Theory Abs_Int2

theory Abs_Int2
imports Abs_Int1
(* Author: Tobias Nipkow *)

theory Abs_Int2
imports Abs_Int1
begin

instantiation prod :: (order,order) order
begin

definition "less_eq_prod p1 p2 = (fst p1 ≤ fst p2 ∧ snd p1 ≤ snd p2)"
definition "less_prod p1 p2 = (p1 ≤ p2 ∧ ¬ p2 ≤ (p1::'a*'b))"

instance
proof
case goal1 show ?case by(rule less_prod_def)
next
case goal2 show ?case by(simp add: less_eq_prod_def)
next
case goal3 thus ?case unfolding less_eq_prod_def by(metis order_trans)
next
case goal4 thus ?case by(simp add: less_eq_prod_def)(metis eq_iff surjective_pairing)
qed

end


subsection "Backward Analysis of Expressions"

subclass (in bounded_lattice) semilattice_sup_top ..

locale Val_lattice_gamma = Gamma_semilattice where γ = γ
for γ :: "'av::bounded_lattice => val set" +
assumes inter_gamma_subset_gamma_inf:
"γ a1 ∩ γ a2 ⊆ γ(a1 \<sqinter> a2)"
and gamma_bot[simp]: "γ ⊥ = {}"
begin

lemma in_gamma_inf: "x : γ a1 ==> x : γ a2 ==> x : γ(a1 \<sqinter> a2)"
by (metis IntI inter_gamma_subset_gamma_inf set_mp)

lemma gamma_inf: "γ(a1 \<sqinter> a2) = γ a1 ∩ γ a2"
by(rule equalityI[OF _ inter_gamma_subset_gamma_inf])
(metis inf_le1 inf_le2 le_inf_iff mono_gamma)

end


locale Val_inv = Val_lattice_gamma where γ = γ
for γ :: "'av::bounded_lattice => val set" +
fixes test_num' :: "val => 'av => bool"
and inv_plus' :: "'av => 'av => 'av => 'av * 'av"
and inv_less' :: "bool => 'av => 'av => 'av * 'av"
assumes test_num': "test_num' i a = (i : γ a)"
and inv_plus': "inv_plus' a a1 a2 = (a1',a2') ==>
i1 : γ a1 ==> i2 : γ a2 ==> i1+i2 : γ a ==> i1 : γ a1' ∧ i2 : γ a2'"

and inv_less': "inv_less' (i1<i2) a1 a2 = (a1',a2') ==>
i1 : γ a1 ==> i2 : γ a2 ==> i1 : γ a1' ∧ i2 : γ a2'"



locale Abs_Int_inv = Val_inv where γ = γ
for γ :: "'av::bounded_lattice => val set"
begin

lemma in_gamma_sup_UpI:
"s : γo S1 ∨ s : γo S2 ==> s : γo(S1 \<squnion> S2)"
by (metis (hide_lams, no_types) sup_ge1 sup_ge2 mono_gamma_o subsetD)

fun aval'' :: "aexp => 'av st option => 'av" where
"aval'' e None = ⊥" |
"aval'' e (Some S) = aval' e S"

lemma aval''_correct: "s : γo S ==> aval a s : γ(aval'' a S)"
by(cases S)(auto simp add: aval'_correct split: option.splits)

subsubsection "Backward analysis"

fun inv_aval'' :: "aexp => 'av => 'av st option => 'av st option" where
"inv_aval'' (N n) a S = (if test_num' n a then S else None)" |
"inv_aval'' (V x) a S = (case S of None => None | Some S =>
let a' = fun S x \<sqinter> a in
if a' = ⊥ then None else Some(update S x a'))"
|
"inv_aval'' (Plus e1 e2) a S =
(let (a1,a2) = inv_plus' a (aval'' e1 S) (aval'' e2 S)
in inv_aval'' e1 a1 (inv_aval'' e2 a2 S))"


text{* The test for @{const bot} in the @{const V}-case is important: @{const
bot} indicates that a variable has no possible values, i.e.\ that the current
program point is unreachable. But then the abstract state should collapse to
@{const None}. Put differently, we maintain the invariant that in an abstract
state of the form @{term"Some s"}, all variables are mapped to non-@{const
bot} values. Otherwise the (pointwise) sup of two abstract states, one of
which contains @{const bot} values, may produce too large a result, thus
making the analysis less precise. *}



fun inv_bval'' :: "bexp => bool => 'av st option => 'av st option" where
"inv_bval'' (Bc v) res S = (if v=res then S else None)" |
"inv_bval'' (Not b) res S = inv_bval'' b (¬ res) S" |
"inv_bval'' (And b1 b2) res S =
(if res then inv_bval'' b1 True (inv_bval'' b2 True S)
else inv_bval'' b1 False S \<squnion> inv_bval'' b2 False S)"
|
"inv_bval'' (Less e1 e2) res S =
(let (a1,a2) = inv_less' res (aval'' e1 S) (aval'' e2 S)
in inv_aval'' e1 a1 (inv_aval'' e2 a2 S))"


lemma inv_aval''_correct: "s : γo S ==> aval e s : γ a ==> s : γo (inv_aval'' e a S)"
proof(induction e arbitrary: a S)
case N thus ?case by simp (metis test_num')
next
case (V x)
obtain S' where "S = Some S'" and "s : γs S'" using `s : γo S`
by(auto simp: in_gamma_option_iff)
moreover hence "s x : γ (fun S' x)"
by(simp add: γ_st_def)
moreover have "s x : γ a" using V(2) by simp
ultimately show ?case
by(simp add: Let_def γ_st_def)
(metis mono_gamma emptyE in_gamma_inf gamma_bot subset_empty)
next
case (Plus e1 e2) thus ?case
using inv_plus'[OF _ aval''_correct aval''_correct]
by (auto split: prod.split)
qed

