Theory OG_Tactics

theory OG_Tactics
imports OG_Hoare
header {* \section{Generation of Verification Conditions} *}

theory OG_Tactics
imports OG_Hoare
begin

lemmas ann_hoare_intros=AnnBasic AnnSeq AnnCond1 AnnCond2 AnnWhile AnnAwait AnnConseq
lemmas oghoare_intros=Parallel Basic Seq Cond While Conseq

lemma ParallelConseqRule:
"[| p ⊆ (\<Inter>i∈{i. i<length Ts}. pre(the(com(Ts ! i))));
\<parallel>- (\<Inter>i∈{i. i<length Ts}. pre(the(com(Ts ! i))))
(Parallel Ts)
(\<Inter>i∈{i. i<length Ts}. post(Ts ! i));
(\<Inter>i∈{i. i<length Ts}. post(Ts ! i)) ⊆ q |]
==> \<parallel>- p (Parallel Ts) q"

apply (rule Conseq)
prefer 2
apply fast
apply assumption+
done

lemma SkipRule: "p ⊆ q ==> \<parallel>- p (Basic id) q"
apply(rule oghoare_intros)
prefer 2 apply(rule Basic)
prefer 2 apply(rule subset_refl)
apply(simp add:Id_def)
done

lemma BasicRule: "p ⊆ {s. (f s)∈q} ==> \<parallel>- p (Basic f) q"
apply(rule oghoare_intros)
prefer 2 apply(rule oghoare_intros)
prefer 2 apply(rule subset_refl)
apply assumption
done

lemma SeqRule: "[| \<parallel>- p c1 r; \<parallel>- r c2 q |] ==> \<parallel>- p (Seq c1 c2) q"
apply(rule Seq)
apply fast+
done

lemma CondRule:
"[| p ⊆ {s. (s∈b --> s∈w) ∧ (s∉b --> s∈w')}; \<parallel>- w c1 q; \<parallel>- w' c2 q |]
==> \<parallel>- p (Cond b c1 c2) q"

apply(rule Cond)
apply(rule Conseq)
prefer 4 apply(rule Conseq)
apply simp_all
apply force+
done

lemma WhileRule: "[| p ⊆ i; \<parallel>- (i ∩ b) c i ; (i ∩ (-b)) ⊆ q |]
==> \<parallel>- p (While b i c) q"

apply(rule Conseq)
prefer 2 apply(rule While)
apply assumption+
done

text {* Three new proof rules for special instances of the @{text
AnnBasic} and the @{text AnnAwait} commands when the transformation
performed on the state is the identity, and for an @{text AnnAwait}
command where the boolean condition is @{text "{s. True}"}: *}


lemma AnnatomRule:
"[| atom_com(c); \<parallel>- r c q |] ==> \<turnstile> (AnnAwait r {s. True} c) q"
apply(rule AnnAwait)
apply simp_all
done

lemma AnnskipRule:
"r ⊆ q ==> \<turnstile> (AnnBasic r id) q"
apply(rule AnnBasic)
apply simp
done

lemma AnnwaitRule:
"[| (r ∩ b) ⊆ q |] ==> \<turnstile> (AnnAwait r b (Basic id)) q"
apply(rule AnnAwait)
apply simp
apply(rule BasicRule)
apply simp
done

text {* Lemmata to avoid using the definition of @{text
map_ann_hoare}, @{text interfree_aux}, @{text interfree_swap} and
@{text interfree} by splitting it into different cases: *}


lemma interfree_aux_rule1: "interfree_aux(co, q, None)"
by(simp add:interfree_aux_def)

lemma interfree_aux_rule2:
"∀(R,r)∈(atomics a). \<parallel>- (q ∩ R) r q ==> interfree_aux(None, q, Some a)"
apply(simp add:interfree_aux_def)
apply(force elim:oghoare_sound)
done

lemma interfree_aux_rule3:
"(∀(R, r)∈(atomics a). \<parallel>- (q ∩ R) r q ∧ (∀p∈(assertions c). \<parallel>- (p ∩ R) r p))
==> interfree_aux(Some c, q, Some a)"

