Theory Satisfies_absolute

theory Satisfies_absolute
imports Rec_Separation
(*  Title:      ZF/Constructible/Satisfies_absolute.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
*)


header {*Absoluteness for the Satisfies Relation on Formulas*}

theory Satisfies_absolute imports Datatype_absolute Rec_Separation begin


subsection {*More Internalization*}

subsubsection{*The Formula @{term is_depth}, Internalized*}

(* "is_depth(M,p,n) ==
∃sn[M]. ∃formula_n[M]. ∃formula_sn[M].
2 1 0
is_formula_N(M,n,formula_n) & p ∉ formula_n &
successor(M,n,sn) & is_formula_N(M,sn,formula_sn) & p ∈ formula_sn" *)

definition
depth_fm :: "[i,i]=>i" where
"depth_fm(p,n) ==
Exists(Exists(Exists(
And(formula_N_fm(n#+3,1),
And(Neg(Member(p#+3,1)),
And(succ_fm(n#+3,2),
And(formula_N_fm(2,0), Member(p#+3,0))))))))"


lemma depth_fm_type [TC]:
"[| x ∈ nat; y ∈ nat |] ==> depth_fm(x,y) ∈ formula"
by (simp add: depth_fm_def)

lemma sats_depth_fm [simp]:
"[| x ∈ nat; y < length(env); env ∈ list(A)|]
==> sats(A, depth_fm(x,y), env) <->
is_depth(##A, nth(x,env), nth(y,env))"

apply (frule_tac x=y in lt_length_in_nat, assumption)
apply (simp add: depth_fm_def is_depth_def)
done

lemma depth_iff_sats:
"[| nth(i,env) = x; nth(j,env) = y;
i ∈ nat; j < length(env); env ∈ list(A)|]
==> is_depth(##A, x, y) <-> sats(A, depth_fm(i,j), env)"

by (simp add: sats_depth_fm)

theorem depth_reflection:
"REFLECTS[λx. is_depth(L, f(x), g(x)),
λi x. is_depth(##Lset(i), f(x), g(x))]"

apply (simp only: is_depth_def)
apply (intro FOL_reflections function_reflections formula_N_reflection)
done



subsubsection{*The Operator @{term is_formula_case}*}

text{*The arguments of @{term is_a} are always 2, 1, 0, and the formula
will be enclosed by three quantifiers.*}


(* is_formula_case ::
"[i=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i,i]=>o, [i,i]=>o, i, i] => o"
"is_formula_case(M, is_a, is_b, is_c, is_d, v, z) ==
(∀x[M]. ∀y[M]. x∈nat --> y∈nat --> is_Member(M,x,y,v) --> is_a(x,y,z)) &
(∀x[M]. ∀y[M]. x∈nat --> y∈nat --> is_Equal(M,x,y,v) --> is_b(x,y,z)) &
(∀x[M]. ∀y[M]. x∈formula --> y∈formula -->
is_Nand(M,x,y,v) --> is_c(x,y,z)) &
(∀x[M]. x∈formula --> is_Forall(M,x,v) --> is_d(x,z))" *)


definition
formula_case_fm :: "[i, i, i, i, i, i]=>i" where
"formula_case_fm(is_a, is_b, is_c, is_d, v, z) ==
And(Forall(Forall(Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies(Member_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_a))))))),
And(Forall(Forall(Implies(finite_ordinal_fm(1),
Implies(finite_ordinal_fm(0),
Implies(Equal_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_b))))))),
And(Forall(Forall(Implies(mem_formula_fm(1),
Implies(mem_formula_fm(0),
Implies(Nand_fm(1,0,v#+2),
Forall(Implies(Equal(0,z#+3), is_c))))))),
Forall(Implies(mem_formula_fm(0),
Implies(Forall_fm(0,succ(v)),
Forall(Implies(Equal(0,z#+2), is_d))))))))"



lemma is_formula_case_type [TC]:
"[| is_a ∈ formula; is_b ∈ formula; is_c ∈ formula; is_d ∈ formula;
x ∈ nat; y ∈ nat |]
==> formula_case_fm(is_a, is_b, is_c, is_d, x, y) ∈ formula"

by (simp add: formula_case_fm_def)

lemma sats_formula_case_fm:
assumes is_a_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISA(a2, a1, a0) <-> sats(A, is_a, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_b_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISB(a2, a1, a0) <-> sats(A, is_b, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_c_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISC(a2, a1, a0) <-> sats(A, is_c, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_d_iff_sats:
"!!a0 a1.
[|a0∈A; a1∈A|]
==> ISD(a1, a0) <-> sats(A, is_d, Cons(a0,Cons(a1,env)))"

shows
"[|x ∈ nat; y < length(env); env ∈ list(A)|]
==> sats(A, formula_case_fm(is_a,is_b,is_c,is_d,x,y), env) <->
is_formula_case(##A, ISA, ISB, ISC, ISD, nth(x,env), nth(y,env))"

apply (frule_tac x=y in lt_length_in_nat, assumption)
apply (simp add: formula_case_fm_def is_formula_case_def
is_a_iff_sats [THEN iff_sym] is_b_iff_sats [THEN iff_sym]
is_c_iff_sats [THEN iff_sym] is_d_iff_sats [THEN iff_sym])
done

lemma formula_case_iff_sats:
assumes is_a_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISA(a2, a1, a0) <-> sats(A, is_a, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_b_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISB(a2, a1, a0) <-> sats(A, is_b, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_c_iff_sats:
"!!a0 a1 a2.
[|a0∈A; a1∈A; a2∈A|]
==> ISC(a2, a1, a0) <-> sats(A, is_c, Cons(a0,Cons(a1,Cons(a2,env))))"

and is_d_iff_sats:
"!!a0 a1.
[|a0∈A; a1∈A|]
==> ISD(a1, a0) <-> sats(A, is_d, Cons(a0,Cons(a1,env)))"

