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Introduction

• We present a new hierarchical framework for analysing
Proposition Temporal Logic (PTL).

• Our approach uses reasoning based on intervals of time.

• We obtain standard results such as a small model property,
decision procedures and axiomatic completeness.

• Both finite time and infinite time are considered.

• Analyse PTL with both the operator until and past time by
reduction to a version of PTL without either one.

• Show useful links between PTL and Propositional Interval
Temporal Logic (PITL).

2



Relevance Beyond PTL

• Significant application of ITL and interval-based reasoning.

• Illustrates general approach to formally reasoning about various
issues involving discrete linear time (e.g., sequential and parallel
composition).

• The formal notational framework hierarchically reduces
infinite-time reasoning to simpler finite-time reasoning.

• Approach could be used in model checking.

• The work includes some interesting representation theorems.

• Uses fixpoints of a certain interval-oriented temporal operator.

• Relevant to hardware description and verification: Property
specification languages PSL/Sugar (IEEE standard 1850) and
’temporal e’ (part of IEEE candidate standard 1647) contain
constructs involving intervals of time.
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Some Background

• Several analyses of PTL already exist (e.g., Gabbay et al., 1980).

• Common features of previous approaches:

– Explicit representation of individual states as sets of formulas.

– Canonical linear model of such sets.

– Intermediate graphs with nodes which are sets of formulas.

Exceptions:
Vardi and Wolper (’86): Decision procedure using ω-automata.
Lange and Stirling (LICS ’01): Game theory.

• Lichtenstein and Pnueli (’00) give a detailed analysis of PTL
which is meant to largely subsume and supercede earlier ones:

“The paper summarizes work of over 20 years and is
intended to provide a definitive reference to the version of
propositional temporal logic used for the specification and
verification of reactive systems.”
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Benefits of Our Approach

• Natural hierarchical framework using intervals of time.
The operator until and past time are “add-ons”.

• Provides logic for articulating issues in analysis of PTL.

• Reduction of infinite-time reasoning to finite-time reasoning.

• Direct construction from finite-length state sequences (intervals).

• Avoids graphs involving many sets of formulas, paths, etc.

• Suggests easy-to-describe BDD-based PTL decision procedure.

• Exploits axiomatic completeness of PTL subset with only ©.

• Reveals useful links between intervals, PTL, Propositional
Interval Temporal Logic (PITL) and fixpoints of interval-based
operators.

A companion paper (JANCL ’04) gives completeness proof for PITL
with finite time by a similar hierarchical reduction to PTL.

5



Structure of Presentation

• Introduction

• Review of PTL and intervals

• Propositional Interval Temporal Logic (PITL)

• Transition configurations

• Small models for transition configurations

• A BDD-based decision procedure

• Hierarchical analysis for full PTL without past time

• Conclusions
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� Introduction

• Review of PTL and intervals
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Propositional Temporal Logic

Popular logic for specifying and verifying properties of time.

Has tool support widely used in academia and industry.

1996 ACM Turing award given to Prof. Amir Pnueli:

“For his seminal work introducing temporal logic into
computing science and for outstanding contributions to
program and system verification.”
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PTL Syntax

In what follows, p is any propositional variable and both X and Y

themselves denote PTL formulas:

p true ¬X X ∨ Y

©X (“next X” )

3X (“eventually X”).

Variables such as X, X ′ and Y normally denote arbitrary PTL
formulas.

No until operator or past time.

Derive other Boolean constructs: false , X ∧ Y , X ⊃ Y and
X ≡ Y .

9



Intervals of Time

Discrete, linear time is represented by intervals (i.e., sequences of
states).

An interval σ consists of either

• a finite, nonzero number of states σ0, σ1, . . . .

• or infinite (i.e., ω) states.

Each state σi maps each variable p, q, . . . to true or false .

The value of p in the state σi is denoted σi(p).
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Semantics of PTL

The notation σ |= X denotes that the interval σ satisfies the PTL
formula X. Below is the semantics of the basic PTL constructs:

• σ |= p iff σ0(p) = true . (Use p’s value in σ’s initial state σ0)

• σ |= true trivially holds for any σ.

• σ |= ¬X iff σ 6|= X.

• σ |= X ∨ Y iff σ |= X or σ |= Y .

• σ |= ©X iff σ has at least 2 states and σ′ |= X,

where σ′ denotes σ1σ2 . . . .

