(* Title: HOL/Library/Code_Target_Nat.thy Author: Florian Haftmann, TU Muenchen *) section ‹Implementation of natural numbers by target-language integers› theory Code_Target_Nat imports Code_Abstract_Nat begin subsection ‹Implementation for @{typ nat}› context includes natural.lifting integer.lifting begin lift_definition Nat :: "integer ⇒ nat" is nat . lemma [code_post]: "Nat 0 = 0" "Nat 1 = 1" "Nat (numeral k) = numeral k" by (transfer, simp)+ lemma [code_abbrev]: "integer_of_nat = of_nat" by transfer rule lemma [code_unfold]: "Int.nat (int_of_integer k) = nat_of_integer k" by transfer rule lemma [code abstype]: "Code_Target_Nat.Nat (integer_of_nat n) = n" by transfer simp lemma [code abstract]: "integer_of_nat (nat_of_integer k) = max 0 k" by transfer auto lemma [code_abbrev]: "nat_of_integer (numeral k) = nat_of_num k" by transfer (simp add: nat_of_num_numeral) lemma [code abstract]: "integer_of_nat (nat_of_num n) = integer_of_num n" by transfer (simp add: nat_of_num_numeral) lemma [code abstract]: "integer_of_nat 0 = 0" by transfer simp lemma [code abstract]: "integer_of_nat 1 = 1" by transfer simp lemma [code]: "Suc n = n + 1" by simp lemma [code abstract]: "integer_of_nat (m + n) = of_nat m + of_nat n" by transfer simp lemma [code abstract]: "integer_of_nat (m - n) = max 0 (of_nat m - of_nat n)" by transfer simp lemma [code abstract]: "integer_of_nat (m * n) = of_nat m * of_nat n" by transfer (simp add: of_nat_mult) lemma [code abstract]: "integer_of_nat (m div n) = of_nat m div of_nat n" by transfer (simp add: zdiv_int) lemma [code abstract]: "integer_of_nat (m mod n) = of_nat m mod of_nat n" by transfer (simp add: zmod_int) lemma [code]: "Divides.divmod_nat m n = (m div n, m mod n)" by (fact divmod_nat_div_mod) lemma [code]: "divmod m n = map_prod nat_of_integer nat_of_integer (divmod m n)" by (simp only: prod_eq_iff divmod_def map_prod_def case_prod_beta fst_conv snd_conv) (transfer, simp_all only: nat_div_distrib nat_mod_distrib zero_le_numeral nat_numeral) lemma [code]: "HOL.equal m n = HOL.equal (of_nat m :: integer) (of_nat n)" by transfer (simp add: equal) lemma [code]: "m ≤ n ⟷ (of_nat m :: integer) ≤ of_nat n" by simp lemma [code]: "m < n ⟷ (of_nat m :: integer) < of_nat n" by simp lemma num_of_nat_code [code]: "num_of_nat = num_of_integer ∘ of_nat" by transfer (simp add: fun_eq_iff) end lemma (in semiring_1) of_nat_code_if: "of_nat n = (if n = 0 then 0 else let (m, q) = Divides.divmod_nat n 2; m' = 2 * of_nat m in if q = 0 then m' else m' + 1)" proof - from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp show ?thesis by (simp add: Let_def divmod_nat_div_mod of_nat_add [symmetric]) (simp add: * mult.commute of_nat_mult add.commute) qed declare of_nat_code_if [code] definition int_of_nat :: "nat ⇒ int" where [code_abbrev]: "int_of_nat = of_nat" lemma [code]: "int_of_nat n = int_of_integer (of_nat n)" by (simp add: int_of_nat_def) lemma [code abstract]: "integer_of_nat (nat k) = max 0 (integer_of_int k)" including integer.lifting by transfer auto lemma term_of_nat_code [code]: ― ‹Use @{term Code_Numeral.nat_of_integer} in term reconstruction instead of @{term Code_Target_Nat.Nat} such that reconstructed terms can be fed back to the code generator› "term_of_class.term_of n = Code_Evaluation.App (Code_Evaluation.Const (STR ''Code_Numeral.nat_of_integer'') (typerep.Typerep (STR ''fun'') [typerep.Typerep (STR ''Code_Numeral.integer'') [], typerep.Typerep (STR ''Nat.nat'') []])) (term_of_class.term_of (integer_of_nat n))" by (simp add: term_of_anything) lemma nat_of_integer_code_post [code_post]: "nat_of_integer 0 = 0" "nat_of_integer 1 = 1" "nat_of_integer (numeral k) = numeral k" including integer.lifting by (transfer, simp)+ code_identifier code_module Code_Target_Nat ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith end