Theory FoldSet

theory FoldSet
imports Main
(*  Title:      ZF/Induct/FoldSet.thy
Author: Sidi O Ehmety, Cambridge University Computer Laboratory

A "fold" functional for finite sets. For n non-negative we have
fold f e {x1,...,xn} = f x1 (... (f xn e)) where f is at
least left-commutative.

theory FoldSet imports Main begin

consts fold_set :: "[i, i, [i,i]=>i, i] => i"

domains "fold_set(A, B, f,e)" "Fin(A)*B"
emptyI: "e∈B ==> <0, e>∈fold_set(A, B, f,e)"
consI: "[| x∈A; x ∉C; <C,y> ∈ fold_set(A, B,f,e); f(x,y):B |]
==> <cons(x,C), f(x,y)>∈fold_set(A, B, f, e)"

type_intros Fin.intros

fold :: "[i, [i,i]=>i, i, i] => i" ("fold[_]'(_,_,_')") where
"fold[B](f,e, A) == THE x. <A, x>∈fold_set(A, B, f,e)"

setsum :: "[i=>i, i] => i" where
"setsum(g, C) == if Finite(C) then
fold[int](%x y. g(x) $+ y, #0, C) else #0"

(** foldSet **)

inductive_cases empty_fold_setE: "<0, x> ∈ fold_set(A, B, f,e)"
inductive_cases cons_fold_setE: "<cons(x,C), y> ∈ fold_set(A, B, f,e)"

(* add-hoc lemmas *)

lemma cons_lemma1: "[| x∉C; x∉B |] ==> cons(x,B)=cons(x,C) <-> B = C"
by (auto elim: equalityE)

lemma cons_lemma2: "[| cons(x, B)=cons(y, C); x≠y; x∉B; y∉C |]
==> B - {y} = C-{x} & x∈C & y∈B"

apply (auto elim: equalityE)

(* fold_set monotonicity *)
lemma fold_set_mono_lemma:
"<C, x> ∈ fold_set(A, B, f, e)
==> ∀D. A<=D --> <C, x> ∈ fold_set(D, B, f, e)"

apply (erule fold_set.induct)
apply (auto intro: fold_set.intros)

lemma fold_set_mono: " C<=A ==> fold_set(C, B, f, e) ⊆ fold_set(A, B, f, e)"
apply clarify
apply (frule fold_set.dom_subset [THEN subsetD], clarify)
apply (auto dest: fold_set_mono_lemma)

lemma fold_set_lemma:
"<C, x>∈fold_set(A, B, f, e) ==> <C, x>∈fold_set(C, B, f, e) & C<=A"
apply (erule fold_set.induct)
apply (auto intro!: fold_set.intros intro: fold_set_mono [THEN subsetD])

(* Proving that fold_set is deterministic *)
lemma Diff1_fold_set:
"[| <C-{x},y> ∈ fold_set(A, B, f,e); x∈C; x∈A; f(x, y):B |]
==> <C, f(x, y)> ∈ fold_set(A, B, f, e)"

apply (frule fold_set.dom_subset [THEN subsetD])
apply (erule cons_Diff [THEN subst], rule fold_set.intros, auto)

locale fold_typing =
fixes A and B and e and f
assumes ftype [intro,simp]: "[|x ∈ A; y ∈ B|] ==> f(x,y) ∈ B"
and etype [intro,simp]: "e ∈ B"
and fcomm: "[|x ∈ A; y ∈ A; z ∈ B|] ==> f(x, f(y, z))=f(y, f(x, z))"

lemma (in fold_typing) Fin_imp_fold_set:
"C∈Fin(A) ==> (∃x. <C, x> ∈ fold_set(A, B, f,e))"
apply (erule Fin_induct)
apply (auto dest: fold_set.dom_subset [THEN subsetD]
intro: fold_set.intros etype ftype)

lemma Diff_sing_imp:
"[|C - {b} = D - {a}; a ≠ b; b ∈ C|] ==> C = cons(b,D) - {a}"
by (blast elim: equalityE)

lemma (in fold_typing) fold_set_determ_lemma [rule_format]:
==> ∀C. |C|<n -->
(∀x. <C, x> ∈ fold_set(A, B, f,e)-->
(∀y. <C, y> ∈ fold_set(A, B, f,e) --> y=x))"