shows
"[|nth(i,env) = x; nth(j,env) = y;
i ∈ nat; j < length(env); env ∈ list(A)|]
==> is_formula_case(##A, ISA, ISB, ISC, ISD, x, y) <->
sats(A, formula_case_fm(is_a,is_b,is_c,is_d,i,j), env)"

by (simp add: sats_formula_case_fm [OF is_a_iff_sats is_b_iff_sats
is_c_iff_sats is_d_iff_sats])


text{*The second argument of @{term is_a} gives it direct access to @{term x},
which is essential for handling free variable references. Treatment is
based on that of @{text is_nat_case_reflection}.*}

theorem is_formula_case_reflection:
assumes is_a_reflection:
"!!h f g g'. REFLECTS[λx. is_a(L, h(x), f(x), g(x), g'(x)),
λi x. is_a(##Lset(i), h(x), f(x), g(x), g'(x))]"

and is_b_reflection:
"!!h f g g'. REFLECTS[λx. is_b(L, h(x), f(x), g(x), g'(x)),
λi x. is_b(##Lset(i), h(x), f(x), g(x), g'(x))]"

and is_c_reflection:
"!!h f g g'. REFLECTS[λx. is_c(L, h(x), f(x), g(x), g'(x)),
λi x. is_c(##Lset(i), h(x), f(x), g(x), g'(x))]"

and is_d_reflection:
"!!h f g g'. REFLECTS[λx. is_d(L, h(x), f(x), g(x)),
λi x. is_d(##Lset(i), h(x), f(x), g(x))]"

shows "REFLECTS[λx. is_formula_case(L, is_a(L,x), is_b(L,x), is_c(L,x), is_d(L,x), g(x), h(x)),
λi x. is_formula_case(##Lset(i), is_a(##Lset(i), x), is_b(##Lset(i), x), is_c(##Lset(i), x), is_d(##Lset(i), x), g(x), h(x))]"

apply (simp (no_asm_use) only: is_formula_case_def)
apply (intro FOL_reflections function_reflections finite_ordinal_reflection
mem_formula_reflection
Member_reflection Equal_reflection Nand_reflection Forall_reflection
is_a_reflection is_b_reflection is_c_reflection is_d_reflection)
done



subsection {*Absoluteness for the Function @{term satisfies}*}

definition
is_depth_apply :: "[i=>o,i,i,i] => o" where
--{*Merely a useful abbreviation for the sequel.*}
"is_depth_apply(M,h,p,z) ==
∃dp[M]. ∃sdp[M]. ∃hsdp[M].
finite_ordinal(M,dp) & is_depth(M,p,dp) & successor(M,dp,sdp) &
fun_apply(M,h,sdp,hsdp) & fun_apply(M,hsdp,p,z)"


lemma (in M_datatypes) is_depth_apply_abs [simp]:
"[|M(h); p ∈ formula; M(z)|]
==> is_depth_apply(M,h,p,z) <-> z = h ` succ(depth(p)) ` p"

by (simp add: is_depth_apply_def formula_into_M depth_type eq_commute)



text{*There is at present some redundancy between the relativizations in
e.g. @{text satisfies_is_a} and those in e.g. @{text Member_replacement}.*}


text{*These constants let us instantiate the parameters @{term a}, @{term b},
@{term c}, @{term d}, etc., of the locale @{text Formula_Rec}.*}

definition
satisfies_a :: "[i,i,i]=>i" where
"satisfies_a(A) ==
λx y. λenv ∈ list(A). bool_of_o (nth(x,env) ∈ nth(y,env))"


definition
satisfies_is_a :: "[i=>o,i,i,i,i]=>o" where
"satisfies_is_a(M,A) ==
λx y zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. is_bool_of_o(M,
∃nx[M]. ∃ny[M].
is_nth(M,x,env,nx) & is_nth(M,y,env,ny) & nx ∈ ny, z),
zz)"


definition
satisfies_b :: "[i,i,i]=>i" where
"satisfies_b(A) ==
λx y. λenv ∈ list(A). bool_of_o (nth(x,env) = nth(y,env))"


definition
satisfies_is_b :: "[i=>o,i,i,i,i]=>o" where
--{*We simplify the formula to have just @{term nx} rather than
introducing @{term ny} with @{term "nx=ny"} *}

"satisfies_is_b(M,A) ==
λx y zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. is_bool_of_o(M,
∃nx[M]. is_nth(M,x,env,nx) & is_nth(M,y,env,nx), z),
zz)"


definition
satisfies_c :: "[i,i,i,i,i]=>i" where
"satisfies_c(A) == λp q rp rq. λenv ∈ list(A). not(rp ` env and rq ` env)"

definition
satisfies_is_c :: "[i=>o,i,i,i,i,i]=>o" where
"satisfies_is_c(M,A,h) ==
λp q zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA, λenv z. ∃hp[M]. ∃hq[M].
(∃rp[M]. is_depth_apply(M,h,p,rp) & fun_apply(M,rp,env,hp)) &
(∃rq[M]. is_depth_apply(M,h,q,rq) & fun_apply(M,rq,env,hq)) &
(∃pq[M]. is_and(M,hp,hq,pq) & is_not(M,pq,z)),
zz)"


definition
satisfies_d :: "[i,i,i]=>i" where
"satisfies_d(A)
== λp rp. λenv ∈ list(A). bool_of_o (∀x∈A. rp ` (Cons(x,env)) = 1)"


definition
satisfies_is_d :: "[i=>o,i,i,i,i]=>o" where
"satisfies_is_d(M,A,h) ==
λp zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. ∃rp[M]. is_depth_apply(M,h,p,rp) &
is_bool_of_o(M,
∀x[M]. ∀xenv[M]. ∀hp[M].
x∈A --> is_Cons(M,x,env,xenv) -->
fun_apply(M,rp,xenv,hp) --> number1(M,hp),
z),
zz)"


definition
satisfies_MH :: "[i=>o,i,i,i,i]=>o" where
--{*The variable @{term u} is unused, but gives @{term satisfies_MH}
the correct arity.*}

