# Theory Abs_Int0_ITP

theory Abs_Int0_ITP
imports While_Combinator Collecting_ITP
```(* Author: Tobias Nipkow *)

theory Abs_Int0_ITP
imports
"~~/src/HOL/Library/While_Combinator"
Collecting_ITP
begin

subsection "Orderings"

class preord =
fixes le :: "'a ⇒ 'a ⇒ bool" (infix "⊑" 50)
assumes le_refl[simp]: "x ⊑ x"
and le_trans: "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z"
begin

definition mono where "mono f = (∀x y. x ⊑ y ⟶ f x ⊑ f y)"

lemma monoD: "mono f ⟹ x ⊑ y ⟹ f x ⊑ f y" by(simp add: mono_def)

lemma mono_comp: "mono f ⟹ mono g ⟹ mono (g o f)"

declare le_trans[trans]

end

text{* Note: no antisymmetry. Allows implementations where some abstract
element is implemented by two different values @{prop "x ≠ y"}
such that @{prop"x ⊑ y"} and @{prop"y ⊑ x"}. Antisymmetry is not
needed because we never compare elements for equality but only for @{text"⊑"}.
*}

class SL_top = preord +
fixes join :: "'a ⇒ 'a ⇒ 'a" (infixl "⊔" 65)
fixes Top :: "'a" ("⊤")
assumes join_ge1 [simp]: "x ⊑ x ⊔ y"
and join_ge2 [simp]: "y ⊑ x ⊔ y"
and join_least: "x ⊑ z ⟹ y ⊑ z ⟹ x ⊔ y ⊑ z"
and top[simp]: "x ⊑ ⊤"
begin

lemma join_le_iff[simp]: "x ⊔ y ⊑ z ⟷ x ⊑ z ∧ y ⊑ z"
by (metis join_ge1 join_ge2 join_least le_trans)

lemma le_join_disj: "x ⊑ y ∨ x ⊑ z ⟹ x ⊑ y ⊔ z"
by (metis join_ge1 join_ge2 le_trans)

end

instantiation "fun" :: (type, SL_top) SL_top
begin

definition "f ⊑ g = (ALL x. f x ⊑ g x)"
definition "f ⊔ g = (λx. f x ⊔ g x)"
definition "⊤ = (λx. ⊤)"

lemma join_apply[simp]: "(f ⊔ g) x = f x ⊔ g x"
by (simp add: join_fun_def)

instance
proof
case goal2 thus ?case by (metis le_fun_def preord_class.le_trans)
qed (simp_all add: le_fun_def Top_fun_def)

end

instantiation acom :: (preord) preord
begin

fun le_acom :: "('a::preord)acom ⇒ 'a acom ⇒ bool" where
"le_acom (SKIP {S}) (SKIP {S'}) = (S ⊑ S')" |
"le_acom (x ::= e {S}) (x' ::= e' {S'}) = (x=x' ∧ e=e' ∧ S ⊑ S')" |
"le_acom (c1;;c2) (c1';;c2') = (le_acom c1 c1' ∧ le_acom c2 c2')" |
"le_acom (IF b THEN c1 ELSE c2 {S}) (IF b' THEN c1' ELSE c2' {S'}) =
(b=b' ∧ le_acom c1 c1' ∧ le_acom c2 c2' ∧ S ⊑ S')" |
"le_acom ({Inv} WHILE b DO c {P}) ({Inv'} WHILE b' DO c' {P'}) =
(b=b' ∧ le_acom c c' ∧ Inv ⊑ Inv' ∧ P ⊑ P')" |
"le_acom _ _ = False"

lemma [simp]: "SKIP {S} ⊑ c ⟷ (∃S'. c = SKIP {S'} ∧ S ⊑ S')"
by (cases c) auto

lemma [simp]: "x ::= e {S} ⊑ c ⟷ (∃S'. c = x ::= e {S'} ∧ S ⊑ S')"
by (cases c) auto

lemma [simp]: "c1;;c2 ⊑ c ⟷ (∃c1' c2'. c = c1';;c2' ∧ c1 ⊑ c1' ∧ c2 ⊑ c2')"
by (cases c) auto

lemma [simp]: "IF b THEN c1 ELSE c2 {S} ⊑ c ⟷
(∃c1' c2' S'. c = IF b THEN c1' ELSE c2' {S'} ∧ c1 ⊑ c1' ∧ c2 ⊑ c2' ∧ S ⊑ S')"
by (cases c) auto

lemma [simp]: "{Inv} WHILE b DO c {P} ⊑ w ⟷
(∃Inv' c' P'. w = {Inv'} WHILE b DO c' {P'} ∧ c ⊑ c' ∧ Inv ⊑ Inv' ∧ P ⊑ P')"
by (cases w) auto

instance
proof
case goal1 thus ?case by (induct x) auto
next
case goal2 thus ?case
apply(induct x y arbitrary: z rule: le_acom.induct)
apply (auto intro: le_trans)
done
qed

end

subsubsection "Lifting"

instantiation option :: (preord)preord
begin

fun le_option where
"Some x ⊑ Some y = (x ⊑ y)" |
"None ⊑ y = True" |
"Some _ ⊑ None = False"

lemma [simp]: "(x ⊑ None) = (x = None)"
by (cases x) simp_all

lemma [simp]: "(Some x ⊑ u) = (∃y. u = Some y & x ⊑ y)"
by (cases u) auto

instance proof
case goal1 show ?case by(cases x, simp_all)
next
case goal2 thus ?case
by(cases z, simp, cases y, simp, cases x, auto intro: le_trans)
qed

end

instantiation option :: (SL_top)SL_top
begin

fun join_option where
"Some x ⊔ Some y = Some(x ⊔ y)" |
"None ⊔ y = y" |
"x ⊔ None = x"

lemma join_None2[simp]: "x ⊔ None = x"
by (cases x) simp_all

definition "⊤ = Some ⊤"

instance proof
case goal1 thus ?case by(cases x, simp, cases y, simp_all)
next
case goal2 thus ?case by(cases y, simp, cases x, simp_all)
next
case goal3 thus ?case by(cases z, simp, cases y, simp, cases x, simp_all)
next
case goal4 thus ?case by(cases x, simp_all add: Top_option_def)
qed

end

definition bot_acom :: "com ⇒ ('a::SL_top)option acom" ("⊥⇩c") where
"⊥⇩c = anno None"

lemma strip_bot_acom[simp]: "strip(⊥⇩c c) = c"

lemma bot_acom[rule_format]: "strip c' = c ⟶ ⊥⇩c c ⊑ c'"
apply(induct c arbitrary: c')
apply (simp_all add: bot_acom_def)
apply(induct_tac c')
apply simp_all
apply(induct_tac c')
apply simp_all
apply(induct_tac c')
apply simp_all
apply(induct_tac c')
apply simp_all
apply(induct_tac c')
apply simp_all
done

subsubsection "Post-fixed point iteration"

definition
pfp :: "(('a::preord) ⇒ 'a) ⇒ 'a ⇒ 'a option" where
"pfp f = while_option (λx. ¬ f x ⊑ x) f"

lemma pfp_pfp: assumes "pfp f x0 = Some x" shows "f x ⊑ x"
using while_option_stop[OF assms[simplified pfp_def]] by simp

lemma pfp_least:
assumes mono: "⋀x y. x ⊑ y ⟹ f x ⊑ f y"
and "f p ⊑ p" and "x0 ⊑ p" and "pfp f x0 = Some x" shows "x ⊑ p"
proof-
{ fix x assume "x ⊑ p"
hence  "f x ⊑ f p" by(rule mono)
from this `f p ⊑ p` have "f x ⊑ p" by(rule le_trans)
}
thus "x ⊑ p" using assms(2-) while_option_rule[where P = "%x. x ⊑ p"]
unfolding pfp_def by blast
qed

definition
lpfp⇩c :: "(('a::SL_top)option acom ⇒ 'a option acom) ⇒ com ⇒ 'a option acom option" where
"lpfp⇩c f c = pfp f (⊥⇩c c)"

lemma lpfpc_pfp: "lpfp⇩c f c0 = Some c ⟹ f c ⊑ c"
by(simp add: pfp_pfp lpfp⇩c_def)

lemma strip_pfp:
assumes "⋀x. g(f x) = g x" and "pfp f x0 = Some x" shows "g x = g x0"
using assms while_option_rule[where P = "%x. g x = g x0" and c = f]
unfolding pfp_def by metis

lemma strip_lpfpc: assumes "⋀c. strip(f c) = strip c" and "lpfp⇩c f c = Some c'"
shows "strip c' = c"
