
A Hierarchical Analysis of

Propositional Temporal Logic

based on Intervals

Ben Moszkowski

Software Technology Research Laboratory

De Montfort University

Leicester

Great Britain

email: x@y, where x=benm and y=dmu.ac.uk

http://www.cse.dmu.ac.uk/~benm

1

Introduction

• We present a new hierarchical framework for analysing
Proposition Temporal Logic (PTL).

• Our approach uses reasoning based on intervals of time.

• We obtain standard results such as a small model property,
decision procedures and axiomatic completeness.

• Both finite time and infinite time are considered.

• Analyse PTL with both the operator until and past time by
reduction to a version of PTL without either one.

• Show useful links between PTL and Propositional Interval
Temporal Logic (PITL).

2

Relevance Beyond PTL

• Significant application of ITL and interval-based reasoning.

• Illustrates general approach to formally reasoning about various
issues involving discrete linear time (e.g., sequential and parallel
composition).

• The formal notational framework hierarchically reduces
infinite-time reasoning to simpler finite-time reasoning.

• Approach could be used in model checking.

• The work includes some interesting representation theorems.

• Uses fixpoints of a certain interval-oriented temporal operator.

• Relevant to hardware description and verification: Property
specification languages PSL/Sugar (IEEE standard 1850) and
’temporal e’ (part of IEEE candidate standard 1647) contain
constructs involving intervals of time.

3

Some Background

• Several analyses of PTL already exist (e.g., Gabbay et al., 1980).

• Common features of previous approaches:

– Explicit representation of individual states as sets of formulas.

– Canonical linear model of such sets.

– Intermediate graphs with nodes which are sets of formulas.

Exceptions:
Vardi and Wolper (’86): Decision procedure using ω-automata.
Lange and Stirling (LICS ’01): Game theory.

• Lichtenstein and Pnueli (’00) give a detailed analysis of PTL
which is meant to largely subsume and supercede earlier ones:

“The paper summarizes work of over 20 years and is
intended to provide a definitive reference to the version of
propositional temporal logic used for the specification and
verification of reactive systems.”

4

Benefits of Our Approach

• Natural hierarchical framework using intervals of time.
The operator until and past time are “add-ons”.

• Provides logic for articulating issues in analysis of PTL.

• Reduction of infinite-time reasoning to finite-time reasoning.

• Direct construction from finite-length state sequences (intervals).

• Avoids graphs involving many sets of formulas, paths, etc.

• Suggests easy-to-describe BDD-based PTL decision procedure.

• Exploits axiomatic completeness of PTL subset with only ©.

• Reveals useful links between intervals, PTL, Propositional
Interval Temporal Logic (PITL) and fixpoints of interval-based
operators.

A companion paper (JANCL ’04) gives completeness proof for PITL
with finite time by a similar hierarchical reduction to PTL.

5

Structure of Presentation

• Introduction

• Review of PTL and intervals

• Propositional Interval Temporal Logic (PITL)

• Transition configurations

• Small models for transition configurations

• A BDD-based decision procedure

• Hierarchical analysis for full PTL without past time

• Conclusions
6

� Introduction

• Review of PTL and intervals

7

Propositional Temporal Logic

Popular logic for specifying and verifying properties of time.

Has tool support widely used in academia and industry.

1996 ACM Turing award given to Prof. Amir Pnueli:

“For his seminal work introducing temporal logic into
computing science and for outstanding contributions to
program and system verification.”

8

PTL Syntax

In what follows, p is any propositional variable and both X and Y

themselves denote PTL formulas:

p true ¬X X ∨ Y

©X (“next X”)

3X (“eventually X”).

Variables such as X, X ′ and Y normally denote arbitrary PTL
formulas.

No until operator or past time.

Derive other Boolean constructs: false , X ∧ Y , X ⊃ Y and
X ≡ Y .

9

Intervals of Time

Discrete, linear time is represented by intervals (i.e., sequences of
states).

An interval σ consists of either

• a finite, nonzero number of states σ0, σ1,

• or infinite (i.e., ω) states.

Each state σi maps each variable p, q, . . . to true or false .

The value of p in the state σi is denoted σi(p).

10

Semantics of PTL

The notation σ |= X denotes that the interval σ satisfies the PTL
formula X. Below is the semantics of the basic PTL constructs:

• σ |= p iff σ0(p) = true . (Use p’s value in σ’s initial state σ0)

• σ |= true trivially holds for any σ.

• σ |= ¬X iff σ 6|= X.

• σ |= X ∨ Y iff σ |= X or σ |= Y .