"satisfies_MH ==
λM A u f z.
∀fml[M]. is_formula(M,fml) -->
is_lambda (M, fml,
is_formula_case (M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),
z)"


definition
is_satisfies :: "[i=>o,i,i,i]=>o" where
"is_satisfies(M,A) == is_formula_rec (M, satisfies_MH(M,A))"


text{*This lemma relates the fragments defined above to the original primitive
recursion in @{term satisfies}.
Induction is not required: the definitions are directly equal!*}

lemma satisfies_eq:
"satisfies(A,p) =
formula_rec (satisfies_a(A), satisfies_b(A),
satisfies_c(A), satisfies_d(A), p)"

by (simp add: satisfies_formula_def satisfies_a_def satisfies_b_def
satisfies_c_def satisfies_d_def)

text{*Further constraints on the class @{term M} in order to prove
absoluteness for the constants defined above. The ultimate goal
is the absoluteness of the function @{term satisfies}. *}

locale M_satisfies = M_eclose +
assumes
Member_replacement:
"[|M(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(M, λenv z. ∃bo[M]. ∃nx[M]. ∃ny[M].
env ∈ list(A) & is_nth(M,x,env,nx) & is_nth(M,y,env,ny) &
is_bool_of_o(M, nx ∈ ny, bo) &
pair(M, env, bo, z))"

and
Equal_replacement:
"[|M(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(M, λenv z. ∃bo[M]. ∃nx[M]. ∃ny[M].
env ∈ list(A) & is_nth(M,x,env,nx) & is_nth(M,y,env,ny) &
is_bool_of_o(M, nx = ny, bo) &
pair(M, env, bo, z))"

and
Nand_replacement:
"[|M(A); M(rp); M(rq)|]
==> strong_replacement
(M, λenv z. ∃rpe[M]. ∃rqe[M]. ∃andpq[M]. ∃notpq[M].
fun_apply(M,rp,env,rpe) & fun_apply(M,rq,env,rqe) &
is_and(M,rpe,rqe,andpq) & is_not(M,andpq,notpq) &
env ∈ list(A) & pair(M, env, notpq, z))"

and
Forall_replacement:
"[|M(A); M(rp)|]
==> strong_replacement
(M, λenv z. ∃bo[M].
env ∈ list(A) &
is_bool_of_o (M,
∀a[M]. ∀co[M]. ∀rpco[M].
a∈A --> is_Cons(M,a,env,co) -->
fun_apply(M,rp,co,rpco) --> number1(M, rpco),
bo) &
pair(M,env,bo,z))"

and
formula_rec_replacement:
--{*For the @{term transrec}*}
"[|n ∈ nat; M(A)|] ==> transrec_replacement(M, satisfies_MH(M,A), n)"
and
formula_rec_lambda_replacement:
--{*For the @{text "λ-abstraction"} in the @{term transrec} body*}
"[|M(g); M(A)|] ==>
strong_replacement (M,
λx y. mem_formula(M,x) &
(∃c[M]. is_formula_case(M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,g),
satisfies_is_d(M,A,g), x, c) &
pair(M, x, c, y)))"



lemma (in M_satisfies) Member_replacement':
"[|M(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(M, λenv z. env ∈ list(A) &
z = ⟨env, bool_of_o(nth(x, env) ∈ nth(y, env))⟩)"

by (insert Member_replacement, simp)

lemma (in M_satisfies) Equal_replacement':
"[|M(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(M, λenv z. env ∈ list(A) &
z = ⟨env, bool_of_o(nth(x, env) = nth(y, env))⟩)"

by (insert Equal_replacement, simp)

lemma (in M_satisfies) Nand_replacement':
"[|M(A); M(rp); M(rq)|]
==> strong_replacement
(M, λenv z. env ∈ list(A) & z = ⟨env, not(rp`env and rq`env)⟩)"

by (insert Nand_replacement, simp)

lemma (in M_satisfies) Forall_replacement':
"[|M(A); M(rp)|]
==> strong_replacement
(M, λenv z.
env ∈ list(A) &
z = ⟨env, bool_of_o (∀a∈A. rp ` Cons(a,env) = 1)⟩)"

by (insert Forall_replacement, simp)

lemma (in M_satisfies) a_closed:
"[|M(A); x∈nat; y∈nat|] ==> M(satisfies_a(A,x,y))"
apply (simp add: satisfies_a_def)
apply (blast intro: lam_closed2 Member_replacement')
done

lemma (in M_satisfies) a_rel:
"M(A) ==> Relation2(M, nat, nat, satisfies_is_a(M,A), satisfies_a(A))"
apply (simp add: Relation2_def satisfies_is_a_def satisfies_a_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relation1_def)
done

lemma (in M_satisfies) b_closed:
"[|M(A); x∈nat; y∈nat|] ==> M(satisfies_b(A,x,y))"
apply (simp add: satisfies_b_def)
apply (blast intro: lam_closed2 Equal_replacement')
done

lemma (in M_satisfies) b_rel:
"M(A) ==> Relation2(M, nat, nat, satisfies_is_b(M,A), satisfies_b(A))"
apply (simp add: Relation2_def satisfies_is_b_def satisfies_b_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relation1_def)
done

lemma (in M_satisfies) c_closed:
"[|M(A); x ∈ formula; y ∈ formula; M(rx); M(ry)|]
==> M(satisfies_c(A,x,y,rx,ry))"

apply (simp add: satisfies_c_def)
apply (rule lam_closed2)
apply (rule Nand_replacement')
apply (simp_all add: formula_into_M list_into_M [of _ A])
done

