# Theory Normal

theory Normal
imports ZF
(*  Title:      ZF/Constructible/Normal.thy
Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
*)

section ‹Closed Unbounded Classes and Normal Functions›

theory Normal imports ZF begin

text‹
One source is the book

Frank R. Drake.
\emph{Set Theory: An Introduction to Large Cardinals}.
North-Holland, 1974.
›

subsection ‹Closed and Unbounded (c.u.) Classes of Ordinals›

definition
Closed :: "(i=>o) => o" where
"Closed(P) == ∀I. I ≠ 0 ⟶ (∀i∈I. Ord(i) ∧ P(i)) ⟶ P(⋃(I))"

definition
Unbounded :: "(i=>o) => o" where
"Unbounded(P) == ∀i. Ord(i) ⟶ (∃j. i<j ∧ P(j))"

definition
Closed_Unbounded :: "(i=>o) => o" where
"Closed_Unbounded(P) == Closed(P) ∧ Unbounded(P)"

lemma ClosedI:
"[| !!I. [| I ≠ 0; ∀i∈I. Ord(i) ∧ P(i) |] ==> P(⋃(I)) |]
==> Closed(P)"

lemma ClosedD:
"[| Closed(P); I ≠ 0; !!i. i∈I ==> Ord(i); !!i. i∈I ==> P(i) |]
==> P(⋃(I))"

lemma UnboundedD:
"[| Unbounded(P);  Ord(i) |] ==> ∃j. i<j ∧ P(j)"

lemma Closed_Unbounded_imp_Unbounded: "Closed_Unbounded(C) ==> Unbounded(C)"

text‹The universal class, V, is closed and unbounded.
A bit odd, since C. U. concerns only ordinals, but it's used below!›
theorem Closed_Unbounded_V [simp]: "Closed_Unbounded(λx. True)"
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)

text‹The class of ordinals, @{term Ord}, is closed and unbounded.›
theorem Closed_Unbounded_Ord   [simp]: "Closed_Unbounded(Ord)"
by (unfold Closed_Unbounded_def Closed_def Unbounded_def, blast)

text‹The class of limit ordinals, @{term Limit}, is closed and unbounded.›
theorem Closed_Unbounded_Limit [simp]: "Closed_Unbounded(Limit)"
apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Limit_Union,
clarify)
apply (rule_tac x="i++nat" in exI)
done

text‹The class of cardinals, @{term Card}, is closed and unbounded.›
theorem Closed_Unbounded_Card  [simp]: "Closed_Unbounded(Card)"
apply (simp add: Closed_Unbounded_def Closed_def Unbounded_def Card_Union)
apply (blast intro: lt_csucc Card_csucc)
done

subsubsection‹The intersection of any set-indexed family of c.u. classes is
c.u.›

text‹The constructions below come from Kunen, \emph{Set Theory}, page 78.›
locale cub_family =
fixes P and A
fixes next_greater ― "the next ordinal satisfying class @{term A}"
fixes sup_greater  ― "sup of those ordinals over all @{term A}"
assumes closed:    "a∈A ==> Closed(P(a))"
and unbounded: "a∈A ==> Unbounded(P(a))"
and A_non0: "A≠0"
defines "next_greater(a,x) == μ y. x<y ∧ P(a,y)"
and "sup_greater(x) == ⋃a∈A. next_greater(a,x)"

text‹Trivial that the intersection is closed.›
lemma (in cub_family) Closed_INT: "Closed(λx. ∀i∈A. P(i,x))"
by (blast intro: ClosedI ClosedD [OF closed])

text‹All remaining effort goes to show that the intersection is unbounded.›

lemma (in cub_family) Ord_sup_greater:
"Ord(sup_greater(x))"

lemma (in cub_family) Ord_next_greater:
"Ord(next_greater(a,x))"

text‹@{term next_greater} works as expected: it returns a larger value
and one that belongs to class @{term "P(a)"}.›
lemma (in cub_family) next_greater_lemma:
"[| Ord(x); a∈A |] ==> P(a, next_greater(a,x)) ∧ x < next_greater(a,x)"
apply (rule exE [OF UnboundedD [OF unbounded]])
apply assumption+
apply (blast intro: LeastI2 lt_Ord2)
done

lemma (in cub_family) next_greater_in_P:
"[| Ord(x); a∈A |] ==> P(a, next_greater(a,x))"
by (blast dest: next_greater_lemma)

lemma (in cub_family) next_greater_gt:
"[| Ord(x); a∈A |] ==> x < next_greater(a,x)"
by (blast dest: next_greater_lemma)

lemma (in cub_family) sup_greater_gt:
"Ord(x) ==> x < sup_greater(x)"
apply (insert A_non0)
apply (blast intro: UN_upper_lt next_greater_gt Ord_next_greater)
done