apply (erule nat_induct)
apply (auto simp add: le_iff)
apply (erule fold_set.cases)
apply (force elim!: empty_fold_setE)
apply (erule fold_set.cases)
apply (force elim!: empty_fold_setE, clarify)
(*force simplification of "|C| < |cons(...)|"*)
apply (frule_tac a = Ca in fold_set.dom_subset [THEN subsetD, THEN SigmaD1])
apply (frule_tac a = Cb in fold_set.dom_subset [THEN subsetD, THEN SigmaD1])
apply (simp add: Fin_into_Finite [THEN Finite_imp_cardinal_cons])
apply (case_tac "x=xb", auto)
apply (simp add: cons_lemma1, blast)
txt{*case @{term "x≠xb"}*}
apply (drule cons_lemma2, safe)
apply (frule Diff_sing_imp, assumption+)
txt{** LEVEL 17*}
apply (subgoal_tac "|Ca| ≤ |Cb|")
prefer 2
apply (rule succ_le_imp_le)
apply (simp add: Fin_into_Finite Finite_imp_succ_cardinal_Diff
Fin_into_Finite [THEN Finite_imp_cardinal_cons])
apply (rule_tac C1 = "Ca-{xb}" in Fin_imp_fold_set [THEN exE])
apply (blast intro: Diff_subset [THEN Fin_subset])
txt{** LEVEL 24 **}
apply (frule Diff1_fold_set, blast, blast)
apply (blast dest!: ftype fold_set.dom_subset [THEN subsetD])
apply (subgoal_tac "ya = f(xb,xa) ")
prefer 2 apply (blast del: equalityCE)
apply (subgoal_tac "<Cb-{x}, xa> ∈ fold_set(A,B,f,e)")
prefer 2 apply simp
apply (subgoal_tac "yb = f (x, xa) ")
apply (drule_tac [2] C = Cb in Diff1_fold_set, simp_all)
apply (blast intro: fcomm dest!: fold_set.dom_subset [THEN subsetD])
apply (blast intro: ftype dest!: fold_set.dom_subset [THEN subsetD], blast)

lemma (in fold_typing) fold_set_determ:
"[| <C, x>∈fold_set(A, B, f, e);
<C, y>∈fold_set(A, B, f, e)|] ==> y=x"

apply (frule fold_set.dom_subset [THEN subsetD], clarify)
apply (drule Fin_into_Finite)
apply (unfold Finite_def, clarify)
apply (rule_tac n = "succ (n)" in fold_set_determ_lemma)
apply (auto intro: eqpoll_imp_lepoll [THEN lepoll_cardinal_le])

(** The fold function **)

lemma (in fold_typing) fold_equality:
"<C,y> ∈ fold_set(A,B,f,e) ==> fold[B](f,e,C) = y"
apply (unfold fold_def)
apply (frule fold_set.dom_subset [THEN subsetD], clarify)
apply (rule the_equality)
apply (rule_tac [2] A=C in fold_typing.fold_set_determ)
apply (force dest: fold_set_lemma)
apply (auto dest: fold_set_lemma)
apply (simp add: fold_typing_def, auto)
apply (auto dest: fold_set_lemma intro: ftype etype fcomm)

lemma fold_0 [simp]: "e ∈ B ==> fold[B](f,e,0) = e"
apply (unfold fold_def)
apply (blast elim!: empty_fold_setE intro: fold_set.intros)

text{*This result is the right-to-left direction of the subsequent result*}
lemma (in fold_typing) fold_set_imp_cons:
"[| <C, y> ∈ fold_set(C, B, f, e); C ∈ Fin(A); c ∈ A; c∉C |]
==> <cons(c, C), f(c,y)> ∈ fold_set(cons(c, C), B, f, e)"

apply (frule FinD [THEN fold_set_mono, THEN subsetD])
apply assumption
apply (frule fold_set.dom_subset [of A, THEN subsetD])
apply (blast intro!: fold_set.consI intro: fold_set_mono [THEN subsetD])

lemma (in fold_typing) fold_cons_lemma [rule_format]:
"[| C ∈ Fin(A); c ∈ A; c∉C |]
==> <cons(c, C), v> ∈ fold_set(cons(c, C), B, f, e) <->
(∃y. <C, y> ∈ fold_set(C, B, f, e) & v = f(c, y))"

apply auto
prefer 2 apply (blast intro: fold_set_imp_cons)
apply (frule_tac Fin.consI [of c, THEN FinD, THEN fold_set_mono, THEN subsetD], assumption+)
apply (frule_tac fold_set.dom_subset [of A, THEN subsetD])
apply (drule FinD)
apply (rule_tac A1 = "cons(c,C)" and f1=f and B1=B and C1=C and e1=e in fold_typing.Fin_imp_fold_set [THEN exE])
apply (blast intro: fold_typing.intro ftype etype fcomm)
apply (blast intro: Fin_subset [of _ "cons(c,C)"] Finite_into_Fin
dest: Fin_into_Finite)
apply (rule_tac x = x in exI)
apply (auto intro: fold_set.intros)
apply (drule_tac fold_set_lemma [of C], blast)
apply (blast intro!: fold_set.consI
intro: fold_set_determ fold_set_mono [THEN subsetD]
dest: fold_set.dom_subset [THEN subsetD])