lemma (in M_satisfies) c_rel:
"[|M(A); M(f)|] ==>
Relation2 (M, formula, formula,
satisfies_is_c(M,A,f),
λu v. satisfies_c(A, u, v, f ` succ(depth(u)) ` u,
f ` succ(depth(v)) ` v))"

apply (simp add: Relation2_def satisfies_is_c_def satisfies_c_def)
apply (auto del: iffI intro!: lambda_abs2
simp add: Relation1_def formula_into_M)
done

lemma (in M_satisfies) d_closed:
"[|M(A); x ∈ formula; M(rx)|] ==> M(satisfies_d(A,x,rx))"
apply (simp add: satisfies_d_def)
apply (rule lam_closed2)
apply (rule Forall_replacement')
apply (simp_all add: formula_into_M list_into_M [of _ A])
done

lemma (in M_satisfies) d_rel:
"[|M(A); M(f)|] ==>
Relation1(M, formula, satisfies_is_d(M,A,f),
λu. satisfies_d(A, u, f ` succ(depth(u)) ` u))"

apply (simp del: rall_abs
add: Relation1_def satisfies_is_d_def satisfies_d_def)
apply (auto del: iffI intro!: lambda_abs2 simp add: Relation1_def)
done


lemma (in M_satisfies) fr_replace:
"[|n ∈ nat; M(A)|] ==> transrec_replacement(M,satisfies_MH(M,A),n)"
by (blast intro: formula_rec_replacement)

lemma (in M_satisfies) formula_case_satisfies_closed:
"[|M(g); M(A); x ∈ formula|] ==>
M(formula_case (satisfies_a(A), satisfies_b(A),
λu v. satisfies_c(A, u, v,
g ` succ(depth(u)) ` u, g ` succ(depth(v)) ` v),
λu. satisfies_d (A, u, g ` succ(depth(u)) ` u),
x))"

by (blast intro: formula_case_closed a_closed b_closed c_closed d_closed)

lemma (in M_satisfies) fr_lam_replace:
"[|M(g); M(A)|] ==>
strong_replacement (M, λx y. x ∈ formula &
y = ⟨x,
formula_rec_case(satisfies_a(A),
satisfies_b(A),
satisfies_c(A),
satisfies_d(A), g, x)⟩)"

apply (insert formula_rec_lambda_replacement)
apply (simp add: formula_rec_case_def formula_case_satisfies_closed
formula_case_abs [OF a_rel b_rel c_rel d_rel])
done



text{*Instantiate locale @{text Formula_Rec} for the
Function @{term satisfies}*}


lemma (in M_satisfies) Formula_Rec_axioms_M:
"M(A) ==>
Formula_Rec_axioms(M, satisfies_a(A), satisfies_is_a(M,A),
satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,A),
satisfies_d(A), satisfies_is_d(M,A))"

apply (rule Formula_Rec_axioms.intro)
apply (assumption |
rule a_closed a_rel b_closed b_rel c_closed c_rel d_closed d_rel
fr_replace [unfolded satisfies_MH_def]
fr_lam_replace) +
done


theorem (in M_satisfies) Formula_Rec_M:
"M(A) ==>
PROP Formula_Rec(M, satisfies_a(A), satisfies_is_a(M,A),
satisfies_b(A), satisfies_is_b(M,A),
satisfies_c(A), satisfies_is_c(M,A),
satisfies_d(A), satisfies_is_d(M,A))"

apply (rule Formula_Rec.intro)
apply (rule M_satisfies.axioms, rule M_satisfies_axioms)
apply (erule Formula_Rec_axioms_M)
done

lemmas (in M_satisfies)
satisfies_closed' = Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
and satisfies_abs' = Formula_Rec.formula_rec_abs [OF Formula_Rec_M]


lemma (in M_satisfies) satisfies_closed:
"[|M(A); p ∈ formula|] ==> M(satisfies(A,p))"
by (simp add: Formula_Rec.formula_rec_closed [OF Formula_Rec_M]
satisfies_eq)

lemma (in M_satisfies) satisfies_abs:
"[|M(A); M(z); p ∈ formula|]
==> is_satisfies(M,A,p,z) <-> z = satisfies(A,p)"

by (simp only: Formula_Rec.formula_rec_abs [OF Formula_Rec_M]
satisfies_eq is_satisfies_def satisfies_MH_def)


subsection{*Internalizations Needed to Instantiate @{text "M_satisfies"}*}

subsubsection{*The Operator @{term is_depth_apply}, Internalized*}

(* is_depth_apply(M,h,p,z) ==
∃dp[M]. ∃sdp[M]. ∃hsdp[M].
2 1 0
finite_ordinal(M,dp) & is_depth(M,p,dp) & successor(M,dp,sdp) &
fun_apply(M,h,sdp,hsdp) & fun_apply(M,hsdp,p,z) *)

definition
depth_apply_fm :: "[i,i,i]=>i" where
"depth_apply_fm(h,p,z) ==
Exists(Exists(Exists(
And(finite_ordinal_fm(2),
And(depth_fm(p#+3,2),
And(succ_fm(2,1),
And(fun_apply_fm(h#+3,1,0), fun_apply_fm(0,p#+3,z#+3))))))))"


lemma depth_apply_type [TC]:
"[| x ∈ nat; y ∈ nat; z ∈ nat |] ==> depth_apply_fm(x,y,z) ∈ formula"
by (simp add: depth_apply_fm_def)

lemma sats_depth_apply_fm [simp]:
"[| x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> sats(A, depth_apply_fm(x,y,z), env) <->
is_depth_apply(##A, nth(x,env), nth(y,env), nth(z,env))"

by (simp add: depth_apply_fm_def is_depth_apply_def)

lemma depth_apply_iff_sats:
"[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
i ∈ nat; j ∈ nat; k ∈ nat; env ∈ list(A)|]
==> is_depth_apply(##A, x, y, z) <-> sats(A, depth_apply_fm(i,j,k), env)"