lemma (in cub_family) next_greater_le_sup_greater:
"a∈A ==> next_greater(a,x) ≤ sup_greater(x)"
apply (blast intro: UN_upper_le Ord_next_greater)
done

lemma (in cub_family) omega_sup_greater_eq_UN:
"[| Ord(x); a∈A |]
==> sup_greater^ω (x) =
(⋃n∈nat. next_greater(a, sup_greater^n (x)))"
apply (rule le_anti_sym)
apply (rule le_implies_UN_le_UN)
apply (blast intro: leI next_greater_gt Ord_iterates Ord_sup_greater)
txt‹Opposite bound:
@{subgoals[display,indent=0,margin=65]}
›
apply (rule UN_least_le)
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)
apply (rule_tac a="succ(n)" in UN_upper_le)
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)
done

lemma (in cub_family) P_omega_sup_greater:
"[| Ord(x); a∈A |] ==> P(a, sup_greater^ω (x))"
apply (rule ClosedD [OF closed])
apply (blast intro: ltD, auto)
apply (blast intro: Ord_iterates Ord_next_greater Ord_sup_greater)
apply (blast intro: next_greater_in_P Ord_iterates Ord_sup_greater)
done

lemma (in cub_family) omega_sup_greater_gt:
"Ord(x) ==> x < sup_greater^ω (x)"
apply (rule UN_upper_lt [of 1], simp_all)
apply (blast intro: sup_greater_gt)
apply (blast intro: Ord_UN Ord_iterates Ord_sup_greater)
done

lemma (in cub_family) Unbounded_INT: "Unbounded(λx. ∀a∈A. P(a,x))"
apply (unfold Unbounded_def)
apply (blast intro!: omega_sup_greater_gt P_omega_sup_greater)
done

lemma (in cub_family) Closed_Unbounded_INT:
"Closed_Unbounded(λx. ∀a∈A. P(a,x))"
by (simp add: Closed_Unbounded_def Closed_INT Unbounded_INT)

theorem Closed_Unbounded_INT:
"(!!a. a∈A ==> Closed_Unbounded(P(a)))
==> Closed_Unbounded(λx. ∀a∈A. P(a, x))"
apply (case_tac "A=0", simp)
apply (rule cub_family.Closed_Unbounded_INT [OF cub_family.intro])
done

lemma Int_iff_INT2:
"P(x) ∧ Q(x)  ⟷  (∀i∈2. (i=0 ⟶ P(x)) ∧ (i=1 ⟶ Q(x)))"
by auto

theorem Closed_Unbounded_Int:
"[| Closed_Unbounded(P); Closed_Unbounded(Q) |]
==> Closed_Unbounded(λx. P(x) ∧ Q(x))"
apply (simp only: Int_iff_INT2)
apply (rule Closed_Unbounded_INT, auto)
done

subsection ‹Normal Functions›

definition
mono_le_subset :: "(i=>i) => o" where
"mono_le_subset(M) == ∀i j. i≤j ⟶ M(i) ⊆ M(j)"

definition
mono_Ord :: "(i=>i) => o" where
"mono_Ord(F) == ∀i j. i<j ⟶ F(i) < F(j)"

definition
cont_Ord :: "(i=>i) => o" where
"cont_Ord(F) == ∀l. Limit(l) ⟶ F(l) = (⋃i<l. F(i))"

definition
Normal :: "(i=>i) => o" where
"Normal(F) == mono_Ord(F) ∧ cont_Ord(F)"

subsubsection‹Immediate properties of the definitions›

lemma NormalI:
"[|!!i j. i<j ==> F(i) < F(j);  !!l. Limit(l) ==> F(l) = (⋃i<l. F(i))|]
==> Normal(F)"
by (simp add: Normal_def mono_Ord_def cont_Ord_def)

lemma mono_Ord_imp_Ord: "[| Ord(i); mono_Ord(F) |] ==> Ord(F(i))"
apply (blast intro: lt_Ord)
done

lemma mono_Ord_imp_mono: "[| i<j; mono_Ord(F) |] ==> F(i) < F(j)"

lemma Normal_imp_Ord [simp]: "[| Normal(F); Ord(i) |] ==> Ord(F(i))"

lemma Normal_imp_cont: "[| Normal(F); Limit(l) |] ==> F(l) = (⋃i<l. F(i))"

lemma Normal_imp_mono: "[| i<j; Normal(F) |] ==> F(i) < F(j)"