• σ |= 3X iff for some suffix σ′ of σ, σ′ |= X.
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Sample PTL Formulas and Intervals

p: f t ft

ft t

q: t t ff

t f f

p:

p:

f f t f

t t t t t t

p: tt

p:

p ∧ ©©¬ ©true

p ∧ ©(¬p ∧ ©¬p)

3(¬p ∧ ©p)

¬ 3 ¬p (2 p)

¬p ∧ q

∧ 3(p ∧ ¬q)
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Satisfiability and Validity

If σ |= X for some σ, then X is satisfiable .

If σ |= X for all σ, then X is valid .

Derived PTL operator 2:

2 X
def≡ ¬ 3 ¬X (Henceforth)
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Hierarchical Analysis without Past Time

Full PTL without past time (e.g., 2 3 p ∧ 2 3 ¬p )
⇓

Invariant configurations in PTL (without past time)
(e.g., 2 I ∧ w, with

I : (r1 ≡ 3 p) ∧ (r2 ≡ 3 ¬r1)
∧ (r3 ≡ 3 ¬p) ∧ (r4 ≡ 3 ¬r3)

w : ¬r2 ∧ ¬r4 )
⇓

Transition configurations in PTL (without past time)
(e.g., 2 T ∧ w ∧ finite (finite defined shortly), with

T : (r1 ≡ (p ∨ ©r1)) ∧ (r2 ≡ (¬r1 ∨ ©r2))
∧ (r3 ≡ (¬p ∨ ©r3)) ∧ (r4 ≡ (¬r3 ∨ ©r4))

w : ¬r2 ∧ ¬r4 )
⇓

Low-level formulas in PITL
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More Operators Definable in PTL
(Most concern finite time and are not well known)

more
def≡ ©true More than one state

empty
def≡ ¬more Only one state (empty interval)

skip
def≡ ©empty Exactly two states (unit interval)

$ X
def≡ X ∧ skip Unit interval with test (unit test)

finite
def≡ 3 empty Finite interval

inf
def≡ ¬finite Infinite interval

fin X
def≡ 2(empty ⊃ X) Weak test of final state

2m X
def≡ 2(more ⊃ X) “Mostly” (Henceforth before end.)
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More Sample PTL Formulas and Intervals

Recall: more
def� ©true empty

def� :more skip
def� ©empty

$X
def� X ^ skip 2m X

def� 2(more � X)

©$(p ⊃ ©¬p)

∧ ¬ $(p ∧ ©p)
p: t ft

skip ∧ fin ¬p
t fp:

2m (p ⊃ ©¬p)

2m (p ⊃ 3 ¬p)
t t tp: t

f f f tp: t t

t f

∧ ¬ 2(p ⊃ ©¬p)

∧ fin p

Use 2m instead of 2 to reason about pairs of adjacent states without
“running off end” of finite intervals. (See later Theorem 1.)
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Some Conventions for Variables

• V denotes the finite set of propositional variables used.

• w and w′ denote state formulas , i.e., ones without temporal
operators.

• The set of PTL formulas in which the only primitive temporal
operator is © is called Next Logic (NL).

The subset of NL with no © nested in another © is denoted NL1.

Example: The NL formula p ∧ ©q is in NL1, but the NL formula
p ∧ ©(q ∨ ©p) is not.

• T , T ′ and T ′′ denote formulas in NL1.
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Atoms

An atom is any finite conjunction in which each conjunct is some
propositional variable or its negation and no two conjuncts share the
same variable.

Example: p ∧ ¬q is an atom but p ∧ ¬p is not.

For any finite set of propositional variables V , let AtomsV be some
set of 2|V | logically distinct atoms containing exactly the variables in
V .

Example: Four logically distinct atoms in Atoms{p,q}:

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q.

The Greek letters α and β denote individual atoms in AtomsV .
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� Introduction

� Review of PTL and intervals

• Propositional Interval Temporal Logic (PITL)
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Features of Interval Temporal Logic (ITL)

• Modular reasoning about time (e.g., hardware, multimedia)

• Flexible notation for discrete linear order

• Supports sequential operators found in programs, etc.

• Compositionality with assumptions and commitments

• Supports reasoning about both automata and regular
expressions

• Hybrid systems: Duration Calculus

• Temporal projection

• ITL influenced Verisity Ltd.’s language temporal e (part of
candidate IEEE standard 1647). Verisity has now been acquired
by Cadence Design Systems, Inc., a leading supplier of
electronic design technologies and engineering services.
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Syntax of PITL

All PTL constructs are permitted as well as two new ones.