apply(simp add:interfree_aux_def)
apply(force elim:oghoare_sound)
done

lemma AnnBasic_assertions:
"[|interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)|] ==>
interfree_aux(Some (AnnBasic r f), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnSeq_assertions:
"[| interfree_aux(Some c1, q, Some a); interfree_aux(Some c2, q, Some a)|]==>
interfree_aux(Some (AnnSeq c1 c2), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnCond1_assertions:
"[| interfree_aux(None, r, Some a); interfree_aux(Some c1, q, Some a);
interfree_aux(Some c2, q, Some a)|]==>
interfree_aux(Some(AnnCond1 r b c1 c2), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnCond2_assertions:
"[| interfree_aux(None, r, Some a); interfree_aux(Some c, q, Some a)|]==>
interfree_aux(Some (AnnCond2 r b c), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnWhile_assertions:
"[| interfree_aux(None, r, Some a); interfree_aux(None, i, Some a);
interfree_aux(Some c, q, Some a)|]==>
interfree_aux(Some (AnnWhile r b i c), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnAwait_assertions:
"[| interfree_aux(None, r, Some a); interfree_aux(None, q, Some a)|]==>
interfree_aux(Some (AnnAwait r b c), q, Some a)"

apply(simp add: interfree_aux_def)
by force

lemma AnnBasic_atomics:
"\<parallel>- (q ∩ r) (Basic f) q ==> interfree_aux(None, q, Some (AnnBasic r f))"
by(simp add: interfree_aux_def oghoare_sound)

lemma AnnSeq_atomics:
"[| interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)|]==>
interfree_aux(Any, q, Some (AnnSeq a1 a2))"

apply(simp add: interfree_aux_def)
by force

lemma AnnCond1_atomics:
"[| interfree_aux(Any, q, Some a1); interfree_aux(Any, q, Some a2)|]==>
interfree_aux(Any, q, Some (AnnCond1 r b a1 a2))"

apply(simp add: interfree_aux_def)
by force

lemma AnnCond2_atomics:
"interfree_aux (Any, q, Some a)==> interfree_aux(Any, q, Some (AnnCond2 r b a))"
by(simp add: interfree_aux_def)

lemma AnnWhile_atomics: "interfree_aux (Any, q, Some a)
==> interfree_aux(Any, q, Some (AnnWhile r b i a))"

by(simp add: interfree_aux_def)

lemma Annatom_atomics:
"\<parallel>- (q ∩ r) a q ==> interfree_aux (None, q, Some (AnnAwait r {x. True} a))"
by(simp add: interfree_aux_def oghoare_sound)

lemma AnnAwait_atomics:
"\<parallel>- (q ∩ (r ∩ b)) a q ==> interfree_aux (None, q, Some (AnnAwait r b a))"
by(simp add: interfree_aux_def oghoare_sound)

definition interfree_swap :: "('a ann_triple_op * ('a ann_triple_op) list) => bool" where
"interfree_swap == λ(x, xs). ∀y∈set xs. interfree_aux (com x, post x, com y)
∧ interfree_aux(com y, post y, com x)"


lemma interfree_swap_Empty: "interfree_swap (x, [])"
by(simp add:interfree_swap_def)

lemma interfree_swap_List:
"[| interfree_aux (com x, post x, com y);
interfree_aux (com y, post y ,com x); interfree_swap (x, xs) |]
==> interfree_swap (x, y#xs)"

by(simp add:interfree_swap_def)

lemma interfree_swap_Map: "∀k. i≤k ∧ k<j --> interfree_aux (com x, post x, c k)
∧ interfree_aux (c k, Q k, com x)
==> interfree_swap (x, map (λk. (c k, Q k)) [i..<j])"

by(force simp add: interfree_swap_def less_diff_conv)

lemma interfree_Empty: "interfree []"
by(simp add:interfree_def)

lemma interfree_List:
"[| interfree_swap(x, xs); interfree xs |] ==> interfree (x#xs)"
apply(simp add:interfree_def interfree_swap_def)
apply clarify
apply(case_tac i)
apply(case_tac j)
apply simp_all
apply(case_tac j,simp+)
done

lemma interfree_Map:
"(∀i j. a≤i ∧ i<b ∧ a≤j ∧ j<b ∧ i≠j --> interfree_aux (c i, Q i, c j))
==> interfree (map (λk. (c k, Q k)) [a..<b])"