lemma (in fold_typing) fold_cons:
"[| C∈Fin(A); c∈A; c∉C|]
==> fold[B](f, e, cons(c, C)) = f(c, fold[B](f, e, C))"

apply (unfold fold_def)
apply (simp add: fold_cons_lemma)
apply (rule the_equality, auto)
apply (subgoal_tac [2] "⟨C, y⟩ ∈ fold_set(A, B, f, e)")
apply (drule Fin_imp_fold_set)
apply (auto dest: fold_set_lemma simp add: fold_def [symmetric] fold_equality)
apply (blast intro: fold_set_mono [THEN subsetD] dest!: FinD)

lemma (in fold_typing) fold_type [simp,TC]:
"C∈Fin(A) ==> fold[B](f,e,C):B"
apply (erule Fin_induct)
apply (simp_all add: fold_cons ftype etype)

lemma (in fold_typing) fold_commute [rule_format]:
"[| C∈Fin(A); c∈A |]
==> (∀y∈B. f(c, fold[B](f, y, C)) = fold[B](f, f(c, y), C))"

apply (erule Fin_induct)
apply (simp_all add: fold_typing.fold_cons [of A B _ f]
fold_typing.fold_type [of A B _ f]
fold_typing_def fcomm)

lemma (in fold_typing) fold_nest_Un_Int:
"[| C∈Fin(A); D∈Fin(A) |]
==> fold[B](f, fold[B](f, e, D), C) =
fold[B](f, fold[B](f, e, (C ∩ D)), C ∪ D)"

apply (erule Fin_induct, auto)
apply (simp add: Un_cons Int_cons_left fold_type fold_commute
fold_typing.fold_cons [of A _ _ f]
fold_typing_def fcomm cons_absorb)

lemma (in fold_typing) fold_nest_Un_disjoint:
"[| C∈Fin(A); D∈Fin(A); C ∩ D = 0 |]
==> fold[B](f,e,C ∪ D) = fold[B](f, fold[B](f,e,D), C)"

by (simp add: fold_nest_Un_Int)

lemma Finite_cons_lemma: "Finite(C) ==> C∈Fin(cons(c, C))"
apply (drule Finite_into_Fin)
apply (blast intro: Fin_mono [THEN subsetD])

subsection{*The Operator @{term setsum}*}

lemma setsum_0 [simp]: "setsum(g, 0) = #0"
by (simp add: setsum_def)

lemma setsum_cons [simp]:
"Finite(C) ==>
setsum(g, cons(c,C)) =
(if c ∈ C then setsum(g,C) else g(c) $+ setsum(g,C))"

apply (auto simp add: setsum_def Finite_cons cons_absorb)
apply (rule_tac A = "cons (c, C)" in fold_typing.fold_cons)
apply (auto intro: fold_typing.intro Finite_cons_lemma)

lemma setsum_K0: "setsum((%i. #0), C) = #0"
apply (case_tac "Finite (C) ")
prefer 2 apply (simp add: setsum_def)
apply (erule Finite_induct, auto)

(*The reversed orientation looks more natural, but LOOPS as a simprule!*)
lemma setsum_Un_Int:
"[| Finite(C); Finite(D) |]
==> setsum(g, C ∪ D) $+ setsum(g, C ∩ D)
= setsum(g, C) $+ setsum(g, D)"

apply (erule Finite_induct)
apply (simp_all add: Int_cons_right cons_absorb Un_cons Int_commute Finite_Un
Int_lower1 [THEN subset_Finite])

lemma setsum_type [simp,TC]: "setsum(g, C):int"
apply (case_tac "Finite (C) ")
prefer 2 apply (simp add: setsum_def)
apply (erule Finite_induct, auto)

lemma setsum_Un_disjoint:
"[| Finite(C); Finite(D); C ∩ D = 0 |]
==> setsum(g, C ∪ D) = setsum(g, C) $+ setsum(g,D)"

apply (subst setsum_Un_Int [symmetric])
apply (subgoal_tac [3] "Finite (C ∪ D) ")
apply (auto intro: Finite_Un)

lemma Finite_RepFun [rule_format (no_asm)]:
"Finite(I) ==> (∀i∈I. Finite(C(i))) --> Finite(RepFun(I, C))"
apply (erule Finite_induct, auto)

lemma setsum_UN_disjoint [rule_format (no_asm)]:
==> (∀i∈I. Finite(C(i))) -->
(∀i∈I. ∀j∈I. i≠j --> C(i) ∩ C(j) = 0) -->
setsum(f, \<Union>i∈I. C(i)) = setsum (%i. setsum(f, C(i)), I)"