by simp

lemma depth_apply_reflection:
"REFLECTS[λx. is_depth_apply(L,f(x),g(x),h(x)),
λi x. is_depth_apply(##Lset(i),f(x),g(x),h(x))]"

apply (simp only: is_depth_apply_def)
apply (intro FOL_reflections function_reflections depth_reflection
finite_ordinal_reflection)
done


subsubsection{*The Operator @{term satisfies_is_a}, Internalized*}

(* satisfies_is_a(M,A) ==
λx y zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. is_bool_of_o(M,
∃nx[M]. ∃ny[M].
is_nth(M,x,env,nx) & is_nth(M,y,env,ny) & nx ∈ ny, z),
zz) *)


definition
satisfies_is_a_fm :: "[i,i,i,i]=>i" where
"satisfies_is_a_fm(A,x,y,z) ==
Forall(
Implies(is_list_fm(succ(A),0),
lambda_fm(
bool_of_o_fm(Exists(
Exists(And(nth_fm(x#+6,3,1),
And(nth_fm(y#+6,3,0),
Member(1,0))))), 0),
0, succ(z))))"


lemma satisfies_is_a_type [TC]:
"[| A ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat |]
==> satisfies_is_a_fm(A,x,y,z) ∈ formula"

by (simp add: satisfies_is_a_fm_def)

lemma sats_satisfies_is_a_fm [simp]:
"[| u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)|]
==> sats(A, satisfies_is_a_fm(u,x,y,z), env) <->
satisfies_is_a(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

apply (frule_tac x=x in lt_length_in_nat, assumption)
apply (frule_tac x=y in lt_length_in_nat, assumption)
apply (simp add: satisfies_is_a_fm_def satisfies_is_a_def sats_lambda_fm
sats_bool_of_o_fm)
done

lemma satisfies_is_a_iff_sats:
"[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)|]
==> satisfies_is_a(##A,nu,nx,ny,nz) <->
sats(A, satisfies_is_a_fm(u,x,y,z), env)"

by simp

theorem satisfies_is_a_reflection:
"REFLECTS[λx. satisfies_is_a(L,f(x),g(x),h(x),g'(x)),
λi x. satisfies_is_a(##Lset(i),f(x),g(x),h(x),g'(x))]"

apply (unfold satisfies_is_a_def)
apply (intro FOL_reflections is_lambda_reflection bool_of_o_reflection
nth_reflection is_list_reflection)
done


subsubsection{*The Operator @{term satisfies_is_b}, Internalized*}

(* satisfies_is_b(M,A) ==
λx y zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. is_bool_of_o(M,
∃nx[M]. is_nth(M,x,env,nx) & is_nth(M,y,env,nx), z),
zz) *)


definition
satisfies_is_b_fm :: "[i,i,i,i]=>i" where
"satisfies_is_b_fm(A,x,y,z) ==
Forall(
Implies(is_list_fm(succ(A),0),
lambda_fm(
bool_of_o_fm(Exists(And(nth_fm(x#+5,2,0), nth_fm(y#+5,2,0))), 0),
0, succ(z))))"


lemma satisfies_is_b_type [TC]:
"[| A ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat |]
==> satisfies_is_b_fm(A,x,y,z) ∈ formula"

by (simp add: satisfies_is_b_fm_def)

lemma sats_satisfies_is_b_fm [simp]:
"[| u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)|]
==> sats(A, satisfies_is_b_fm(u,x,y,z), env) <->
satisfies_is_b(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

apply (frule_tac x=x in lt_length_in_nat, assumption)
apply (frule_tac x=y in lt_length_in_nat, assumption)
apply (simp add: satisfies_is_b_fm_def satisfies_is_b_def sats_lambda_fm
sats_bool_of_o_fm)
done

lemma satisfies_is_b_iff_sats:
"[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u ∈ nat; x < length(env); y < length(env); z ∈ nat; env ∈ list(A)|]
==> satisfies_is_b(##A,nu,nx,ny,nz) <->
sats(A, satisfies_is_b_fm(u,x,y,z), env)"

by simp

theorem satisfies_is_b_reflection:
"REFLECTS[λx. satisfies_is_b(L,f(x),g(x),h(x),g'(x)),
λi x. satisfies_is_b(##Lset(i),f(x),g(x),h(x),g'(x))]"

apply (unfold satisfies_is_b_def)
apply (intro FOL_reflections is_lambda_reflection bool_of_o_reflection
nth_reflection is_list_reflection)
done


subsubsection{*The Operator @{term satisfies_is_c}, Internalized*}

(* satisfies_is_c(M,A,h) ==
λp q zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA, λenv z. ∃hp[M]. ∃hq[M].
(∃rp[M]. is_depth_apply(M,h,p,rp) & fun_apply(M,rp,env,hp)) &
(∃rq[M]. is_depth_apply(M,h,q,rq) & fun_apply(M,rq,env,hq)) &
(∃pq[M]. is_and(M,hp,hq,pq) & is_not(M,pq,z)),
zz) *)


definition
satisfies_is_c_fm :: "[i,i,i,i,i]=>i" where
"satisfies_is_c_fm(A,h,p,q,zz) ==
Forall(
Implies(is_list_fm(succ(A),0),
lambda_fm(
Exists(Exists(
And(Exists(And(depth_apply_fm(h#+7,p#+7,0), fun_apply_fm(0,4,2))),
And(Exists(And(depth_apply_fm(h#+7,q#+7,0), fun_apply_fm(0,4,1))),
Exists(And(and_fm(2,1,0), not_fm(0,3))))))),
0, succ(zz))))"


lemma satisfies_is_c_type [TC]:
"[| A ∈ nat; h ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat |]
==> satisfies_is_c_fm(A,h,x,y,z) ∈ formula"

by (simp add: satisfies_is_c_fm_def)