• σ |= ©X iff σ has at least 2 states and σ′ |= X,

where σ′ denotes σ1σ2

• σ |= 3X iff for some suffix σ′ of σ, σ′ |= X.

11

Sample PTL Formulas and Intervals

p: f t ft

ft t

q: t t ff

t f f

p:

p:

f f t f

t t t t t t

p: tt

p:

p ∧ ©©¬ ©true

p ∧ ©(¬p ∧ ©¬p)

3(¬p ∧ ©p)

¬ 3 ¬p (2 p)

¬p ∧ q

∧ 3(p ∧ ¬q)

12

Satisfiability and Validity

If σ |= X for some σ, then X is satisfiable .

If σ |= X for all σ, then X is valid .

Derived PTL operator 2:

2 X
def≡ ¬ 3 ¬X (Henceforth)

13

Hierarchical Analysis without Past Time

Full PTL without past time (e.g., 2 3 p ∧ 2 3 ¬p)
⇓

Invariant configurations in PTL (without past time)
(e.g., 2 I ∧ w, with

I : (r1 ≡ 3 p) ∧ (r2 ≡ 3 ¬r1)
∧ (r3 ≡ 3 ¬p) ∧ (r4 ≡ 3 ¬r3)

w : ¬r2 ∧ ¬r4)
⇓

Transition configurations in PTL (without past time)
(e.g., 2 T ∧ w ∧ finite (finite defined shortly), with

T : (r1 ≡ (p ∨ ©r1)) ∧ (r2 ≡ (¬r1 ∨ ©r2))
∧ (r3 ≡ (¬p ∨ ©r3)) ∧ (r4 ≡ (¬r3 ∨ ©r4))

w : ¬r2 ∧ ¬r4)
⇓

Low-level formulas in PITL
14

More Operators Definable in PTL
(Most concern finite time and are not well known)

more
def≡ ©true More than one state

empty
def≡ ¬more Only one state (empty interval)

skip
def≡ ©empty Exactly two states (unit interval)

$ X
def≡ X ∧ skip Unit interval with test (unit test)

finite
def≡ 3 empty Finite interval

inf
def≡ ¬finite Infinite interval

fin X
def≡ 2(empty ⊃ X) Weak test of final state

2m X
def≡ 2(more ⊃ X) “Mostly” (Henceforth before end.)

15

More Sample PTL Formulas and Intervals

Recall: more
def� ©true empty

def� :more skip
def� ©empty

$X
def� X ^ skip 2m X

def� 2(more � X)

©$(p ⊃ ©¬p)

∧ ¬ $(p ∧ ©p)
p: t ft

skip ∧ fin ¬p
t fp:

2m (p ⊃ ©¬p)

2m (p ⊃ 3 ¬p)
t t tp: t

f f f tp: t t

t f

∧ ¬ 2(p ⊃ ©¬p)

∧ fin p

Use 2m instead of 2 to reason about pairs of adjacent states without
“running off end” of finite intervals. (See later Theorem 1.)

16

Some Conventions for Variables

• V denotes the finite set of propositional variables used.

• w and w′ denote state formulas , i.e., ones without temporal
operators.

• The set of PTL formulas in which the only primitive temporal
operator is © is called Next Logic (NL).

The subset of NL with no © nested in another © is denoted NL1.

Example: The NL formula p ∧ ©q is in NL1, but the NL formula
p ∧ ©(q ∨ ©p) is not.

• T , T ′ and T ′′ denote formulas in NL1.

17

Atoms

An atom is any finite conjunction in which each conjunct is some
propositional variable or its negation and no two conjuncts share the
same variable.

Example: p ∧ ¬q is an atom but p ∧ ¬p is not.

For any finite set of propositional variables V , let AtomsV be some
set of 2|V | logically distinct atoms containing exactly the variables in
V .

Example: Four logically distinct atoms in Atoms{p,q}:

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q.

The Greek letters α and β denote individual atoms in AtomsV .
18

� Introduction

� Review of PTL and intervals

• Propositional Interval Temporal Logic (PITL)

19

Features of Interval Temporal Logic (ITL)

• Modular reasoning about time (e.g., hardware, multimedia)

• Flexible notation for discrete linear order

• Supports sequential operators found in programs, etc.

• Compositionality with assumptions and commitments

• Supports reasoning about both automata and regular
expressions

• Hybrid systems: Duration Calculus

• Temporal projection

• ITL influenced Verisity Ltd.’s language temporal e (part of
candidate IEEE standard 1647). Verisity has now been acquired
by Cadence Design Systems, Inc., a leading supplier of
electronic design technologies and engineering services.