apply (erule Finite_induct, auto)
apply (subgoal_tac "∀i∈B. x ≠ i")
prefer 2 apply blast
apply (subgoal_tac "C (x) ∩ (\<Union>i∈B. C (i)) = 0")
prefer 2 apply blast
apply (subgoal_tac "Finite (\<Union>i∈B. C (i)) & Finite (C (x)) & Finite (B) ")
apply (simp (no_asm_simp) add: setsum_Un_disjoint)
apply (auto intro: Finite_Union Finite_RepFun)

lemma setsum_addf: "setsum(%x. f(x) $+ g(x),C) = setsum(f, C) $+ setsum(g, C)"
apply (case_tac "Finite (C) ")
prefer 2 apply (simp add: setsum_def)
apply (erule Finite_induct, auto)

lemma fold_set_cong:
"[| A=A'; B=B'; e=e'; (∀x∈A'. ∀y∈B'. f(x,y) = f'(x,y)) |]
==> fold_set(A,B,f,e) = fold_set(A',B',f',e')"

apply (simp add: fold_set_def)
apply (intro refl iff_refl lfp_cong Collect_cong disj_cong ex_cong, auto)

lemma fold_cong:
"[| B=B'; A=A'; e=e';
!!x y. [|x∈A'; y∈B'|] ==> f(x,y) = f'(x,y) |] ==>
fold[B](f,e,A) = fold[B'](f', e', A')"

apply (simp add: fold_def)
apply (subst fold_set_cong)
apply (rule_tac [5] refl, simp_all)

lemma setsum_cong:
"[| A=B; !!x. x∈B ==> f(x) = g(x) |] ==>
setsum(f, A) = setsum(g, B)"

by (simp add: setsum_def cong add: fold_cong)

lemma setsum_Un:
"[| Finite(A); Finite(B) |]
==> setsum(f, A ∪ B) =
setsum(f, A) $+ setsum(f, B) $- setsum(f, A ∩ B)"

apply (subst setsum_Un_Int [symmetric], auto)

lemma setsum_zneg_or_0 [rule_format (no_asm)]:
"Finite(A) ==> (∀x∈A. g(x) $<= #0) --> setsum(g, A) $<= #0"
apply (erule Finite_induct)
apply (auto intro: zneg_or_0_add_zneg_or_0_imp_zneg_or_0)

lemma setsum_succD_lemma [rule_format]:
==> ∀n∈nat. setsum(f,A) = $# succ(n) --> (∃a∈A. #0 $< f(a))"

apply (erule Finite_induct)
apply (auto simp del: int_of_0 int_of_succ simp add: not_zless_iff_zle int_of_0 [symmetric])
apply (subgoal_tac "setsum (f, B) $<= #0")
apply simp_all
prefer 2 apply (blast intro: setsum_zneg_or_0)
apply (subgoal_tac "$# 1 $<= f (x) $+ setsum (f, B) ")
apply (drule zdiff_zle_iff [THEN iffD2])
apply (subgoal_tac "$# 1 $<= $# 1 $- setsum (f,B) ")
apply (drule_tac x = "$# 1" in zle_trans)
apply (rule_tac [2] j = "#1" in zless_zle_trans, auto)

lemma setsum_succD:
"[| setsum(f, A) = $# succ(n); n∈nat |]==> ∃a∈A. #0 $< f(a)"
apply (case_tac "Finite (A) ")
apply (blast intro: setsum_succD_lemma)
apply (unfold setsum_def)
apply (auto simp del: int_of_0 int_of_succ simp add: int_succ_int_1 [symmetric] int_of_0 [symmetric])

lemma g_zpos_imp_setsum_zpos [rule_format]:
"Finite(A) ==> (∀x∈A. #0 $<= g(x)) --> #0 $<= setsum(g, A)"
apply (erule Finite_induct)
apply (simp (no_asm))
apply (auto intro: zpos_add_zpos_imp_zpos)

lemma g_zpos_imp_setsum_zpos2 [rule_format]:
"[| Finite(A); ∀x. #0 $<= g(x) |] ==> #0 $<= setsum(g, A)"
apply (erule Finite_induct)
apply (auto intro: zpos_add_zpos_imp_zpos)

lemma g_zspos_imp_setsum_zspos [rule_format]:
==> (∀x∈A. #0 $< g(x)) --> A ≠ 0 --> (#0 $< setsum(g, A))"

apply (erule Finite_induct)
apply (auto intro: zspos_add_zspos_imp_zspos)

lemma setsum_Diff [rule_format]:
"Finite(A) ==> ∀a. M(a) = #0 --> setsum(M, A) = setsum(M, A-{a})"
apply (erule Finite_induct)
apply (simp_all add: Diff_cons_eq Finite_Diff)