Here is the syntax of PITL’s two extra primitive constructs, where A

and B are themselves PITL formulas:

A; B (chop) A∗ (chop-star ).
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Semantics of PITL for Finite Time

The same kind of discrete-time intervals as in PTL.

A B

A; B

AA A

A∗

Each pair of adjacent subintervals share a state.
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Sample PITL Formulas with Finite Time

Recall: more
def� ©true empty

def� :more skip
def� ©empty

finite
def� 3 empty $X

def� X ^ skip

finite; ¬p

(3 ¬p)

(p ∧ ©¬p); ¬p

p: f t f

pskip

f f t f

¬pfinite

f f f t t

p: tt

skip; p

(©p)
t

p ∧ ©¬p ¬p

p: t

p; ¬p
t f f

tp:

p:

t f
($ p)∗

p

$ p$ p

¬p
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Semantics of PITL for Infinite Time

Extend chop and chop-star to include infinite time:

=ω

. . .<ω =ω

A

. . .

AA A

. . .<ω <ω <ω

. . .

. . .

A B

A; B

AA A

<ω <ω . . .A∗ =ω
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The Derived PITL Operator Chop-Omega

Define the next PITL operator called chop-omega:

Aω def≡ (A ∧ finite)∗ ∧ inf

Caution: Interval-oriented reasoning in PITL and PTL with finite time
is different from conventional point-based reasoning in PTL with
infinite-time.
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� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

• Transition configurations
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Recall Hierarchical Analysis without Past Time

Full PTL without past time
⇓

Invariant configurations in PTL (without past time)
⇓

Transition configurations in PTL (without past time)
⇓

Low-level formulas in PITL

We obtain standard results such as a small model property, decision
procedures and axiomatic completeness.

☞First analyse Transition Configurations.
They have simple syntax and yet capture essence of analysis.
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Transition Configurations
& Conditional Liveness Formulas

Four kinds of Transition Configurations (without past time):

Finite-time 2 T ∧ w ∧ finite

Infinite-time 2 T ∧ w ∧ 2 3+ L (Here 3+X
def≡ ©3X)

Final 2 T ∧ w ∧ empty

Periodic 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) (Recall α ∈ AtomsV )

Here L is a Conditional Liveness Formula which is a conjunction
of the form

(w1 ⊃ 3 w′
1) ∧ (w2 ⊃ 3 w′

2) ∧ · · · ∧ (w|L| ⊃ 3 w′
|L|).
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Expressing Transition Configurations with PITL

Theorem 1 The PITL formula ($ T )∗ and the PTL formula 2m T are
semantically equivalent.

Hence the next equivalence is valid: ($ T )∗ ≡ 2m T .

Sample 4-state interval:

p⊃©¬p

p ¬p ¬p p

p⊃©¬p

p⊃©¬p p⊃©¬p

p⊃©¬p

p⊃©¬p

T T T

T

T

T

($(p ⊃ ©¬p))∗

2m (p ⊃ ©¬p)2m T

($ T )∗
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Reduction of Transition Configurations

Let ~V ← ~V denote that initial and final values of variables in set V

are equal.

Expressible in PTL: finite ⊃ ∧
v∈V (v ≡ fin v).

Transition configuration Equivalent PITL formula

2 T ∧ w ∧ finite (($ T )∗ ∧ w ∧ finite); (T ∧ empty)

2 T ∧ w ∧ 2 3+ L (($ T )∗ ∧ w ∧ finite);
(
($ T )∗ ∧ L ∧ (~V ← ~V )

)ω

2 T ∧ w ∧ empty T ∧ w ∧ empty

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) (($ T )∗ ∧ α ∧ L)ω

Re-express 2 T using ($ T )∗ (same as 2m T by Theorem 1).
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The Operator 3f

For any PITL formula A, define new PITL construct 3f A:

3f A
def≡ (A ∧ finite); true.

Intuition: 3f A true on an interval σ iff A is true on some finite
subinterval starting at the beginning of σ.

3f -Fixpoints: A PITL formula A is a fixpoint of 3f iff the equivalence
A ≡ 3f A is valid.

Fixpoints of 3f are easier to move in and out of subintervals than
arbitrary formulas are.
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Useful Theorem Concerning 3f -Fixpoints

The next theorem helps analyse periodic transition configurations:

Theorem 2 For any 3f -fixpoint A, the next equivalence is valid:

A ∧ 2 3+A ≡ Aω.

We can use this to re-express periodic and infinite-time transition
configurations in PITL.
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Some Syntactic Categories of 3f -Fixpoints

Lemma 3 Every state formula is a 3f -fixpoint.
Furthermore, if the PITL formulas A and B are 3f -fixpoints, then so
are the following PITL formulas:

A ∧ B A ∨ B ©A 3 A.

Corollary 4 If the PITL formula A is a 3f -fixpoint, so is w ⊃ A,
where w is any state formula.

Lemma 5 Every conditional liveness formula L is a 3f -fixpoint.

Proof : Recall that L has the following form:

w1 ⊃ 3 w′
1 ∧ · · · .

Can therefore use Lemma 3 and Corollary 4.
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3f -Fixpoints and Periodic Transition Configurations

Recall Theorem 2: For any 3f -fixpoint A, have valid equivalence:

A ∧ 2 3+A ≡ Aω.

Observe that α ∧ L is a 3f -fixpoint by Lemmas 3 and 5. Theorem 2
ensures the following valid equivalence:

α ∧ L ∧ 2 3+(α ∧ L) ≡ (α ∧ L)ω.

Then obtain following lemma:

Lemma 6 The next equivalence concerning a periodic transition
configuration is valid:

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) ≡ (($ T )∗ ∧ α ∧ L)ω. (1)
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Satisfiability for
Periodic Transition Configurations

Theorem 7 For any atom α in AtomsV , the following are equivalent:

(a) 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) is satisfiable.

(b) 2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) has a periodic model

(by Lemma 6 can use (($ T )∗ ∧ α ∧ L)ω).

(c) The next PITL formula is satisfiable in finite time:
($ T )∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α.

☞ Shows reduction of infinite-time reasoning to finite-time reasoning.

☞ In (c), can replace ($ T )∗ with 2m T to get PTL formula.
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Satisfiability for
Infinite-Time Transition Configurations

Theorem 8 For any state formula w with variables in V , the
following are equivalent:

(a) 2 T ∧ w ∧ 2 3+ L is satisfiable.

(b) 2 T ∧ w ∧ 2 3+ L has an ultimately periodic model (i.e.,
interval with periodic suffix).

(c) The next PITL formula is satisfiable in finite time:
($ T )∗ ∧ w ∧ L ∧ finite ∧ 3(more ∧ (~V ← ~V )).

☞ Shows reduction of infinite-time reasoning to finite-time reasoning.

☞ In (c), can replace ($ T )∗ with 2m T to get PTL formula.
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� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

• Small models for transition configurations
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Periodicity and Small Models

By Theorem 7, the periodic transition configuration
2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) is satisfiable iff the next formula is
satisfiable in finite time:

($ T )∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α.

Lemma 9 If the formula ($ T )∗ ∧ α ∧ L ∧ more ∧ finite ∧ fin α is
satisfiable, then it is satisfiable on a finite, nonempty interval having
at most (|L| + 1) · |AtomsV | time units.

Proof is by induction on |L|.

Use this to obtain small models for periodic and infinite-time
transition configurations.
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Small Models for Transition Configurations

Transition configuration Upper bounds

2 T ∧ w ∧ finite Less than |AtomsV | units

(($ T )∗ ∧ w ∧ finite); (T ∧ empty)

2 T ∧ w ∧ 2 3+ L Initial part < |AtomsV |,
period ≤ (|L| + 1) · |AtomsV |

(($ T )∗ ∧ w ∧ finite);
(
($ T )∗ ∧ L ∧ (~V ← ~V )

)ω

2 T ∧ w ∧ empty 0 units (empty)

T ∧ w ∧ empty

2 T ∧ α ∧ L ∧ 2 3+(α ∧ L) Period ≤ (|L| + 1) · |AtomsV |
(($ T )∗ ∧ α ∧ L)ω
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� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

� Small models for transition configurations

• A BDD-based decision procedure
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A BDD-Based Decision Procedure:
Case for Finite-Time Transition Configurations

Goal: Test 2 T ∧ w ∧ finite for satisfiability:

Equivalent PITL formula: (($ T )∗ ∧ w ∧ finite); (T ∧ empty).

This is satisfiable iff next three formulas are satisfiable for some
atoms α and β in AtomsV :

α ∧ w ($ T )∗ ∧ α ∧ finite ∧ fin β T ∧ β ∧ empty .

Try to solve for such atoms α and β.