20

Syntax of PITL

All PTL constructs are permitted as well as two new ones.

Here is the syntax of PITL’s two extra primitive constructs, where A

and B are themselves PITL formulas:

A; B (chop) A∗ (chop-star).

21

Semantics of PITL for Finite Time

The same kind of discrete-time intervals as in PTL.

A B

A; B

AA A

A∗

Each pair of adjacent subintervals share a state.

22

Sample PITL Formulas with Finite Time

Recall: more
def� ©true empty

def� :more skip
def� ©empty

finite
def� 3 empty $X

def� X ^ skip

finite; ¬p

(3 ¬p)

(p ∧ ©¬p); ¬p

p: f t f

pskip

f f t f

¬pfinite

f f f t t

p: tt

skip; p

(©p)
t

p ∧ ©¬p ¬p

p: t

p; ¬p
t f f

tp:

p:

t f
($ p)∗

p

$ p$ p

¬p

23

Semantics of PITL for Infinite Time

Extend chop and chop-star to include infinite time:

=ω

. . .<ω =ω

A

. . .

AA A

. . .<ω <ω <ω

. . .

. . .

A B

A; B

AA A

<ω <ω . . .A∗ =ω

24

The Derived PITL Operator Chop-Omega

Define the next PITL operator called chop-omega:

Aω def≡ (A ∧ finite)∗ ∧ inf

Caution: Interval-oriented reasoning in PITL and PTL with finite time
is different from conventional point-based reasoning in PTL with
infinite-time.

25

� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

• Transition configurations

26

Recall Hierarchical Analysis without Past Time

Full PTL without past time
⇓

Invariant configurations in PTL (without past time)
⇓

Transition configurations in PTL (without past time)
⇓

Low-level formulas in PITL

We obtain standard results such as a small model property, decision
procedures and axiomatic completeness.

☞First analyse Transition Configurations.
They have simple syntax and yet capture essence of analysis.

27

Transition Configurations
& Conditional Liveness Formulas

Four kinds of Transition Configurations (without past time):

Finite-time 2 T ∧ w ∧ finite

Infinite-time 2 T ∧ w ∧ 2 3+ L (Here 3+X
def≡ ©3X)

Final 2 T ∧ w ∧ empty

Periodic 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) (Recall α ∈ AtomsV)

Here L is a Conditional Liveness Formula which is a conjunction
of the form

(w1 ⊃ 3 w′
1) ∧ (w2 ⊃ 3 w′

2) ∧ · · · ∧ (w|L| ⊃ 3 w′
|L|).

28

Expressing Transition Configurations with PITL

Theorem 1 The PITL formula ($ T)∗ and the PTL formula 2m T are
semantically equivalent.

Hence the next equivalence is valid: ($ T)∗ ≡ 2m T .

Sample 4-state interval:

p⊃©¬p

p ¬p ¬p p

p⊃©¬p

p⊃©¬p p⊃©¬p

p⊃©¬p

p⊃©¬p

T T T

T

T

T

($(p ⊃ ©¬p))∗

2m (p ⊃ ©¬p)2m T

($ T)∗

29

Reduction of Transition Configurations

Let ~V ← ~V denote that initial and final values of variables in set V

are equal.

Expressible in PTL: finite ⊃ ∧
v∈V (v ≡ fin v).

Transition configuration Equivalent PITL formula

2 T ∧ w ∧ finite (($ T)∗ ∧ w ∧ finite); (T ∧ empty)

2 T ∧ w ∧ 2 3+ L (($ T)∗ ∧ w ∧ finite);
(
($ T)∗ ∧ L ∧ (~V ← ~V)

)ω

2 T ∧ w ∧ empty T ∧ w ∧ empty

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) (($ T)∗ ∧ α ∧ L)ω

Re-express 2 T using ($ T)∗ (same as 2m T by Theorem 1).

30

The Operator 3f

For any PITL formula A, define new PITL construct 3f A:

3f A
def≡ (A ∧ finite); true.

Intuition: 3f A true on an interval σ iff A is true on some finite
subinterval starting at the beginning of σ.

3f -Fixpoints: A PITL formula A is a fixpoint of 3f iff the equivalence
A ≡ 3f A is valid.

Fixpoints of 3f are easier to move in and out of subintervals than
arbitrary formulas are.

31

Useful Theorem Concerning 3f -Fixpoints

The next theorem helps analyse periodic transition configurations:

Theorem 2 For any 3f -fixpoint A, the next equivalence is valid:

A ∧ 2 3+A ≡ Aω.

We can use this to re-express periodic and infinite-time transition
configurations in PITL.

