Theory Distributor

theory Distributor
imports AllocBase
(*  Title:      ZF/UNITY/Distributor.thy
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
    Copyright   2002  University of Cambridge

A multiple-client allocator from a single-client allocator:
Distributor specification.

theory Distributor imports AllocBase Follows  Guar GenPrefix begin

text‹Distributor specification (the number of outputs is Nclients)›

text‹spec (14)›

  distr_follows :: "[i, i, i, i =>i] =>i"  where
    "distr_follows(A, In, iIn, Out) ==
     (lift(In) IncreasingWrt prefix(A)/list(A)) ∩
     (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
     Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt < Nclients})
         (⋂n ∈ Nclients.
          (%s. sublist(s`In, {k ∈ nat. k<length(s`iIn) & nth(k, s`iIn) = n}))
          Wrt prefix(A)/list(A))"

  distr_allowed_acts :: "[i=>i]=>i"  where
    "distr_allowed_acts(Out) ==
     {D ∈ program. AllowedActs(D) =
     cons(id(state), ⋃G ∈ (⋂n∈nat. preserves(lift(Out(n)))). Acts(G))}"

  distr_spec :: "[i, i, i, i =>i]=>i"  where
    "distr_spec(A, In, iIn, Out) ==
     distr_follows(A, In, iIn, Out) ∩ distr_allowed_acts(Out)"

locale distr =
  fixes In  ‹items to distribute›
    and iIn ‹destinations of items to distribute›
    and Out ‹distributed items›
    and A   ‹the type of items being distributed›
    and D
     var_assumes [simp]:  "In ∈ var & iIn ∈ var & (∀n. Out(n):var)"
 and all_distinct_vars:   "∀n. all_distinct([In, iIn, Out(n)])"
 and type_assumes [simp]: "type_of(In)=list(A) &  type_of(iIn)=list(nat) &
                          (∀n. type_of(Out(n))=list(A))"
 and default_val_assumes [simp]:
                         "default_val(In)=Nil &
                          default_val(iIn)=Nil &
                          (∀n. default_val(Out(n))=Nil)"
 and distr_spec:  "D ∈ distr_spec(A, In, iIn, Out)"

lemma (in distr) In_value_type [simp,TC]: "s ∈ state ==> s`In ∈ list(A)"
apply (unfold state_def)
apply (drule_tac a = In in apply_type, auto)

lemma (in distr) iIn_value_type [simp,TC]:
     "s ∈ state ==> s`iIn ∈ list(nat)"
apply (unfold state_def)
apply (drule_tac a = iIn in apply_type, auto)

lemma (in distr) Out_value_type [simp,TC]:
     "s ∈ state ==> s`Out(n):list(A)"
apply (unfold state_def)
apply (drule_tac a = "Out (n)" in apply_type)
apply auto

lemma (in distr) D_in_program [simp,TC]: "D ∈ program"
apply (cut_tac distr_spec)
apply (auto simp add: distr_spec_def distr_allowed_acts_def)

lemma (in distr) D_ok_iff:
     "G ∈ program ==>
        D ok G ⟷ ((∀n ∈ nat. G ∈ preserves(lift(Out(n)))) & D ∈ Allowed(G))"
apply (cut_tac distr_spec)
apply (auto simp add: INT_iff distr_spec_def distr_allowed_acts_def
                      Allowed_def ok_iff_Allowed)
apply (drule safety_prop_Acts_iff [THEN [2] rev_iffD1])
apply (auto intro: safety_prop_Inter)

lemma (in distr) distr_Increasing_Out:
"D ∈ ((lift(In) IncreasingWrt prefix(A)/list(A)) ∩
      (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
      Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt<Nclients}))
          (⋂n ∈ Nclients. lift(Out(n)) IncreasingWrt
apply (cut_tac D_in_program distr_spec)
apply (simp (no_asm_use) add: distr_spec_def distr_follows_def)
apply (auto intro!: guaranteesI intro: Follows_imp_Increasing_left 
            dest!: guaranteesD)

lemma (in distr) distr_bag_Follows_lemma:
"[| ∀n ∈ nat. G ∈ preserves(lift(Out(n)));
   D ⊔ G ∈ Always({s ∈ state.
          ∀elt ∈ set_of_list(s`iIn). elt < Nclients}) |]
  ==> D ⊔ G ∈ Always
          ({s ∈ state. msetsum(%n. bag_of (sublist(s`In,
                       {k ∈ nat. k < length(s`iIn) &
                          nth(k, s`iIn)= n})),
                         Nclients, A) =
              bag_of(sublist(s`In, length(s`iIn)))})"
apply (cut_tac D_in_program)
apply (subgoal_tac "G ∈ program")
 prefer 2 apply (blast dest: preserves_type [THEN subsetD])
apply (erule Always_Diff_Un_eq [THEN iffD1])
apply (rule state_AlwaysI [THEN Always_weaken], auto)
apply (rename_tac s)
apply (subst bag_of_sublist_UN_disjoint [symmetric])
   apply (simp (no_asm_simp) add: nat_into_Finite)
  apply blast
 apply (simp (no_asm_simp))
apply (simp add: set_of_list_conv_nth [of _ nat])
apply (subgoal_tac
       "(⋃i ∈ Nclients. {k∈nat. k < length(s`iIn) & nth(k, s`iIn) = i}) =
        length(s`iIn) ")
apply (simp (no_asm_simp))
apply (rule equalityI)
apply (force simp add: ltD, safe)
apply (rename_tac m)
apply (subgoal_tac "length (s ` iIn) ∈ nat")
apply typecheck
apply (subgoal_tac "m ∈ nat")
apply (drule_tac x = "nth(m, s`iIn) " and P = "%elt. X (elt) ⟶ elt<Nclients" for X in bspec)
apply (simp add: ltI)
apply (simp_all add: Ord_mem_iff_lt)
apply (blast dest: ltD)
apply (blast intro: lt_trans)

theorem (in distr) distr_bag_Follows:
 "D ∈ ((lift(In) IncreasingWrt prefix(A)/list(A)) ∩
       (lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
        Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt < Nclients}))
       (⋂n ∈ Nclients.
        (%s. msetsum(%i. bag_of(s`Out(i)),  Nclients, A))
        (%s. bag_of(sublist(s`In, length(s`iIn))))
        Wrt MultLe(A, r)/Mult(A))"
apply (cut_tac distr_spec)
apply (rule guaranteesI, clarify)
apply (rule distr_bag_Follows_lemma [THEN Always_Follows2])
apply (simp add: D_ok_iff, auto)
apply (rule Follows_state_ofD1)
apply (rule Follows_msetsum_UN)
   apply (simp_all add: nat_into_Finite bag_of_multiset [of _ A])
apply (auto simp add: distr_spec_def distr_follows_def)
apply (drule guaranteesD, assumption)
apply (simp_all cong add: Follows_cong
                add: refl_prefix
                   mono_bag_of [THEN subset_Follows_comp, THEN subsetD, 
                                unfolded metacomp_def])