lemma Normal_increasing:
assumes i: "Ord(i)" and F: "Normal(F)" shows"i ≤ F(i)"
using i
proof (induct i rule: trans_induct3)
case 0 thus ?case by (simp add: subset_imp_le F)
next
case (succ i)
hence "F(i) < F(succ(i))" using F
thus ?case using succ.hyps
by (blast intro: lt_trans1)
next
case (limit l)
hence "l = (⋃y<l. y)"
also have "... ≤ (⋃y<l. F(y))" using limit
by (blast intro: ltD le_implies_OUN_le_OUN)
finally have "l ≤ (⋃y<l. F(y))" .
moreover have "(⋃y<l. F(y)) ≤ F(l)" using limit F
ultimately show ?case
by (blast intro: le_trans)
qed

subsubsection‹The class of fixedpoints is closed and unbounded›

text‹The proof is from Drake, pages 113--114.›

lemma mono_Ord_imp_le_subset: "mono_Ord(F) ==> mono_le_subset(F)"
apply (subgoal_tac "F(i)≤F(j)", blast dest: le_imp_subset)
apply (blast intro: lt_Ord2 mono_Ord_imp_Ord mono_Ord_imp_mono)
done

text‹The following equation is taken for granted in any set theory text.›
lemma cont_Ord_Union:
"[| cont_Ord(F); mono_le_subset(F); X=0 ⟶ F(0)=0; ∀x∈X. Ord(x) |]
==> F(⋃(X)) = (⋃y∈X. F(y))"
apply (frule Ord_set_cases)
apply (erule disjE, force)
apply (thin_tac "X=0 ⟶ Q" for Q, auto)
txt‹The trival case of @{term "⋃X ∈ X"}›
apply (rule equalityI, blast intro: Ord_Union_eq_succD)
apply (simp add: mono_le_subset_def UN_subset_iff le_subset_iff)
apply (blast elim: equalityE)
txt‹The limit case, @{term "Limit(⋃X)"}:
@{subgoals[display,indent=0,margin=65]}
›
apply (rule equalityI)
txt‹First inclusion:›
apply (rule UN_least [OF OUN_least])
apply (simp add: mono_le_subset_def, blast intro: leI)
txt‹Second inclusion:›
apply (rule UN_least)
apply (frule Union_upper_le, blast, blast intro: Ord_Union)
apply (erule leE, drule ltD, elim UnionE)
apply blast+
done

lemma Normal_Union:
"[| X≠0; ∀x∈X. Ord(x); Normal(F) |] ==> F(⋃(X)) = (⋃y∈X. F(y))"
apply (blast intro: mono_Ord_imp_le_subset cont_Ord_Union)
done

lemma Normal_imp_fp_Closed: "Normal(F) ==> Closed(λi. F(i) = i)"
apply (simp add: Closed_def ball_conj_distrib, clarify)
apply (frule Ord_set_cases)
done

lemma iterates_Normal_increasing:
"[| n∈nat;  x < F(x);  Normal(F) |]
==> F^n (x) < F^(succ(n)) (x)"
apply (induct n rule: nat_induct)
done

lemma Ord_iterates_Normal:
"[| n∈nat;  Normal(F);  Ord(x) |] ==> Ord(F^n (x))"

text‹THIS RESULT IS UNUSED›
lemma iterates_omega_Limit:
"[| Normal(F);  x < F(x) |] ==> Limit(F^ω (x))"
apply (frule lt_Ord)
apply (rule increasing_LimitI)
―"this lemma is @{thm increasing_LimitI [no_vars]}"
apply (blast intro: UN_upper_lt [of "1"]   Normal_imp_Ord
Ord_UN Ord_iterates lt_imp_0_lt
iterates_Normal_increasing, clarify)
apply (rule bexI)
apply (blast intro: Ord_in_Ord [OF Ord_iterates_Normal])
apply (rule UN_I, erule nat_succI)
apply (blast intro:  iterates_Normal_increasing Ord_iterates_Normal
ltD [OF lt_trans1, OF succ_leI, OF ltI])
done

lemma iterates_omega_fixedpoint:
"[| Normal(F); Ord(a) |] ==> F(F^ω (a)) = F^ω (a)"
apply (frule Normal_increasing, assumption)
apply (erule leE)
apply (simp_all add: iterates_omega_triv [OF sym])  (*for subgoal 2*)
apply (rule equalityI, force simp add: nat_succI)
txt‹Opposite inclusion:
@{subgoals[display,indent=0,margin=65]}
›
apply clarify
apply (rule UN_I, assumption)
apply (frule iterates_Normal_increasing, assumption, assumption, simp)
apply (blast intro: Ord_trans ltD Ord_iterates_Normal Normal_imp_Ord [of F])
done

lemma iterates_omega_increasing:
"[| Normal(F); Ord(a) |] ==> a ≤ F^ω (a)"
apply (unfold iterates_omega_def)
apply (rule UN_upper_le [of 0], simp_all)
done

lemma Normal_imp_fp_Unbounded: "Normal(F) ==> Unbounded(λi. F(i) = i)"
apply (unfold Unbounded_def, clarify)
apply (rule_tac x="F^ω (succ(i))" in exI)
apply (blast intro: lt_trans2 [OF _ iterates_omega_increasing])
done

theorem Normal_imp_fp_Closed_Unbounded:
"Normal(F) ==> Closed_Unbounded(λi. F(i) = i)"
Normal_imp_fp_Unbounded)

subsubsection‹Function ‹normalize››

text‹Function ‹normalize› maps a function ‹F› to a
normal function that bounds it above.  The result is normal if and
only if ‹F› is continuous: succ is not bounded above by any
normal function, by @{thm [source] Normal_imp_fp_Unbounded}.
›
definition
normalize :: "[i=>i, i] => i" where
"normalize(F,a) == transrec2(a, F(0), λx r. F(succ(x)) ∪ succ(r))"

lemma Ord_normalize [simp, intro]:
"[| Ord(a); !!x. Ord(x) ==> Ord(F(x)) |] ==> Ord(normalize(F, a))"
apply (induct a rule: trans_induct3)
apply (simp_all add: ltD def_transrec2 [OF normalize_def])
done

lemma normalize_increasing:
assumes ab: "a < b" and F: "!!x. Ord(x) ==> Ord(F(x))"
shows "normalize(F,a) < normalize(F,b)"
proof -
{ fix x
have "Ord(b)" using ab by (blast intro: lt_Ord2)
hence "x < b ⟹ normalize(F,x) < normalize(F,b)"
proof (induct b arbitrary: x rule: trans_induct3)
case 0 thus ?case by simp
next
case (succ b)
thus ?case
by (auto simp add: le_iff def_transrec2 [OF normalize_def] intro: Un_upper2_lt F)
next
case (limit l)
hence sc: "succ(x) < l"
by (blast intro: Limit_has_succ)
hence "normalize(F,x) < normalize(F,succ(x))"
by (blast intro: limit elim: ltE)
hence "normalize(F,x) < (⋃j<l. normalize(F,j))"
by (blast intro: OUN_upper_lt lt_Ord F sc)
thus ?case using limit
by (simp add: def_transrec2 [OF normalize_def])
qed
} thus ?thesis using ab .
qed

theorem Normal_normalize:
"(!!x. Ord(x) ==> Ord(F(x))) ==> Normal(normalize(F))"
apply (rule NormalI)
apply (blast intro!: normalize_increasing)
apply (simp add: def_transrec2 [OF normalize_def])
done

theorem le_normalize:
assumes a: "Ord(a)" and coF: "cont_Ord(F)" and F: "!!x. Ord(x) ==> Ord(F(x))"
shows "F(a) ≤ normalize(F,a)"
using a
proof (induct a rule: trans_induct3)
case 0 thus ?case by (simp add: F def_transrec2 [OF normalize_def])
next
case (succ a)
thus ?case
by (simp add: def_transrec2 [OF normalize_def] Un_upper1_le F )
next
case (limit l)
thus ?case using F coF [unfolded cont_Ord_def]
by (simp add: def_transrec2 [OF normalize_def] le_implies_OUN_le_OUN ltD)
qed

subsection ‹The Alephs›
text ‹This is the well-known transfinite enumeration of the cardinal
numbers.›

definition
Aleph :: "i => i"  ("ℵ_" [90] 90) where
"Aleph(a) == transrec2(a, nat, λx r. csucc(r))"

lemma Card_Aleph [simp, intro]:
"Ord(a) ==> Card(Aleph(a))"
apply (erule trans_induct3)
apply (simp_all add: Card_csucc Card_nat Card_is_Ord
def_transrec2 [OF Aleph_def])
done

lemma Aleph_increasing:
assumes ab: "a < b" shows "Aleph(a) < Aleph(b)"
proof -
{ fix x
have "Ord(b)" using ab by (blast intro: lt_Ord2)
hence "x < b ⟹ Aleph(x) < Aleph(b)"
proof (induct b arbitrary: x rule: trans_induct3)
case 0 thus ?case by simp
next
case (succ b)
thus ?case
by (force simp add: le_iff def_transrec2 [OF Aleph_def]
intro: lt_trans lt_csucc Card_is_Ord)
next
case (limit l)
hence sc: "succ(x) < l"
by (blast intro: Limit_has_succ)
hence "ℵ x < (⋃j<l. ℵj)" using limit
by (blast intro: OUN_upper_lt Card_is_Ord ltD lt_Ord)
thus ?case using limit
by (simp add: def_transrec2 [OF Aleph_def])
qed
} thus ?thesis using ab .
qed

theorem Normal_Aleph: "Normal(Aleph)"
apply (rule NormalI)
apply (blast intro!: Aleph_increasing)
apply (simp add: def_transrec2 [OF Aleph_def])
done

end