32

Some Syntactic Categories of 3f -Fixpoints

Lemma 3 Every state formula is a 3f -fixpoint.
Furthermore, if the PITL formulas A and B are 3f -fixpoints, then so
are the following PITL formulas:

A ∧ B A ∨ B ©A 3 A.

Corollary 4 If the PITL formula A is a 3f -fixpoint, so is w ⊃ A,
where w is any state formula.

Lemma 5 Every conditional liveness formula L is a 3f -fixpoint.

Proof : Recall that L has the following form:

w1 ⊃ 3 w′
1 ∧ · · · .

Can therefore use Lemma 3 and Corollary 4.
33

3f -Fixpoints and Periodic Transition Configurations

Recall Theorem 2: For any 3f -fixpoint A, have valid equivalence:

A ∧ 2 3+A ≡ Aω.

Observe that α ∧ L is a 3f -fixpoint by Lemmas 3 and 5. Theorem 2
ensures the following valid equivalence:

α ∧ L ∧ 2 3+(α ∧ L) ≡ (α ∧ L)ω.

Then obtain following lemma:

Lemma 6 The next equivalence concerning a periodic transition
configuration is valid:

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) ≡ (($ T)∗ ∧ α ∧ L)ω. (1)

34

Satisfiability for
Periodic Transition Configurations

Theorem 7 For any atom α in AtomsV , the following are equivalent:

(a) 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) is satisfiable.

(b) 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) has a periodic model

(by Lemma 6 can use (($ T)∗ ∧ α ∧ L)ω).

(c) The next PITL formula is satisfiable in finite time:
($ T)∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α.

☞ Shows reduction of infinite-time reasoning to finite-time reasoning.

☞ In (c), can replace ($ T)∗ with 2m T to get PTL formula.

35

Satisfiability for
Infinite-Time Transition Configurations

Theorem 8 For any state formula w with variables in V , the
following are equivalent:

(a) 2 T ∧ w ∧ 2 3+ L is satisfiable.

(b) 2 T ∧ w ∧ 2 3+ L has an ultimately periodic model (i.e.,
interval with periodic suffix).

(c) The next PITL formula is satisfiable in finite time:
($ T)∗ ∧ w ∧ L ∧ finite ∧ 3(more ∧ (~V ← ~V)).

☞ Shows reduction of infinite-time reasoning to finite-time reasoning.

☞ In (c), can replace ($ T)∗ with 2m T to get PTL formula.

36

� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

• Small models for transition configurations

37

Periodicity and Small Models

By Theorem 7, the periodic transition configuration
2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) is satisfiable iff the next formula is
satisfiable in finite time:

($ T)∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α.

Lemma 9 If the formula ($ T)∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α is
satisfiable, then it is satisfiable on a finite, nonempty interval having
at most (|L| + 1) · |AtomsV | time units.

Proof is by induction on |L|.

Use this to obtain small models for periodic and infinite-time
transition configurations.

38

Small Models for Transition Configurations

Transition configuration Upper bounds

2 T ∧ w ∧ finite Less than |AtomsV | units

(($ T)∗ ∧ w ∧ finite); (T ∧ empty)

2 T ∧ w ∧ 2 3+ L Initial part < |AtomsV |,
period ≤ (|L| + 1) · |AtomsV |

(($ T)∗ ∧ w ∧ finite);
(
($ T)∗ ∧ L ∧ (~V ← ~V)

)ω

2 T ∧ w ∧ empty 0 units (empty)

T ∧ w ∧ empty

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) Period ≤ (|L| + 1) · |AtomsV |
(($ T)∗ ∧ α ∧ L)ω

39

� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

� Small models for transition configurations

• A BDD-based decision procedure

40

A BDD-Based Decision Procedure:
Case for Finite-Time Transition Configurations

Goal: Test 2 T ∧ w ∧ finite for satisfiability:

Equivalent PITL formula: (($ T)∗ ∧ w ∧ finite); (T ∧ empty).

This is satisfiable iff next three formulas are satisfiable for some
atoms α and β in AtomsV :

α ∧ w ($ T)∗ ∧ α ∧ finite ∧ fin β T ∧ β ∧ empty .

Try to solve for such atoms α and β.

This can be done with Symbolic State Space Traversal techniques
implemented using Binary Decision Diagrams (BDD).

41

A BDD-Based Decision Procedure:
Case for Infinite-Time Transition Configurations

Goal: Test 2 T ∧ w ∧ 2 3+ L for satisfiability:

Equivalent formula:

(($ T)∗ ∧ w ∧ finite);
(
($ T)∗ ∧ L ∧ (~V ← ~V)

)ω
.

