# Theory Kleene_Algebra

Up to index of Isabelle/HOL/HOL-Library

theory Kleene_Algebra
imports Main
`(*  Title:      HOL/Library/Kleene_Algebra.thy    Author:     Alexander Krauss, TU Muenchen    Author:     Tjark Weber, University of Cambridge*)header {* Kleene Algebras *}theory Kleene_Algebraimports Main begintext {* WARNING: This is work in progress. Expect changes in the future. *}text {* Various lemmas correspond to entries in a database of theorems  about Kleene algebras and related structures maintained by Peter  H\"ofner: see  \url{http://www.informatik.uni-augsburg.de/~hoefnepe/kleene_db/lemmas/index.html}. *}subsection {* Preliminaries *}text {* A class where addition is idempotent. *}class idem_add = plus +  assumes add_idem [simp]: "x + x = x"text {* A class of idempotent abelian semigroups (written additively). *}class idem_ab_semigroup_add = ab_semigroup_add + idem_addbeginlemma add_idem2 [simp]: "x + (x + y) = x + y"unfolding add_assoc[symmetric] by simplemma add_idem3 [simp]: "x + (y + x) = x + y"by (simp add: add_commute)endtext {* A class where order is defined in terms of addition. *}class order_by_add = plus + ord +  assumes order_def: "x ≤ y <-> x + y = y"  assumes strict_order_def: "x < y <-> x ≤ y ∧ ¬ y ≤ x"beginlemma ord_simp [simp]: "x ≤ y ==> x + y = y"  unfolding order_def .lemma ord_intro: "x + y = y ==> x ≤ y"  unfolding order_def .endtext {* A class of idempotent abelian semigroups (written additively)  where order is defined in terms of addition. *}class ordered_idem_ab_semigroup_add = idem_ab_semigroup_add + order_by_addbeginlemma ord_simp2 [simp]: "x ≤ y ==> y + x = y"  unfolding order_def add_commute .subclass order proof  fix x y z :: 'a  show "x ≤ x"    unfolding order_def by simp  show "x ≤ y ==> y ≤ z ==> x ≤ z"    unfolding order_def by (metis add_assoc)  show "x ≤ y ==> y ≤ x ==> x = y"    unfolding order_def by (simp add: add_commute)  show "x < y <-> x ≤ y ∧ ¬ y ≤ x"    by (fact strict_order_def)qedsubclass ordered_ab_semigroup_add proof  fix a b c :: 'a  assume "a ≤ b" show "c + a ≤ c + b"  proof (rule ord_intro)    have "c + a + (c + b) = a + b + c" by (simp add: add_ac)    also have "… = c + b" by (simp add: `a ≤ b` add_ac)    finally show "c + a + (c + b) = c + b" .  qedqedlemma plus_leI [simp]:   "x ≤ z ==> y ≤ z ==> x + y ≤ z"  unfolding order_def by (simp add: add_assoc)lemma less_add [simp]: "x ≤ x + y" "y ≤ x + y"unfolding order_def by (auto simp: add_ac)lemma add_est1 [elim]: "x + y ≤ z ==> x ≤ z"using less_add(1) by (rule order_trans)lemma add_est2 [elim]: "x + y ≤ z ==> y ≤ z"using less_add(2) by (rule order_trans)lemma add_supremum: "(x + y ≤ z) = (x ≤ z ∧ y ≤ z)"by autoendtext {* A class of commutative monoids (written additively) where  order is defined in terms of addition. *}class ordered_comm_monoid_add = comm_monoid_add + order_by_addbeginlemma zero_minimum [simp]: "0 ≤ x"unfolding order_def by simpendtext {* A class of idempotent commutative monoids (written additively)  where order is defined in terms of addition. *}class ordered_idem_comm_monoid_add = ordered_comm_monoid_add + idem_addbeginsubclass ordered_idem_ab_semigroup_add ..lemma sum_is_zero: "(x + y = 0) = (x = 0 ∧ y = 0)"by (simp add: add_supremum eq_iff)endsubsection {* A class of Kleene algebras *}text {* Class @{text pre_kleene} provides all operations of Kleene  algebras except for the Kleene star. *}class pre_kleene = semiring_1 + idem_add + order_by_addbeginsubclass ordered_idem_comm_monoid_add ..subclass ordered_semiring proof  fix a b c :: 'a  assume "a ≤ b"  show "c * a ≤ c * b"  proof (rule ord_intro)    from `a ≤ b` have "c * (a + b) = c * b" by simp    thus "c * a + c * b = c * b" by (simp add: distrib_left)  qed  show "a * c ≤ b * c"  proof (rule ord_intro)    from `a ≤ b` have "(a + b) * c = b * c" by simp    thus "a * c + b * c = b * c" by (simp add: distrib_right)  qedqedendtext {* A class that provides a star operator. *}class star =  fixes star :: "'a => 'a"text {* Finally, a class of Kleene algebras. *}class kleene = pre_kleene + star +  assumes star1: "1 + a * star a ≤ star a"  and star2: "1 + star a * a ≤ star a"  and star3: "a * x ≤ x ==> star a * x ≤ x"  and star4: "x * a ≤ x ==> x * star a ≤ x"beginlemma star3' [simp]:  assumes a: "b + a * x ≤ x"  shows "star a * b ≤ x"by (metis assms less_add mult_left_mono order_trans star3 zero_minimum)lemma star4' [simp]:  assumes a: "b + x * a ≤ x"  shows "b * star a ≤ x"by (metis assms less_add mult_right_mono order_trans star4 zero_minimum)lemma star_unfold_left: "1 + a * star a = star a"proof (rule antisym, rule star1)  have "1 + a * (1 + a * star a) ≤ 1 + a * star a"    by (metis add_left_mono mult_left_mono star1 zero_minimum)  with star3' have "star a * 1 ≤ 1 + a * star a" .  thus "star a ≤ 1 + a * star a" by simpqedlemma star_unfold_right: "1 + star a * a = star a"proof (rule antisym, rule star2)  have "1 + (1 + star a * a) * a ≤ 1 + star a * a"    by (metis add_left_mono mult_right_mono star2 zero_minimum)  with star4' have "1 * star a ≤ 1 + star a * a" .  thus "star a ≤ 1 + star a * a" by simpqedlemma star_zero [simp]: "star 0 = 1"by (fact star_unfold_left[of 0, simplified, symmetric])lemma star_one [simp]: "star 1 = 1"by (metis add_idem2 eq_iff mult_1_right ord_simp2 star3 star_unfold_left)lemma one_less_star [simp]: "1 ≤ star x"by (metis less_add(1) star_unfold_left)lemma ka1 [simp]: "x * star x ≤ star x"by (metis less_add(2) star_unfold_left)lemma star_mult_idem [simp]: "star x * star x = star x"by (metis add_commute add_est1 eq_iff mult_1_right distrib_left star3 star_unfold_left)lemma less_star [simp]: "x ≤ star x"by (metis less_add(2) mult_1_right mult_left_mono one_less_star order_trans star_unfold_left zero_minimum)lemma star_simulation_leq_1:  assumes a: "a * x ≤ x * b"  shows "star a * x ≤ x * star b"proof (rule star3', rule order_trans)  from a have "a * x * star b ≤ x * b * star b"    by (rule mult_right_mono) simp  thus "x + a * (x * star b) ≤ x + x * b * star b"    using add_left_mono by (auto simp: mult_assoc)  show "… ≤ x * star b"    by (metis add_supremum ka1 mult.right_neutral mult_assoc mult_left_mono one_less_star zero_minimum)qedlemma star_simulation_leq_2:  assumes a: "x * a ≤ b * x"  shows "x * star a ≤ star b * x"proof (rule star4', rule order_trans)  from a have "star b * x * a ≤ star b * b * x"    by (metis mult_assoc mult_left_mono zero_minimum)  thus "x + star b * x * a ≤ x + star b * b * x"    using add_mono by auto  show "… ≤ star b * x"    by (metis add_supremum distrib_right less_add mult.left_neutral mult_assoc mult_right_mono star_unfold_right zero_minimum)qedlemma star_simulation [simp]:  assumes a: "a * x = x * b"  shows "star a * x = x * star b"by (metis antisym assms order_refl star_simulation_leq_1 star_simulation_leq_2)lemma star_slide2 [simp]: "star x * x = x * star x"by (metis star_simulation)lemma star_idemp [simp]: "star (star x) = star x"by (metis add_idem2 eq_iff less_star mult_1_right star3' star_mult_idem star_unfold_left)lemma star_slide [simp]: "star (x * y) * x = x * star (y * x)"by (metis mult_assoc star_simulation)lemma star_one':  assumes "p * p' = 1" "p' * p = 1"  shows "p' * star a * p = star (p' * a * p)"proof -  from assms  