Theory Distributor

theory Distributor
imports AllocBase
(*  Title:      ZF/UNITY/Distributor.thy
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2002 University of Cambridge

A multiple-client allocator from a single-client allocator:
Distributor specification.
*)


theory Distributor imports AllocBase Follows Guar GenPrefix begin

text{*Distributor specification (the number of outputs is Nclients)*}

text{*spec (14)*}

definition
distr_follows :: "[i, i, i, i =>i] =>i" where
"distr_follows(A, In, iIn, Out) ==
(lift(In) IncreasingWrt prefix(A)/list(A)) ∩
(lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt < Nclients})
guarantees
(\<Inter>n ∈ Nclients.
lift(Out(n))
Fols
(%s. sublist(s`In, {k ∈ nat. k<length(s`iIn) & nth(k, s`iIn) = n}))
Wrt prefix(A)/list(A))"


definition
distr_allowed_acts :: "[i=>i]=>i" where
"distr_allowed_acts(Out) ==
{D ∈ program. AllowedActs(D) =
cons(id(state), \<Union>G ∈ (\<Inter>n∈nat. preserves(lift(Out(n)))). Acts(G))}"


definition
distr_spec :: "[i, i, i, i =>i]=>i" where
"distr_spec(A, In, iIn, Out) ==
distr_follows(A, In, iIn, Out) ∩ distr_allowed_acts(Out)"


locale distr =
fixes In --{*items to distribute*}
and iIn --{*destinations of items to distribute*}
and Out --{*distributed items*}
and A --{*the type of items being distributed *}
and D
assumes
var_assumes [simp]: "In ∈ var & iIn ∈ var & (∀n. Out(n):var)"
and all_distinct_vars: "∀n. all_distinct([In, iIn, Out(n)])"
and type_assumes [simp]: "type_of(In)=list(A) & type_of(iIn)=list(nat) &
(∀n. type_of(Out(n))=list(A))"

and default_val_assumes [simp]:
"default_val(In)=Nil &
default_val(iIn)=Nil &
(∀n. default_val(Out(n))=Nil)"

and distr_spec: "D ∈ distr_spec(A, In, iIn, Out)"


lemma (in distr) In_value_type [simp,TC]: "s ∈ state ==> s`In ∈ list(A)"
apply (unfold state_def)
apply (drule_tac a = In in apply_type, auto)
done

lemma (in distr) iIn_value_type [simp,TC]:
"s ∈ state ==> s`iIn ∈ list(nat)"
apply (unfold state_def)
apply (drule_tac a = iIn in apply_type, auto)
done

lemma (in distr) Out_value_type [simp,TC]:
"s ∈ state ==> s`Out(n):list(A)"
apply (unfold state_def)
apply (drule_tac a = "Out (n)" in apply_type)
apply auto
done

lemma (in distr) D_in_program [simp,TC]: "D ∈ program"
apply (cut_tac distr_spec)
apply (auto simp add: distr_spec_def distr_allowed_acts_def)
done

lemma (in distr) D_ok_iff:
"G ∈ program ==>
D ok G <-> ((∀n ∈ nat. G ∈ preserves(lift(Out(n)))) & D ∈ Allowed(G))"

apply (cut_tac distr_spec)
apply (auto simp add: INT_iff distr_spec_def distr_allowed_acts_def
Allowed_def ok_iff_Allowed)
apply (drule safety_prop_Acts_iff [THEN [2] rev_iffD1])
apply (auto intro: safety_prop_Inter)
done

lemma (in distr) distr_Increasing_Out:
"D ∈ ((lift(In) IncreasingWrt prefix(A)/list(A)) ∩
(lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt<Nclients}))
guarantees
(\<Inter>n ∈ Nclients. lift(Out(n)) IncreasingWrt
prefix(A)/list(A))"

apply (cut_tac D_in_program distr_spec)
apply (simp (no_asm_use) add: distr_spec_def distr_follows_def)
apply (auto intro!: guaranteesI intro: Follows_imp_Increasing_left
dest!: guaranteesD)
done

lemma (in distr) distr_bag_Follows_lemma:
"[| ∀n ∈ nat. G ∈ preserves(lift(Out(n)));
D \<squnion> G ∈ Always({s ∈ state.
∀elt ∈ set_of_list(s`iIn). elt < Nclients}) |]
==> D \<squnion> G ∈ Always
({s ∈ state. msetsum(%n. bag_of (sublist(s`In,
{k ∈ nat. k < length(s`iIn) &
nth(k, s`iIn)= n})),
Nclients, A) =
bag_of(sublist(s`In, length(s`iIn)))})"

apply (cut_tac D_in_program)
apply (subgoal_tac "G ∈ program")
prefer 2 apply (blast dest: preserves_type [THEN subsetD])
apply (erule Always_Diff_Un_eq [THEN iffD1])
apply (rule state_AlwaysI [THEN Always_weaken], auto)
apply (rename_tac s)
apply (subst bag_of_sublist_UN_disjoint [symmetric])
apply (simp (no_asm_simp) add: nat_into_Finite)
apply blast
apply (simp (no_asm_simp))
apply (simp add: set_of_list_conv_nth [of _ nat])
apply (subgoal_tac
"(\<Union>i ∈ Nclients. {k∈nat. k < length(s`iIn) & nth(k, s`iIn) = i}) =
length(s`iIn) "
)
apply (simp (no_asm_simp))
apply (rule equalityI)
apply (force simp add: ltD, safe)
apply (rename_tac m)
apply (subgoal_tac "length (s ` iIn) ∈ nat")
apply typecheck
apply (subgoal_tac "m ∈ nat")
apply (drule_tac x = "nth(m, s`iIn) " and P = "%elt. ?X (elt) --> elt<Nclients" in bspec)
apply (simp add: ltI)
apply (simp_all add: Ord_mem_iff_lt)
apply (blast dest: ltD)
apply (blast intro: lt_trans)
done

theorem (in distr) distr_bag_Follows:
"D ∈ ((lift(In) IncreasingWrt prefix(A)/list(A)) ∩
(lift(iIn) IncreasingWrt prefix(nat)/list(nat)) ∩
Always({s ∈ state. ∀elt ∈ set_of_list(s`iIn). elt < Nclients}))
guarantees
(\<Inter>n ∈ Nclients.
(%s. msetsum(%i. bag_of(s`Out(i)), Nclients, A))
Fols
(%s. bag_of(sublist(s`In, length(s`iIn))))
Wrt MultLe(A, r)/Mult(A))"

apply (cut_tac distr_spec)
apply (rule guaranteesI, clarify)
apply (rule distr_bag_Follows_lemma [THEN Always_Follows2])
apply (simp add: D_ok_iff, auto)
apply (rule Follows_state_ofD1)
apply (rule Follows_msetsum_UN)
apply (simp_all add: nat_into_Finite bag_of_multiset [of _ A])
apply (auto simp add: distr_spec_def distr_follows_def)
apply (drule guaranteesD, assumption)
apply (simp_all cong add: Follows_cong
add: refl_prefix
mono_bag_of [THEN subset_Follows_comp, THEN subsetD,
unfolded metacomp_def])
done

end