This can be done with Symbolic State Space Traversal techniques
implemented using Binary Decision Diagrams (BDD).
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A BDD-Based Decision Procedure:
Case for Infinite-Time Transition Configurations

Goal: Test 2 T ∧ w ∧ 2 3+ L for satisfiability:

Equivalent formula:

(($ T )∗ ∧ w ∧ finite);
(
($ T )∗ ∧ L ∧ (~V ← ~V )

)ω
.

This is satisfiable iff next PTL formula satisfiable in finite-time:

2m T ∧ w ∧ L ∧ finite ∧ 3(more ∧ (~V ← ~V )). (2)

Can then do one of following:

• Apply finite-time decision procedure for full PTL.

• Reduce formula (2) directly to finite-time transition configuration.

• Utilise other BDD-based algorithms.
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Sample Session of Prototype Implementation of the
BDD-Based Decision Procedure

Goal: Test infinite-time satisfiability of 2 3 p ∧ 2 3 ¬p.

[6]> (dd-sat ’inf ’(and (box (diamond (var p)))

(box (diamond (not (var p))))))

...

Satisfiable with infinite time.

...

Here is a model of an initial segment with 1 state:

***State 1: P=1.

Here is a model of an (overlapping) periodic segment with

3 states:

***State 1: P=1.

***State 2: P=0.

***State 3: P=1.

...

[7]>

Corresponds to p ¬p p ¬p . . ., i.e., the PITL formula(($ p); ($ ¬p))ω.
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• Hierarchical analysis for full PTL without past time
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Hierarchical Analysis for Full PTL without Past Time

Full PTL without past time
⇓

Invariant configurations (in PTL)
⇓

Transition configurations (in PTL)

Example: Start with 3 p ∧ 2 3 ¬p.

Transform into a invariant configuration 2 I ^ w,
with I : (r1 � 3 p) ^ (r2 � 3:r3) ^ (r3 � 3:p)

w : r1 ^ :r2:
Transform into a finite-time transition configuration 2 T ^ w ^ finite ,
with T :

�
r1 � (p _ ©r1)

�
^
�
r2 � (:r3 _ ©r2)

�
^
�
r3 � (:p _ ©r3)

�
w : r1 ^ :r2:
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Hierarchical Analysis with Past Time

Full PTL with past time

⇓
Invariant configurations with past time

⇓
Transition configurations with past time

⇓
Transition configurations without past time

46



� Introduction

� Review of PTL and intervals

� Propositional Interval Temporal Logic (PITL)

� Transition configurations

� Small models for transition configurations

� A BDD-based decision procedure

� Hierarchical analysis for full PTL without past time

• Conclusions

47



Other Issues not Covered Here (Many in Paper)

• Axiomatic completeness

• Details of invariants and invariant configurations

• Reduce of arbitrary PTL formulas to invariants

• Treatment of the operator until and past time

• Generalised conditional liveness formulas and invariants

• Fusion Logic with reduction to PTL (only finite time, not in paper)

• Some experience with using decision procedure (not in paper)

• Analysis of Propositional Dynamic Logic (PDL) without
Fischer-Ladner closures (not in paper)

• Version of Hoare Logic with ITL pre- and post-conditions (not in
paper)
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Conclusions

• We have presented a new interval-based hierarchical framework
for analysing PTL.

• It uses PITL to articulate various steps.

• It reduces infinite-time reasoning to finite-time reasoning.

• It complements existing methods.

• It complements our parallel work on a completeness proof for
PITL using a hierarchical reduction to PTL via Fusion Logic.

• It suggests that the connection between PTL and PITL is more
fundamental than generally considered.
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Links to Paper and Information about ITL

• Paper at Computing Research Repository (CoRR):

http://arXiv.org/abs/cs.LO/0601008

Or go to following URL (e.g., Google search for CoRR):

http://arXiv.org/corr

Then search for Moszkowski or Interval Temporal Logic.

• Information on ITL, including downloadable book:

http://www.cse.dmu.ac.uk/STRL/ITL/

Or do web search (e.g., with Google) for
ITL homepage or Interval Temporal Logic
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(Extra Slides)

(Extra slides follow.)
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Decomposition

Suppose α ∈ AtomsV and PITL formulas A and B have all
variables in V .

Lemma 10 The following are equivalent:

• The formula (A ∧ finite); (α ∧ B) is satisfiable.

• The two formulas A ∧ finite ∧ fin α and α ∧ B are satisfiable.

Lemma 11 The following are equivalent:

• The formula (α ∧ A)ω is satisfiable.

• The formula α ∧ A ∧ finite ∧ more ∧ fin α is satisfiable.
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