lemma inv_bval''_correct: "s : γo S ==> bv = bval b s ==> s : γo(inv_bval'' b bv S)"
proof(induction b arbitrary: S bv)
case Bc thus ?case by simp
next
case (Not b) thus ?case by simp
next
case (And b1 b2) thus ?case
by simp (metis And(1) And(2) in_gamma_sup_UpI)
next
case (Less e1 e2) thus ?case
by(auto split: prod.split)
(metis (lifting) inv_aval''_correct aval''_correct inv_less')
qed

definition "step' = Step
(λx e S. case S of None => None | Some S => Some(update S x (aval' e S)))
(λb S. inv_bval'' b True S)"


definition AI :: "com => 'av st option acom option" where
"AI c = pfp (step' \<top>) (bot c)"

lemma strip_step'[simp]: "strip(step' S c) = strip c"
by(simp add: step'_def)

lemma top_on_inv_aval'': "[| top_on_opt S X; vars e ⊆ -X |] ==> top_on_opt (inv_aval'' e a S) X"
by(induction e arbitrary: a S) (auto simp: Let_def split: option.splits prod.split)

lemma top_on_inv_bval'': "[|top_on_opt S X; vars b ⊆ -X|] ==> top_on_opt (inv_bval'' b r S) X"
by(induction b arbitrary: r S) (auto simp: top_on_inv_aval'' top_on_sup split: prod.split)

lemma top_on_step': "top_on_acom C (- vars C) ==> top_on_acom (step' \<top> C) (- vars C)"
unfolding step'_def
by(rule top_on_Step)
(auto simp add: top_on_top top_on_inv_bval'' split: option.split)

subsubsection "Correctness"

lemma step_step': "step (γo S) (γc C) ≤ γc (step' S C)"
unfolding step_def step'_def
by(rule gamma_Step_subcomm)
(auto simp: intro!: aval'_correct inv_bval''_correct in_gamma_update split: option.splits)

lemma AI_correct: "AI c = Some C ==> CS c ≤ γc C"
proof(simp add: CS_def AI_def)
assume 1: "pfp (step' \<top>) (bot c) = Some C"
have pfp': "step' \<top> C ≤ C" by(rule pfp_pfp[OF 1])
have 2: "step (γo \<top>) (γc C) ≤ γc C" --"transfer the pfp'"
proof(rule order_trans)
show "step (γo \<top>) (γc C) ≤ γc (step' \<top> C)" by(rule step_step')
show "... ≤ γc C" by (metis mono_gamma_c[OF pfp'])
qed
have 3: "strip (γc C) = c" by(simp add: strip_pfp[OF _ 1] step'_def)
have "lfp c (step (γo \<top>)) ≤ γc C"
by(rule lfp_lowerbound[simplified,where f="step (γo \<top>)", OF 3 2])
thus "lfp c (step UNIV) ≤ γc C" by simp
qed

end


subsubsection "Monotonicity"

locale Abs_Int_inv_mono = Abs_Int_inv +
assumes mono_plus': "a1 ≤ b1 ==> a2 ≤ b2 ==> plus' a1 a2 ≤ plus' b1 b2"
and mono_inv_plus': "a1 ≤ b1 ==> a2 ≤ b2 ==> r ≤ r' ==>
inv_plus' r a1 a2 ≤ inv_plus' r' b1 b2"

and mono_inv_less': "a1 ≤ b1 ==> a2 ≤ b2 ==>
inv_less' bv a1 a2 ≤ inv_less' bv b1 b2"

begin

lemma mono_aval':
"S1 ≤ S2 ==> aval' e S1 ≤ aval' e S2"
by(induction e) (auto simp: mono_plus' mono_fun)

lemma mono_aval'':
"S1 ≤ S2 ==> aval'' e S1 ≤ aval'' e S2"
apply(cases S1)
apply simp
apply(cases S2)
apply simp
by (simp add: mono_aval')

lemma mono_inv_aval'': "r1 ≤ r2 ==> S1 ≤ S2 ==> inv_aval'' e r1 S1 ≤ inv_aval'' e r2 S2"
apply(induction e arbitrary: r1 r2 S1 S2)
apply(auto simp: test_num' Let_def inf_mono split: option.splits prod.splits)
apply (metis mono_gamma subsetD)
apply (metis le_bot inf_mono le_st_iff)
apply (metis inf_mono mono_update le_st_iff)
apply(metis mono_aval'' mono_inv_plus'[simplified less_eq_prod_def] fst_conv snd_conv)
done

lemma mono_inv_bval'': "S1 ≤ S2 ==> inv_bval'' b bv S1 ≤ inv_bval'' b bv S2"
apply(induction b arbitrary: bv S1 S2)
apply(simp)
apply(simp)
apply simp
apply(metis order_trans[OF _ sup_ge1] order_trans[OF _ sup_ge2])
apply (simp split: prod.splits)
apply(metis mono_aval'' mono_inv_aval'' mono_inv_less'[simplified less_eq_prod_def] fst_conv snd_conv)
done

theorem mono_step': "S1 ≤ S2 ==> C1 ≤ C2 ==> step' S1 C1 ≤ step' S2 C2"
unfolding step'_def
by(rule mono2_Step) (auto simp: mono_aval' mono_inv_bval'' split: option.split)

lemma mono_step'_top: "C1 ≤ C2 ==> step' \<top> C1 ≤ step' \<top> C2"
by (metis mono_step' order_refl)

end

end