences 
than the browser compromise it attempts to protect against. 

MANDATORY ACCESS CONTROL

Mandatory Access Control (MAC) is used to enforce system policies such as 
“files labeled Top Secret shall only be read by users cleared to at least Top 
Secret,” and “files labeled High Integrity shall only be modified by software 
labeled at least High Integrity.” 
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MAC systems require policy to be described separately from application 
code. In the context of Multi-Level Secure systems and intelligence 
applications, this requirement allows rigorous and auditable control of 
information flow. In the context of sandboxing for consumer applications, 
however, it leads to the dual-coding problem: policy and code will get out of 
sync, especially if code is written by a vendor and policy by a distribution, 
so application writers must choose between false positives (legitimate 
actions are forbidden) and false negatives (illegitimate actions are permitted). 
In practice, very broad rights are often conferred to avoid blocking legitimate 
actions. 

Furthermore, applying a MAC policy requires the involvement of the system 
administrator; in order to reduce application authority, system privilege is 
required. Users are, thus, only protected by MAC if the system administrator 
has already installed a policy for the software they run, and applications 
cannot dynamically reconfigure their sandboxes. 

SELinux
Chromium supports MAC-based compartmentalization on Linux via an 
SELinux Type Enforcement policy [4]. We acquired such a policy, not from 
the Chromium repository, but from the Fedora project, a Linux distribution. 
Since code and policy come not just from different authors but from 
different organizations, the dual-coding problem may be expected to be 
severe. 

Compounding the general dual-coding problem further, SELinux policies 
are so flexible and fine-grained that they are typically written using coarse-
grained macros. As an example of one or both of these problems, the Fedora 
reference policy for Chromium assigns very broad rights, such as the ability 
to access the terminal device and read all files in /etc. 

The requirement for system privilege in defining new policy and types 
means that Chromium cannot adapt its sandboxes to create new ephemeral 
security domains for each new website that is visited. For instance, Fedora’s 
policy creates a single SELinux dynamic domain, chrome_sandbox_t, 
which is shared by all sandboxes. Thus, malicious code from evil.com is not 
prevented from interfering with the renderer process for bank.com. 

Mac OS X Sandbox
Chromium also uses a MAC-based framework on Mac OS X to create 
sandboxes. The Mac OS X sandbox system allows processes to be 
constrained according to a Scheme-based policy language [5]. It uses the 
BSD MAC Framework [6] to check application activities against the compiled 
policy, which can express fine-grained constraints on the file system but, 
again, coarse all-or-nothing constraints on other namespaces, such as POSIX 
shared memory. 

The Seatbelt-based sandbox model is less verbose than other approaches, 
but like all MAC systems, security policy must be expressed separately from 
code, which can lead to inconsistencies and vulnerabilities. Chromium’s 
policy, while restricting access to the global filesystem namespace, allowed 
access to filesystem elements such as font directories. 

CAPABILITIES

The third category of compartmentalization techniques contains capability-
based approaches. As was mentioned above, capabilities are unforgeable 
tokens of authority which can be passed between processes, supporting a 
delegation-oriented security policy. 
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The UNIX file descriptor is an example of a capability-like object: an 
application cannot create one without the help of the OS kernel, and once 
created, it can be shared with other processes, which can then perform 
system calls such as read and write on it, even if those processes do not have 
permission to open the file for themselves. UNIX file descriptors are not 
well-formed capabilities, however. One serious problem with file descriptors 
is that they are very coarse: a descriptor may allow a process to fchmod 
the file it points to, even if it was opened with O_RDONLY. Thus, both of 
the following approaches further limit the authority that a file descriptor 
conveys and cut off ambient authority. 

seccomp
One capability-oriented approach to sandboxing is Linux’s seccomp. This 
is an optionally available mode which denies access to all system calls 
except read, write, and exit. Processes sandboxed in this way are quite 
rigorously confined, but only the very simplest applications can use the 
mode directly; in order to interact meaningfully with the user, network, file 
system, etc., significant scaffolding code is required to forward system calls, 
as in the case of the Windows sandbox. Like its Windows counterpart, the 
Chromium seccomp sandbox contains over a thousand lines of handcrafted, 
security-critical assembly code to set up sandboxing, implement system call 
forwarding, and craft a basic security policy (which, incidentally, is default-
allow for all filesystem reads; a more complex policy would be even more 
unwieldy). 

Capsicum
Capsicum brings capability concepts to UNIX, allowing sandboxes to be 
rigorously confined while still able to use capability-oriented UNIX APIs 
with full UNIX performance. 

The modifications required to implement Chromium sandboxing on 
Capsicum are almost trivial—approximately 100 lines of code—yet they are 
more robust and flexible than other approaches which require hundreds or 
even tens of thousands of lines. Furthermore, in contrast to approaches that 
require system call interception and forwarding, sandboxed processes can 
operate on file descriptors, and the objects like shared memory which they 
refer to, with almost no performance degradation. 

PERFORMANCE

Typical operating system security benchmarking is targeted at illustrating 
zero or near-zero overhead in the hopes of selling general applicability 
of the resulting technology. Our goal is slightly different: application 
writers have already accepted significant overheads in order to adopt 
compartmentalization, so we seek to significantly improve security while 
keeping comparable performance. 

Capsicum’s capability mode and capabilities are designed to offer native 
UNIX performance for common operations, as frequently performed 
operations such as read and write are performed directly on capabilities. 
Likewise, directory descriptor delegation allows whole UNIX subtrees 
to be delegated to sandboxes, avoiding message passing on file open in 
many common cases. This approach is, fundamentally, a hybrid approach, 
combining elements of the UNIX OS model with a capability system: UNIX 
would offer unfettered access to the entire file system with privilege, and 
a capability system might rely on message-passing interposition to filter 
namespaces, imposing message-passing overhead on common operations. 
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Detailed performance results, as well as discussion of trade-offs between 
security and performance, can be found in our USENIX Security paper 
[2], but suffice it to say that Capsicum primitives are generally as fast as, 
and sometimes faster than, current UNIX primitives. Performance remains 
a critical area of research, however; while Capsicum may be cleaner and 
more efficient for existing privilege-separated applications, adapting further 
applications will perpetuate current security vs. performance trade-offs. 
Finding new approaches to improving security performance in the UNIX 
model is a key concern going forward. 

Conclusion

Capsicum is a blending of capability-oriented security with UNIX APIs 
and performance. Capsicum provides OS foundations that applications 
can use to compartmentalize themselves with stronger confinement 
properties and, in some cases, better performance than existing sandboxing 
techniques. Capsicum is not a replacement for Discretionary or Mandatory 
Access Control, but we believe that it is superior to them as a platform for 
application self-compartmentalization. 

Much still remains to be done—in some ways, Capsicum is just a platform 
for more interesting research in systems, programming, and UI security—
but we believe that this is a very promising first step. 

The Capsicum API and FreeBSD-based prototype are both available today 
under a BSD license, and more information can be found at http://www 
.cl.cam.ac.uk/research/security/capsicum/. Capsicum is intended for 
inclusion in mainline FreeBSD 9. 
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