using assms(1) strip_pfp[OF _ assms(2)[simplified lpfp⇩c_def]]
by(metis strip_bot_acom)

lemma lpfpc_least:
assumes mono: "⋀x y. x ⊑ y ⟹ f x ⊑ f y"
and "strip p = c0" and "f p ⊑ p" and lp: "lpfp⇩c f c0 = Some c" shows "c ⊑ p"
using pfp_least[OF _ _ bot_acom[OF `strip p = c0`] lp[simplified lpfp⇩c_def]]
mono `f p ⊑ p`
by blast

subsection "Abstract Interpretation"

definition γ_fun :: "('a ⇒ 'b set) ⇒ ('c ⇒ 'a) ⇒ ('c ⇒ 'b)set" where
"γ_fun γ F = {f. ∀x. f x ∈ γ(F x)}"

fun γ_option :: "('a ⇒ 'b set) ⇒ 'a option ⇒ 'b set" where
"γ_option γ None = {}" |
"γ_option γ (Some a) = γ a"

text{* The interface for abstract values: *}

locale Val_abs =
fixes γ :: "'av::SL_top ⇒ val set"
assumes mono_gamma: "a ⊑ b ⟹ γ a ⊆ γ b"
and gamma_Top[simp]: "γ ⊤ = UNIV"
fixes num' :: "val ⇒ 'av"
and plus' :: "'av ⇒ 'av ⇒ 'av"
assumes gamma_num': "n : γ(num' n)"
and gamma_plus':
"n1 : γ a1 ⟹ n2 : γ a2 ⟹ n1+n2 : γ(plus' a1 a2)"

type_synonym 'av st = "(vname ⇒ 'av)"

locale Abs_Int_Fun = Val_abs γ for γ :: "'av::SL_top ⇒ val set"
begin

fun aval' :: "aexp ⇒ 'av st ⇒ 'av" where
"aval' (N n) S = num' n" |
"aval' (V x) S = S x" |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"

fun step' :: "'av st option ⇒ 'av st option acom ⇒ 'av st option acom"
where
"step' S (SKIP {P}) = (SKIP {S})" |
"step' S (x ::= e {P}) =
x ::= e {case S of None ⇒ None | Some S ⇒ Some(S(x := aval' e S))}" |
"step' S (c1;; c2) = step' S c1;; step' (post c1) c2" |
"step' S (IF b THEN c1 ELSE c2 {P}) =
IF b THEN step' S c1 ELSE step' S c2 {post c1 ⊔ post c2}" |
"step' S ({Inv} WHILE b DO c {P}) =
{S ⊔ post c} WHILE b DO (step' Inv c) {Inv}"

definition AI :: "com ⇒ 'av st option acom option" where
"AI = lpfp⇩c (step' ⊤)"

lemma strip_step'[simp]: "strip(step' S c) = strip c"
by(induct c arbitrary: S) (simp_all add: Let_def)

abbreviation γ⇩f :: "'av st ⇒ state set"
where "γ⇩f == γ_fun γ"

abbreviation γ⇩o :: "'av st option ⇒ state set"
where "γ⇩o == γ_option γ⇩f"

abbreviation γ⇩c :: "'av st option acom ⇒ state set acom"
where "γ⇩c == map_acom γ⇩o"

lemma gamma_f_Top[simp]: "γ⇩f Top = UNIV"
by(simp add: Top_fun_def γ_fun_def)

lemma gamma_o_Top[simp]: "γ⇩o Top = UNIV"
by (simp add: Top_option_def)

(* FIXME (maybe also le → sqle?) *)

lemma mono_gamma_f: "f ⊑ g ⟹ γ⇩f f ⊆ γ⇩f g"
by(auto simp: le_fun_def γ_fun_def dest: mono_gamma)

lemma mono_gamma_o:
"sa ⊑ sa' ⟹ γ⇩o sa ⊆ γ⇩o sa'"
by(induction sa sa' rule: le_option.induct)(simp_all add: mono_gamma_f)

lemma mono_gamma_c: "ca ⊑ ca' ⟹ γ⇩c ca ≤ γ⇩c ca'"
by (induction ca ca' rule: le_acom.induct) (simp_all add:mono_gamma_o)

text{* Soundness: *}

lemma aval'_sound: "s : γ⇩f S ⟹ aval a s : γ(aval' a S)"
by (induct a) (auto simp: gamma_num' gamma_plus' γ_fun_def)

lemma in_gamma_update:
"⟦ s : γ⇩f S; i : γ a ⟧ ⟹ s(x := i) : γ⇩f(S(x := a))"