by(force simp add: interfree_def less_diff_conv)

definition map_ann_hoare :: "(('a ann_com_op * 'a assn) list) => bool " ("[\<turnstile>] _" [0] 45) where
"[\<turnstile>] Ts == (∀i<length Ts. ∃c q. Ts!i=(Some c, q) ∧ \<turnstile> c q)"

lemma MapAnnEmpty: "[\<turnstile>] []"
by(simp add:map_ann_hoare_def)

lemma MapAnnList: "[| \<turnstile> c q ; [\<turnstile>] xs |] ==> [\<turnstile>] (Some c,q)#xs"
apply(simp add:map_ann_hoare_def)
apply clarify
apply(case_tac i,simp+)
done

lemma MapAnnMap:
"∀k. i≤k ∧ k<j --> \<turnstile> (c k) (Q k) ==> [\<turnstile>] map (λk. (Some (c k), Q k)) [i..<j]"
apply(simp add: map_ann_hoare_def less_diff_conv)
done

lemma ParallelRule:"[| [\<turnstile>] Ts ; interfree Ts |]
==> \<parallel>- (\<Inter>i∈{i. i<length Ts}. pre(the(com(Ts!i))))
Parallel Ts
(\<Inter>i∈{i. i<length Ts}. post(Ts!i))"

apply(rule Parallel)
apply(simp add:map_ann_hoare_def)
apply simp
done
(*
lemma ParamParallelRule:
"[| ∀k<n. \<turnstile> (c k) (Q k);
∀k l. k<n ∧ l<n ∧ k≠l --> interfree_aux (Some(c k), Q k, Some(c l)) |]
==> \<parallel>- (\<Inter>i∈{i. i<n} . pre(c i)) COBEGIN SCHEME [0≤i<n] (c i) (Q i) COEND (\<Inter>i∈{i. i<n} . Q i )"
apply(rule ParallelConseqRule)
apply simp
apply clarify
apply force
apply(rule ParallelRule)
apply(rule MapAnnMap)
apply simp
apply(rule interfree_Map)
apply simp
apply simp
apply clarify
apply force
done
*)


text {* The following are some useful lemmas and simplification
tactics to control which theorems are used to simplify at each moment,
so that the original input does not suffer any unexpected
transformation. *}


lemma Compl_Collect: "-(Collect b) = {x. ¬(b x)}"
by fast

lemma list_length: "length []=0" "length (x#xs) = Suc(length xs)"
by simp_all
lemma list_lemmas: "length []=0" "length (x#xs) = Suc(length xs)"
"(x#xs) ! 0 = x" "(x#xs) ! Suc n = xs ! n"
by simp_all
lemma le_Suc_eq_insert: "{i. i <Suc n} = insert n {i. i< n}"
by auto
lemmas primrecdef_list = "pre.simps" "assertions.simps" "atomics.simps" "atom_com.simps"
lemmas my_simp_list = list_lemmas fst_conv snd_conv
not_less0 refl le_Suc_eq_insert Suc_not_Zero Zero_not_Suc nat.inject
Collect_mem_eq ball_simps option.simps primrecdef_list
lemmas ParallelConseq_list = INTER_eq Collect_conj_eq length_map length_upt length_append

ML {*
fun before_interfree_simp_tac ctxt =
simp_tac (put_simpset HOL_basic_ss ctxt addsimps [@{thm com.simps}, @{thm post.simps}])

fun interfree_simp_tac ctxt =
asm_simp_tac (put_simpset HOL_ss ctxt
addsimps [@{thm split}, @{thm ball_Un}, @{thm ball_empty}] @ @{thms my_simp_list})

fun ParallelConseq ctxt =
simp_tac (put_simpset HOL_basic_ss ctxt
addsimps @{thms ParallelConseq_list} @ @{thms my_simp_list})
*}


text {* The following tactic applies @{text tac} to each conjunct in a
subgoal of the form @{text "A ==> a1 ∧ a2 ∧ .. ∧ an"} returning
@{text n} subgoals, one for each conjunct: *}


ML {*
fun conjI_Tac tac i st = st |>
( (EVERY [rtac conjI i,
conjI_Tac tac (i+1),
tac i]) ORELSE (tac i) )
*}



subsubsection {* Tactic for the generation of the verification conditions *}

text {* The tactic basically uses two subtactics:

\begin{description}

\item[HoareRuleTac] is called at the level of parallel programs, it
uses the ParallelTac to solve parallel composition of programs.
This verification has two parts, namely, (1) all component programs are
correct and (2) they are interference free. @{text HoareRuleTac} is
also called at the level of atomic regions, i.e. @{text "⟨ ⟩"} and
@{text "AWAIT b THEN _ END"}, and at each interference freedom test.