lemma sats_satisfies_is_c_fm [simp]:
"[| u ∈ nat; v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> sats(A, satisfies_is_c_fm(u,v,x,y,z), env) <->
satisfies_is_c(##A, nth(u,env), nth(v,env), nth(x,env),
nth(y,env), nth(z,env))"

by (simp add: satisfies_is_c_fm_def satisfies_is_c_def sats_lambda_fm)

lemma satisfies_is_c_iff_sats:
"[| nth(u,env) = nu; nth(v,env) = nv; nth(x,env) = nx; nth(y,env) = ny;
nth(z,env) = nz;
u ∈ nat; v ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> satisfies_is_c(##A,nu,nv,nx,ny,nz) <->
sats(A, satisfies_is_c_fm(u,v,x,y,z), env)"

by simp

theorem satisfies_is_c_reflection:
"REFLECTS[λx. satisfies_is_c(L,f(x),g(x),h(x),g'(x),h'(x)),
λi x. satisfies_is_c(##Lset(i),f(x),g(x),h(x),g'(x),h'(x))]"

apply (unfold satisfies_is_c_def)
apply (intro FOL_reflections function_reflections is_lambda_reflection
extra_reflections nth_reflection depth_apply_reflection
is_list_reflection)
done

subsubsection{*The Operator @{term satisfies_is_d}, Internalized*}

(* satisfies_is_d(M,A,h) ==
λp zz. ∀lA[M]. is_list(M,A,lA) -->
is_lambda(M, lA,
λenv z. ∃rp[M]. is_depth_apply(M,h,p,rp) &
is_bool_of_o(M,
∀x[M]. ∀xenv[M]. ∀hp[M].
x∈A --> is_Cons(M,x,env,xenv) -->
fun_apply(M,rp,xenv,hp) --> number1(M,hp),
z),
zz) *)


definition
satisfies_is_d_fm :: "[i,i,i,i]=>i" where
"satisfies_is_d_fm(A,h,p,zz) ==
Forall(
Implies(is_list_fm(succ(A),0),
lambda_fm(
Exists(
And(depth_apply_fm(h#+5,p#+5,0),
bool_of_o_fm(
Forall(Forall(Forall(
Implies(Member(2,A#+8),
Implies(Cons_fm(2,5,1),
Implies(fun_apply_fm(3,1,0), number1_fm(0))))))), 1))),
0, succ(zz))))"


lemma satisfies_is_d_type [TC]:
"[| A ∈ nat; h ∈ nat; x ∈ nat; z ∈ nat |]
==> satisfies_is_d_fm(A,h,x,z) ∈ formula"

by (simp add: satisfies_is_d_fm_def)

lemma sats_satisfies_is_d_fm [simp]:
"[| u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> sats(A, satisfies_is_d_fm(u,x,y,z), env) <->
satisfies_is_d(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

by (simp add: satisfies_is_d_fm_def satisfies_is_d_def sats_lambda_fm
sats_bool_of_o_fm)

lemma satisfies_is_d_iff_sats:
"[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> satisfies_is_d(##A,nu,nx,ny,nz) <->
sats(A, satisfies_is_d_fm(u,x,y,z), env)"

by simp

theorem satisfies_is_d_reflection:
"REFLECTS[λx. satisfies_is_d(L,f(x),g(x),h(x),g'(x)),
λi x. satisfies_is_d(##Lset(i),f(x),g(x),h(x),g'(x))]"

apply (unfold satisfies_is_d_def)
apply (intro FOL_reflections function_reflections is_lambda_reflection
extra_reflections nth_reflection depth_apply_reflection
is_list_reflection)
done


subsubsection{*The Operator @{term satisfies_MH}, Internalized*}

(* satisfies_MH ==
λM A u f zz.
∀fml[M]. is_formula(M,fml) -->
is_lambda (M, fml,
is_formula_case (M, satisfies_is_a(M,A),
satisfies_is_b(M,A),
satisfies_is_c(M,A,f), satisfies_is_d(M,A,f)),
zz) *)


definition
satisfies_MH_fm :: "[i,i,i,i]=>i" where
"satisfies_MH_fm(A,u,f,zz) ==
Forall(
Implies(is_formula_fm(0),
lambda_fm(
formula_case_fm(satisfies_is_a_fm(A#+7,2,1,0),
satisfies_is_b_fm(A#+7,2,1,0),
satisfies_is_c_fm(A#+7,f#+7,2,1,0),
satisfies_is_d_fm(A#+6,f#+6,1,0),
1, 0),
0, succ(zz))))"


lemma satisfies_MH_type [TC]:
"[| A ∈ nat; u ∈ nat; x ∈ nat; z ∈ nat |]
==> satisfies_MH_fm(A,u,x,z) ∈ formula"

by (simp add: satisfies_MH_fm_def)

lemma sats_satisfies_MH_fm [simp]:
"[| u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> sats(A, satisfies_MH_fm(u,x,y,z), env) <->
satisfies_MH(##A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"

by (simp add: satisfies_MH_fm_def satisfies_MH_def sats_lambda_fm
sats_formula_case_fm)

lemma satisfies_MH_iff_sats:
"[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
u ∈ nat; x ∈ nat; y ∈ nat; z ∈ nat; env ∈ list(A)|]
==> satisfies_MH(##A,nu,nx,ny,nz) <->
sats(A, satisfies_MH_fm(u,x,y,z), env)"

by simp

lemmas satisfies_reflections =
is_lambda_reflection is_formula_reflection
is_formula_case_reflection
satisfies_is_a_reflection satisfies_is_b_reflection
satisfies_is_c_reflection satisfies_is_d_reflection

theorem satisfies_MH_reflection:
"REFLECTS[λx. satisfies_MH(L,f(x),g(x),h(x),g'(x)),
λi x. satisfies_MH(##Lset(i),f(x),g(x),h(x),g'(x))]"

apply (unfold satisfies_MH_def)
apply (intro FOL_reflections satisfies_reflections)
done