This is satisfiable iff next PTL formula satisfiable in finite-time:

2m T ∧ w ∧ L ∧ finite ∧ 3(more ∧ (~V ← ~V)). (2)

Can then do one of following:

• Apply finite-time decision procedure for full PTL.

• Reduce formula (2) directly to finite-time transition configuration.

• Utilise other BDD-based algorithms.
42

Sample Session of Prototype Implementation of the
BDD-Based Decision Procedure

Goal: Test infinite-time satisfiability of 2 3 p ∧ 2 3 ¬p.

[6]> (dd-sat ’inf ’(and (box (diamond (var p)))

(box (diamond (not (var p))))))

...

Satisfiable with infinite time.

...

Here is a model of an initial segment with 1 state:

***State 1: P=1.

Here is a model of an (overlapping) periodic segment with

3 states:

***State 1: P=1.

***State 2: P=0.

***State 3: P=1.

...

[7]>

Corresponds to p ¬p p ¬p . . ., i.e., the PITL formula(($ p); ($ ¬p))ω.
43

� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

� Small models for transition configurations

� A BDD-based decision procedure

• Hierarchical analysis for full PTL without past time

44

Hierarchical Analysis for Full PTL without Past Time

Full PTL without past time
⇓

Invariant configurations (in PTL)
⇓

Transition configurations (in PTL)

Example: Start with 3 p ∧ 2 3 ¬p.

Transform into a invariant configuration 2 I ^ w,
with I : (r1 � 3 p) ^ (r2 � 3:r3) ^ (r3 � 3:p)

w : r1 ^ :r2:
Transform into a finite-time transition configuration 2 T ^ w ^ finite ,
with T :

�
r1 � (p _ ©r1)

�
^
�
r2 � (:r3 _ ©r2)

�
^
�
r3 � (:p _ ©r3)

�
w : r1 ^ :r2:

45

Hierarchical Analysis with Past Time

Full PTL with past time

⇓
Invariant configurations with past time

⇓
Transition configurations with past time

⇓
Transition configurations without past time

46

� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

� Small models for transition configurations

� A BDD-based decision procedure

� Hierarchical analysis for full PTL without past time

• Conclusions

47

Other Issues not Covered Here (Many in Paper)

• Axiomatic completeness

• Details of invariants and invariant configurations

• Reduce of arbitrary PTL formulas to invariants

• Treatment of the operator until and past time

• Generalised conditional liveness formulas and invariants

• Fusion Logic with reduction to PTL (only finite time, not in paper)

• Some experience with using decision procedure (not in paper)

• Analysis of Propositional Dynamic Logic (PDL) without
Fischer-Ladner closures (not in paper)

• Version of Hoare Logic with ITL pre- and post-conditions (not in
paper)

48

Conclusions

• We have presented a new interval-based hierarchical framework
for analysing PTL.

• It uses PITL to articulate various steps.

• It reduces infinite-time reasoning to finite-time reasoning.

• It complements existing methods.

• It complements our parallel work on a completeness proof for
PITL using a hierarchical reduction to PTL via Fusion Logic.

• It suggests that the connection between PTL and PITL is more
fundamental than generally considered.

49

Links to Paper and Information about ITL

• Paper at Computing Research Repository (CoRR):

http://arXiv.org/abs/cs.LO/0601008

Or go to following URL (e.g., Google search for CoRR):

http://arXiv.org/corr

Then search for Moszkowski or Interval Temporal Logic.

• Information on ITL, including downloadable book:

http://www.cse.dmu.ac.uk/STRL/ITL/

Or do web search (e.g., with Google) for
ITL homepage or Interval Temporal Logic

50

http://arXiv.org/abs/cs.LO/0601008
http://arXiv.org/corr
http://www.cse.dmu.ac.uk/STRL/ITL/

(Extra Slides)

(Extra slides follow.)

51

Decomposition

Suppose α ∈ AtomsV and PITL formulas A and B have all
variables in V .

Lemma 10 The following are equivalent:

• The formula (A ∧ finite); (α ∧ B) is satisfiable.

• The two formulas A ∧ finite ∧ fin α and α ∧ B are satisfiable.

Lemma 11 The following are equivalent:

• The formula (α ∧ A)ω is satisfiable.

• The formula α ∧ A ∧ finite ∧ more ∧ fin α is satisfiable.

52

	First Slide
	Introduction
	Propositional Temporal Logic
	Some PTL Operators

	Propositional ITL
	Transition Configurations
	Small Models
	A BDD-Based Decision Procedure
	Full PTL without Past Time
	Conclusions
	(Extra Slides)
	Decomposition