\item[AnnHoareRuleTac] is for component programs which
are annotated programs and so, there are not unknown assertions
(no need to use the parameter precond, see NOTE).

NOTE: precond(::bool) informs if the subgoal has the form @{text "\<parallel>- ?p c q"},
in this case we have precond=False and the generated verification
condition would have the form @{text "?p ⊆ …"} which can be solved by
@{text "rtac subset_refl"}, if True we proceed to simplify it using
the simplification tactics above.

\end{description}
*}


ML {*

fun WlpTac ctxt i = (rtac (@{thm SeqRule}) i) THEN (HoareRuleTac ctxt false (i+1))
and HoareRuleTac ctxt precond i st = st |>
( (WlpTac ctxt i THEN HoareRuleTac ctxt precond i)
ORELSE
(FIRST[rtac (@{thm SkipRule}) i,
rtac (@{thm BasicRule}) i,
EVERY[rtac (@{thm ParallelConseqRule}) i,
ParallelConseq ctxt (i+2),
ParallelTac ctxt (i+1),
ParallelConseq ctxt i],
EVERY[rtac (@{thm CondRule}) i,
HoareRuleTac ctxt false (i+2),
HoareRuleTac ctxt false (i+1)],
EVERY[rtac (@{thm WhileRule}) i,
HoareRuleTac ctxt true (i+1)],
K all_tac i ]
THEN (if precond then (K all_tac i) else (rtac (@{thm subset_refl}) i))))

and AnnWlpTac ctxt i = (rtac (@{thm AnnSeq}) i) THEN (AnnHoareRuleTac ctxt (i+1))
and AnnHoareRuleTac ctxt i st = st |>
( (AnnWlpTac ctxt i THEN AnnHoareRuleTac ctxt i )
ORELSE
(FIRST[(rtac (@{thm AnnskipRule}) i),
EVERY[rtac (@{thm AnnatomRule}) i,
HoareRuleTac ctxt true (i+1)],
(rtac (@{thm AnnwaitRule}) i),
rtac (@{thm AnnBasic}) i,
EVERY[rtac (@{thm AnnCond1}) i,
AnnHoareRuleTac ctxt (i+3),
AnnHoareRuleTac ctxt (i+1)],
EVERY[rtac (@{thm AnnCond2}) i,
AnnHoareRuleTac ctxt (i+1)],
EVERY[rtac (@{thm AnnWhile}) i,
AnnHoareRuleTac ctxt (i+2)],
EVERY[rtac (@{thm AnnAwait}) i,
HoareRuleTac ctxt true (i+1)],
K all_tac i]))

and ParallelTac ctxt i = EVERY[rtac (@{thm ParallelRule}) i,
interfree_Tac ctxt (i+1),
MapAnn_Tac ctxt i]

and MapAnn_Tac ctxt i st = st |>
(FIRST[rtac (@{thm MapAnnEmpty}) i,
EVERY[rtac (@{thm MapAnnList}) i,
MapAnn_Tac ctxt (i+1),
AnnHoareRuleTac ctxt i],
EVERY[rtac (@{thm MapAnnMap}) i,
rtac (@{thm allI}) i, rtac (@{thm impI}) i,
AnnHoareRuleTac ctxt i]])

and interfree_swap_Tac ctxt i st = st |>
(FIRST[rtac (@{thm interfree_swap_Empty}) i,
EVERY[rtac (@{thm interfree_swap_List}) i,
interfree_swap_Tac ctxt (i+2),
interfree_aux_Tac ctxt (i+1),
interfree_aux_Tac ctxt i ],
EVERY[rtac (@{thm interfree_swap_Map}) i,
rtac (@{thm allI}) i,rtac (@{thm impI}) i,
conjI_Tac (interfree_aux_Tac ctxt) i]])