have "p' * star a * p = p' * star (p * p' * a) * p"    by simp  also have "… = p' * p * star (p' * a * p)"    by (simp add: mult_assoc)  also have "… = star (p' * a * p)"    by (simp add: assms)  finally show ?thesis .qedlemma x_less_star [simp]: "x ≤ x * star a"by (metis mult.right_neutral mult_left_mono one_less_star zero_minimum)lemma star_mono [simp]: "x ≤ y ==> star x ≤ star y"by (metis add_commute eq_iff less_star ord_simp2 order_trans star3 star4' star_idemp star_mult_idem x_less_star)lemma star_sub: "x ≤ 1 ==> star x = 1"by (metis add_commute ord_simp star_idemp star_mono star_mult_idem star_one star_unfold_left)lemma star_unfold2: "star x * y = y + x * star x * y"by (subst star_unfold_right[symmetric]) (simp add: mult_assoc distrib_right)lemma star_absorb_one [simp]: "star (x + 1) = star x"by (metis add_commute eq_iff distrib_right less_add mult_1_left mult_assoc star3 star_mono star_mult_idem star_unfold2 x_less_star)lemma star_absorb_one' [simp]: "star (1 + x) = star x"by (subst add_commute) (fact star_absorb_one)lemma ka16: "(y * star x) * star (y * star x) ≤ star x * star (y * star x)"by (metis ka1 less_add(1) mult_assoc order_trans star_unfold2)lemma ka16': "(star x * y) * star (star x * y) ≤ star (star x * y) * star x"by (metis ka1 mult_assoc order_trans star_slide x_less_star)lemma ka17: "(x * star x) * star (y * star x) ≤ star x * star (y * star x)"by (metis ka1 mult_assoc mult_right_mono zero_minimum)lemma ka18: "(x * star x) * star (y * star x) + (y * star x) * star (y * star x)  ≤ star x * star (y * star x)"by (metis ka16 ka17 distrib_right mult_assoc plus_leI)lemma star_decomp: "star (x + y) = star x * star (y * star x)"proof (rule antisym)  have "1 + (x + y) * star x * star (y * star x) ≤    1 + x * star x * star (y * star x) + y * star x * star (y * star x)"    by (metis add_commute add_left_commute eq_iff distrib_right mult_assoc)  also have "… ≤ star x * star (y * star x)"    by (metis add_commute add_est1 add_left_commute ka18 plus_leI star_unfold_left x_less_star)  finally show "star (x + y) ≤ star x * star (y * star x)"    by (metis mult_1_right mult_assoc star3')next  show "star x * star (y * star x) ≤ star (x + y)"    by (metis add_assoc add_est1 add_est2 add_left_commute less_star mult_mono'      star_absorb_one star_absorb_one' star_idemp star_mono star_mult_idem zero_minimum)qedlemma ka22: "y * star x ≤ star x * star y ==>  star y * star x ≤ star x * star y"by (metis mult_assoc mult_right_mono plus_leI star3' star_mult_idem x_less_star zero_minimum)lemma ka23: "star y * star x ≤ star x * star y ==> y * star x ≤ star x * star y"by (metis less_star mult_right_mono order_trans zero_minimum)lemma ka24: "star (x + y) ≤ star (star x * star y)"by (metis add_est1 add_est2 less_add(1) mult_assoc order_def plus_leI star_absorb_one star_mono star_slide2 star_unfold2 star_unfold_left x_less_star)lemma ka25: "star y * star x ≤ star x * star y ==> star (star y * star x) ≤ star x * star y"proof -  assume "star y * star x ≤ star x * star y"  hence "∀x⇣1. star y * (star x * x⇣1) ≤ star x * (star y * x⇣1)" by (metis mult_assoc mult_right_mono zero_minimum)  hence "star y * (star x * star y) ≤ star x * star y" by (metis star_mult_idem)  hence "∃x⇣1. star (star y * star x) * star x⇣1 ≤ star x * star y" by (metis star_decomp star_idemp star_simulation_leq_2 star_slide)  hence "∃x⇣1≥star (star y * star x). x⇣1 ≤ star x * star y" by (metis x_less_star)  thus "star (star y * star x) ≤ star x * star y" by (metis order_trans)qedlemma church_rosser:   "star y * star x ≤ star x * star y ==> star (x + y) ≤ star x * star y"by (metis