subsection{*Lemmas for Instantiating the Locale @{text "M_satisfies"}*}


subsubsection{*The @{term "Member"} Case*}

lemma Member_Reflects:
"REFLECTS[λu. ∃v[L]. v ∈ B ∧ (∃bo[L]. ∃nx[L]. ∃ny[L].
v ∈ lstA ∧ is_nth(L,x,v,nx) ∧ is_nth(L,y,v,ny) ∧
is_bool_of_o(L, nx ∈ ny, bo) ∧ pair(L,v,bo,u)),
λi u. ∃v ∈ Lset(i). v ∈ B ∧ (∃bo ∈ Lset(i). ∃nx ∈ Lset(i). ∃ny ∈ Lset(i).
v ∈ lstA ∧ is_nth(##Lset(i), x, v, nx) ∧
is_nth(##Lset(i), y, v, ny) ∧
is_bool_of_o(##Lset(i), nx ∈ ny, bo) ∧ pair(##Lset(i), v, bo, u))]"

by (intro FOL_reflections function_reflections nth_reflection
bool_of_o_reflection)


lemma Member_replacement:
"[|L(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(L, λenv z. ∃bo[L]. ∃nx[L]. ∃ny[L].
env ∈ list(A) & is_nth(L,x,env,nx) & is_nth(L,y,env,ny) &
is_bool_of_o(L, nx ∈ ny, bo) &
pair(L, env, bo, z))"

apply (rule strong_replacementI)
apply (rule_tac u="{list(A),B,x,y}"
in gen_separation_multi [OF Member_Reflects],
auto simp add: nat_into_M list_closed)
apply (rule_tac env="[list(A),B,x,y]" in DPow_LsetI)
apply (rule sep_rules nth_iff_sats is_bool_of_o_iff_sats | simp)+
done


subsubsection{*The @{term "Equal"} Case*}

lemma Equal_Reflects:
"REFLECTS[λu. ∃v[L]. v ∈ B ∧ (∃bo[L]. ∃nx[L]. ∃ny[L].
v ∈ lstA ∧ is_nth(L, x, v, nx) ∧ is_nth(L, y, v, ny) ∧
is_bool_of_o(L, nx = ny, bo) ∧ pair(L, v, bo, u)),
λi u. ∃v ∈ Lset(i). v ∈ B ∧ (∃bo ∈ Lset(i). ∃nx ∈ Lset(i). ∃ny ∈ Lset(i).
v ∈ lstA ∧ is_nth(##Lset(i), x, v, nx) ∧
is_nth(##Lset(i), y, v, ny) ∧
is_bool_of_o(##Lset(i), nx = ny, bo) ∧ pair(##Lset(i), v, bo, u))]"

by (intro FOL_reflections function_reflections nth_reflection
bool_of_o_reflection)


lemma Equal_replacement:
"[|L(A); x ∈ nat; y ∈ nat|]
==> strong_replacement
(L, λenv z. ∃bo[L]. ∃nx[L]. ∃ny[L].
env ∈ list(A) & is_nth(L,x,env,nx) & is_nth(L,y,env,ny) &
is_bool_of_o(L, nx = ny, bo) &
pair(L, env, bo, z))"

apply (rule strong_replacementI)
apply (rule_tac u="{list(A),B,x,y}"
in gen_separation_multi [OF Equal_Reflects],
auto simp add: nat_into_M list_closed)
apply (rule_tac env="[list(A),B,x,y]" in DPow_LsetI)
apply (rule sep_rules nth_iff_sats is_bool_of_o_iff_sats | simp)+
done

subsubsection{*The @{term "Nand"} Case*}

lemma Nand_Reflects:
"REFLECTS [λx. ∃u[L]. u ∈ B ∧
(∃rpe[L]. ∃rqe[L]. ∃andpq[L]. ∃notpq[L].
fun_apply(L, rp, u, rpe) ∧ fun_apply(L, rq, u, rqe) ∧
is_and(L, rpe, rqe, andpq) ∧ is_not(L, andpq, notpq) ∧
u ∈ list(A) ∧ pair(L, u, notpq, x)),
λi x. ∃u ∈ Lset(i). u ∈ B ∧
(∃rpe ∈ Lset(i). ∃rqe ∈ Lset(i). ∃andpq ∈ Lset(i). ∃notpq ∈ Lset(i).
fun_apply(##Lset(i), rp, u, rpe) ∧ fun_apply(##Lset(i), rq, u, rqe) ∧
is_and(##Lset(i), rpe, rqe, andpq) ∧ is_not(##Lset(i), andpq, notpq) ∧
u ∈ list(A) ∧ pair(##Lset(i), u, notpq, x))]"

apply (unfold is_and_def is_not_def)
apply (intro FOL_reflections function_reflections)
done

lemma Nand_replacement:
"[|L(A); L(rp); L(rq)|]
==> strong_replacement
(L, λenv z. ∃rpe[L]. ∃rqe[L]. ∃andpq[L]. ∃notpq[L].
fun_apply(L,rp,env,rpe) & fun_apply(L,rq,env,rqe) &
is_and(L,rpe,rqe,andpq) & is_not(L,andpq,notpq) &
env ∈ list(A) & pair(L, env, notpq, z))"

apply (rule strong_replacementI)
apply (rule_tac u="{list(A),B,rp,rq}"
in gen_separation_multi [OF Nand_Reflects],
auto simp add: list_closed)
apply (rule_tac env="[list(A),B,rp,rq]" in DPow_LsetI)
apply (rule sep_rules is_and_iff_sats is_not_iff_sats | simp)+
done