lemma step_preserves_le:
"⟦ S ⊆ γ⇩o S'; c ≤ γ⇩c c' ⟧ ⟹ step S c ≤ γ⇩c (step' S' c')"
proof(induction c arbitrary: c' S S')
case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP)
next
case Assign thus ?case
by (fastforce simp: Assign_le  map_acom_Assign intro: aval'_sound in_gamma_update
split: option.splits del:subsetD)
next
case Seq thus ?case apply (auto simp: Seq_le map_acom_Seq)
by (metis le_post post_map_acom)
next
case (If b c1 c2 P)
then obtain c1' c2' P' where
"c' = IF b THEN c1' ELSE c2' {P'}"
"P ⊆ γ⇩o P'" "c1 ≤ γ⇩c c1'" "c2 ≤ γ⇩c c2'"
by (fastforce simp: If_le map_acom_If)
moreover have "post c1 ⊆ γ⇩o(post c1' ⊔ post c2')"
by (metis (no_types) `c1 ≤ γ⇩c c1'` join_ge1 le_post mono_gamma_o order_trans post_map_acom)
moreover have "post c2 ⊆ γ⇩o(post c1' ⊔ post c2')"
by (metis (no_types) `c2 ≤ γ⇩c c2'` join_ge2 le_post mono_gamma_o order_trans post_map_acom)
ultimately show ?case using `S ⊆ γ⇩o S'` by (simp add: If.IH subset_iff)
next
case (While I b c1 P)
then obtain c1' I' P' where
"c' = {I'} WHILE b DO c1' {P'}"
"I ⊆ γ⇩o I'" "P ⊆ γ⇩o P'" "c1 ≤ γ⇩c c1'"
by (fastforce simp: map_acom_While While_le)
moreover have "S ∪ post c1 ⊆ γ⇩o (S' ⊔ post c1')"
using `S ⊆ γ⇩o S'` le_post[OF `c1 ≤ γ⇩c c1'`, simplified]
by (metis (no_types) join_ge1 join_ge2 le_sup_iff mono_gamma_o order_trans)
ultimately show ?case by (simp add: While.IH subset_iff)
qed

lemma AI_sound: "AI c = Some c' ⟹ CS c ≤ γ⇩c c'"
proof(simp add: CS_def AI_def)
assume 1: "lpfp⇩c (step' ⊤) c = Some c'"
have 2: "step' ⊤ c' ⊑ c'" by(rule lpfpc_pfp[OF 1])
have 3: "strip (γ⇩c (step' ⊤ c')) = c"
by(simp add: strip_lpfpc[OF _ 1])
have "lfp (step UNIV) c ≤ γ⇩c (step' ⊤ c')"
proof(rule lfp_lowerbound[simplified,OF 3])
show "step UNIV (γ⇩c (step' ⊤ c')) ≤ γ⇩c (step' ⊤ c')"
proof(rule step_preserves_le[OF _ _])
show "UNIV ⊆ γ⇩o ⊤" by simp
show "γ⇩c (step' ⊤ c') ≤ γ⇩c c'" by(rule mono_gamma_c[OF 2])
qed
qed
with 2 show "lfp (step UNIV) c ≤ γ⇩c c'"
by (blast intro: mono_gamma_c order_trans)
qed

end

subsubsection "Monotonicity"

lemma mono_post: "c ⊑ c' ⟹ post c ⊑ post c'"
by(induction c c' rule: le_acom.induct) (auto)

locale Abs_Int_Fun_mono = Abs_Int_Fun +
assumes mono_plus': "a1 ⊑ b1 ⟹ a2 ⊑ b2 ⟹ plus' a1 a2 ⊑ plus' b1 b2"
begin

lemma mono_aval': "S ⊑ S' ⟹ aval' e S ⊑ aval' e S'"
by(induction e)(auto simp: le_fun_def mono_plus')

lemma mono_update: "a ⊑ a' ⟹ S ⊑ S' ⟹ S(x := a) ⊑ S'(x := a')"

lemma mono_step': "S ⊑ S' ⟹ c ⊑ c' ⟹ step' S c ⊑ step' S' c'"
apply(induction c c' arbitrary: S S' rule: le_acom.induct)
apply (auto simp: Let_def mono_update mono_aval' mono_post le_join_disj
split: option.split)
done

end

text{* Problem: not executable because of the comparison of abstract states,
i.e. functions, in the post-fixedpoint computation. *}

end
```