add_commute ka24 ka25 order_trans)lemma kleene_bubblesort: "y * x ≤ x * y ==> star (x + y) ≤ star x * star y"by (metis church_rosser star_simulation_leq_1 star_simulation_leq_2)lemma ka27: "star (x + star y) = star (x + y)"by (metis add_commute star_decomp star_idemp)lemma ka28: "star (star x + star y) = star (x + y)"by (metis add_commute ka27)lemma ka29: "(y * (1 + x) ≤ (1 + x) * star y) = (y * x ≤ (1 + x) * star y)"by (metis add_supremum distrib_right less_add(1) less_star mult.left_neutral mult.right_neutral order_trans distrib_left)lemma ka30: "star x * star y ≤ star (x + y)"by (metis mult_left_mono star_decomp star_mono x_less_star zero_minimum)lemma simple_simulation: "x * y = 0 ==> star x * y = y"by (metis mult.right_neutral mult_zero_right star_simulation star_zero)lemma ka32: "star (x * y) = 1 + x * star (y * x) * y"by (metis mult_assoc star_slide star_unfold_left)lemma ka33: "x * y + 1 ≤ y ==> star x ≤ y"by (metis add_commute mult.right_neutral star3')endsubsection {* Complete lattices are Kleene algebras *}lemma (in complete_lattice) SUP_upper':  assumes "l ≤ M i"  shows "l ≤ (SUP i. M i)"  using assms by (rule order_trans) (rule SUP_upper [OF UNIV_I])class kleene_by_complete_lattice = pre_kleene  + complete_lattice + power + star +  assumes star_cont: "a * star b * c = SUPR UNIV (λn. a * b ^ n * c)"beginsubclass kleeneproof  fix a x :: 'a    have [simp]: "1 ≤ star a"    unfolding star_cont[of 1 a 1, simplified]     by (subst power_0[symmetric]) (rule SUP_upper [OF UNIV_I])  have "a * star a ≤ star a"    using star_cont[of a a 1] star_cont[of 1 a 1]    by (auto simp add: power_Suc[symmetric] simp del: power_Suc      intro: SUP_least SUP_upper)  then show "1 + a * star a ≤ star a"    by simp  then show "1 + star a * a ≤ star a"    using star_cont[of a a 1] star_cont[of 1 a a]    by (simp add: power_commutes)  show "a * x ≤ x ==> star a * x ≤ x"  proof -    assume a: "a * x ≤ x"    {      fix n      have "a ^ (Suc n) * x ≤ a ^ n * x"      proof (induct n)        case 0 thus ?case by (simp add: a)      next        case (Suc n)        hence "a * (a ^ Suc n * x) ≤ a * (a ^ n * x)"          by (auto intro: mult_mono)        thus ?case          by (simp add: mult_assoc)      qed    }    note a = this        {      fix n have "a ^ n * x ≤ x"      proof (induct n)        case 0 show ?case by simp      next        case (Suc n) with a[of n]        show ?case by simp      qed    }    note b = this        show "star a * x ≤ x"      unfolding star_cont[of 1 a x, simplified]      by (rule SUP_least) (rule b)  qed  show "x * a ≤ x ==> x * star a ≤ x" (* symmetric *)  proof -    assume a: "x * a ≤ x"    {      fix n      have "x * a ^ (Suc n) ≤ x * a ^ n"      proof (induct n)        case 0 thus ?case by (simp add: a)      next        case (Suc n)        hence "(x * a ^ Suc n) * a  ≤ (x * a ^ n) * a"          by (auto intro: mult_mono)        thus ?case          by (simp add: power_commutes mult_assoc)      qed    }    note a = this        {      fix n have "x * a ^ n ≤ x"      proof (induct n)        case 0 show ?case by simp      next        case (Suc n) with a[of n]        show ?case by simp      qed    }    note b = this        show "x * star a ≤ x"      unfolding star_cont[of x a 1, simplified]      by (rule SUP_least) (rule b)  qedqedendsubsection {* Transitive closure *}context kleenebegindefinition  tcl_def: "tcl x = star x * x"lemma tcl_zero: "tcl 0 = 0"unfolding tcl_def by simplemma tcl_unfold_right: "tcl a = a + tcl a * a"by (metis star_slide2 star_unfold2 tcl_def)lemma less_tcl: "a ≤ tcl a"by (metis star_slide2 tcl_def x_less_star)endend`