subsubsection{*The @{term "Forall"} Case*}

lemma Forall_Reflects:
"REFLECTS [λx. ∃u[L]. u ∈ B ∧ (∃bo[L]. u ∈ list(A) ∧
is_bool_of_o (L,
∀a[L]. ∀co[L]. ∀rpco[L]. a ∈ A -->
is_Cons(L,a,u,co) --> fun_apply(L,rp,co,rpco) -->
number1(L,rpco),
bo) ∧ pair(L,u,bo,x)),
λi x. ∃u ∈ Lset(i). u ∈ B ∧ (∃bo ∈ Lset(i). u ∈ list(A) ∧
is_bool_of_o (##Lset(i),
∀a ∈ Lset(i). ∀co ∈ Lset(i). ∀rpco ∈ Lset(i). a ∈ A -->
is_Cons(##Lset(i),a,u,co) --> fun_apply(##Lset(i),rp,co,rpco) -->
number1(##Lset(i),rpco),
bo) ∧ pair(##Lset(i),u,bo,x))]"

apply (unfold is_bool_of_o_def)
apply (intro FOL_reflections function_reflections Cons_reflection)
done

lemma Forall_replacement:
"[|L(A); L(rp)|]
==> strong_replacement
(L, λenv z. ∃bo[L].
env ∈ list(A) &
is_bool_of_o (L,
∀a[L]. ∀co[L]. ∀rpco[L].
a∈A --> is_Cons(L,a,env,co) -->
fun_apply(L,rp,co,rpco) --> number1(L, rpco),
bo) &
pair(L,env,bo,z))"

apply (rule strong_replacementI)
apply (rule_tac u="{A,list(A),B,rp}"
in gen_separation_multi [OF Forall_Reflects],
auto simp add: list_closed)
apply (rule_tac env="[A,list(A),B,rp]" in DPow_LsetI)
apply (rule sep_rules is_bool_of_o_iff_sats Cons_iff_sats | simp)+
done

subsubsection{*The @{term "transrec_replacement"} Case*}

lemma formula_rec_replacement_Reflects:
"REFLECTS [λx. ∃u[L]. u ∈ B ∧ (∃y[L]. pair(L, u, y, x) ∧
is_wfrec (L, satisfies_MH(L,A), mesa, u, y)),
λi x. ∃u ∈ Lset(i). u ∈ B ∧ (∃y ∈ Lset(i). pair(##Lset(i), u, y, x) ∧
is_wfrec (##Lset(i), satisfies_MH(##Lset(i),A), mesa, u, y))]"

by (intro FOL_reflections function_reflections satisfies_MH_reflection
is_wfrec_reflection)

lemma formula_rec_replacement:
--{*For the @{term transrec}*}
"[|n ∈ nat; L(A)|] ==> transrec_replacement(L, satisfies_MH(L,A), n)"
apply (rule transrec_replacementI, simp add: nat_into_M)
apply (rule strong_replacementI)
apply (rule_tac u="{B,A,n,Memrel(eclose({n}))}"
in gen_separation_multi [OF formula_rec_replacement_Reflects],
auto simp add: nat_into_M)
apply (rule_tac env="[B,A,n,Memrel(eclose({n}))]" in DPow_LsetI)
apply (rule sep_rules satisfies_MH_iff_sats is_wfrec_iff_sats | simp)+
done


subsubsection{*The Lambda Replacement Case*}

lemma formula_rec_lambda_replacement_Reflects:
"REFLECTS [λx. ∃u[L]. u ∈ B &
mem_formula(L,u) &
(∃c[L].
is_formula_case
(L, satisfies_is_a(L,A), satisfies_is_b(L,A),
satisfies_is_c(L,A,g), satisfies_is_d(L,A,g),
u, c) &
pair(L,u,c,x)),
λi x. ∃u ∈ Lset(i). u ∈ B & mem_formula(##Lset(i),u) &
(∃c ∈ Lset(i).
is_formula_case
(##Lset(i), satisfies_is_a(##Lset(i),A), satisfies_is_b(##Lset(i),A),
satisfies_is_c(##Lset(i),A,g), satisfies_is_d(##Lset(i),A,g),
u, c) &
pair(##Lset(i),u,c,x))]"

by (intro FOL_reflections function_reflections mem_formula_reflection
is_formula_case_reflection satisfies_is_a_reflection
satisfies_is_b_reflection satisfies_is_c_reflection
satisfies_is_d_reflection)

lemma formula_rec_lambda_replacement:
--{*For the @{term transrec}*}
"[|L(g); L(A)|] ==>
strong_replacement (L,
λx y. mem_formula(L,x) &
(∃c[L]. is_formula_case(L, satisfies_is_a(L,A),
satisfies_is_b(L,A),
satisfies_is_c(L,A,g),
satisfies_is_d(L,A,g), x, c) &
pair(L, x, c, y)))"

apply (rule strong_replacementI)
apply (rule_tac u="{B,A,g}"
in gen_separation_multi [OF formula_rec_lambda_replacement_Reflects],
auto)
apply (rule_tac env="[A,g,B]" in DPow_LsetI)
apply (rule sep_rules mem_formula_iff_sats
formula_case_iff_sats satisfies_is_a_iff_sats
satisfies_is_b_iff_sats satisfies_is_c_iff_sats
satisfies_is_d_iff_sats | simp)+
done


subsection{*Instantiating @{text M_satisfies}*}

lemma M_satisfies_axioms_L: "M_satisfies_axioms(L)"
apply (rule M_satisfies_axioms.intro)
apply (assumption | rule
Member_replacement Equal_replacement
Nand_replacement Forall_replacement
formula_rec_replacement formula_rec_lambda_replacement)+
done

theorem M_satisfies_L: "PROP M_satisfies(L)"
apply (rule M_satisfies.intro)
apply (rule M_eclose_L)
apply (rule M_satisfies_axioms_L)
done

text{*Finally: the point of the whole theory!*}
lemmas satisfies_closed = M_satisfies.satisfies_closed [OF M_satisfies_L]
and satisfies_abs = M_satisfies.satisfies_abs [OF M_satisfies_L]

end