and interfree_Tac ctxt i st = st |>
(FIRST[rtac (@{thm interfree_Empty}) i,
EVERY[rtac (@{thm interfree_List}) i,
interfree_Tac ctxt (i+1),
interfree_swap_Tac ctxt i],
EVERY[rtac (@{thm interfree_Map}) i,
rtac (@{thm allI}) i,rtac (@{thm allI}) i,rtac (@{thm impI}) i,
interfree_aux_Tac ctxt i ]])

and interfree_aux_Tac ctxt i = (before_interfree_simp_tac ctxt i ) THEN
(FIRST[rtac (@{thm interfree_aux_rule1}) i,
dest_assertions_Tac ctxt i])

and dest_assertions_Tac ctxt i st = st |>
(FIRST[EVERY[rtac (@{thm AnnBasic_assertions}) i,
dest_atomics_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnSeq_assertions}) i,
dest_assertions_Tac ctxt (i+1),
dest_assertions_Tac ctxt i],
EVERY[rtac (@{thm AnnCond1_assertions}) i,
dest_assertions_Tac ctxt (i+2),
dest_assertions_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnCond2_assertions}) i,
dest_assertions_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnWhile_assertions}) i,
dest_assertions_Tac ctxt (i+2),
dest_atomics_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnAwait_assertions}) i,
dest_atomics_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
dest_atomics_Tac ctxt i])

and dest_atomics_Tac ctxt i st = st |>
(FIRST[EVERY[rtac (@{thm AnnBasic_atomics}) i,
HoareRuleTac ctxt true i],
EVERY[rtac (@{thm AnnSeq_atomics}) i,
dest_atomics_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnCond1_atomics}) i,
dest_atomics_Tac ctxt (i+1),
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnCond2_atomics}) i,
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm AnnWhile_atomics}) i,
dest_atomics_Tac ctxt i],
EVERY[rtac (@{thm Annatom_atomics}) i,
HoareRuleTac ctxt true i],
EVERY[rtac (@{thm AnnAwait_atomics}) i,
HoareRuleTac ctxt true i],
K all_tac i])
*}



text {* The final tactic is given the name @{text oghoare}: *}

ML {*
fun oghoare_tac ctxt = SUBGOAL (fn (_, i) => HoareRuleTac ctxt true i)
*}


text {* Notice that the tactic for parallel programs @{text
"oghoare_tac"} is initially invoked with the value @{text true} for
the parameter @{text precond}.

Parts of the tactic can be also individually used to generate the
verification conditions for annotated sequential programs and to
generate verification conditions out of interference freedom tests: *}


ML {*
fun annhoare_tac ctxt = SUBGOAL (fn (_, i) => AnnHoareRuleTac ctxt i)

fun interfree_aux_tac ctxt = SUBGOAL (fn (_, i) => interfree_aux_Tac ctxt i)
*}


text {* The so defined ML tactics are then ``exported'' to be used in
Isabelle proofs. *}


method_setup oghoare = {*
Scan.succeed (SIMPLE_METHOD' o oghoare_tac) *}

"verification condition generator for the oghoare logic"

method_setup annhoare = {*
Scan.succeed (SIMPLE_METHOD' o annhoare_tac) *}

"verification condition generator for the ann_hoare logic"

method_setup interfree_aux = {*
Scan.succeed (SIMPLE_METHOD' o interfree_aux_tac) *}

"verification condition generator for interference freedom tests"

text {* Tactics useful for dealing with the generated verification conditions: *}

method_setup conjI_tac = {*
Scan.succeed (K (SIMPLE_METHOD' (conjI_Tac (K all_tac)))) *}

"verification condition generator for interference freedom tests"

ML {*
fun disjE_Tac tac i st = st |>
( (EVERY [etac disjE i,
disjE_Tac tac (i+1),
tac i]) ORELSE (tac i) )
*}


method_setup disjE_tac = {*
Scan.succeed (K (SIMPLE_METHOD' (disjE_Tac (K all_tac)))) *}

"verification condition generator for interference freedom tests"

end