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1 Intuitionistic first-order logic

theory IFOL
imports Pure
abbrevs < = J<;

begin

ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file

~~ [sre/ Tools/ misc-legacy. ML)

~~ | src/ Provers/ splitter. ML»

~"~ | src/ Provers/hypsubst. ML»

~~ [sre/ Tools/ IsaPlanner | zipper. ML)
~~ [sre/ Tools/IsaPlanner isand. ML»
~~ [sre/ Tools/ IsaPlanner [ rw-inst. ML»
~~ | src/ Provers/ quantifier! . ML»

~~ | src/ Tools/intuitionistic. MLy

~~ /src/ Tools/project-rule. ML»

(
(
(
(
(
(
(
(
(
<™~ [ sre/ Tools/ atomize-elim. ML»

1.1 Syntax and axiomatic basis

setup Pure-Thy.old-appl-syntaz-setup
setup <Proofterm.set-preproc (Proof-Rewrite-Rules.standard-preproc [])»

class term
default-sort <term)

typedecl o

judgment
Trueprop :: <o = prop> (<(snotation=judgments-)) 5)



1.1.1 Equality

axiomatization

eq :: «['a, 'a] = o> (infix]l <=» 50)
where

refl: <a = a» and

subst: «<a = b = P(a) = P(b)

1.1.2 Propositional logic

axiomatization
False :: <oy and
conj :: <Jo, o] => o> (infixr <\> 35) and
disj :: <[o, o] => o) (infixr «V» 30) and
imp :: <o, o] => o> (infixr (—» 25)
where
congI: <[P; Q] = P A @ and
conjunctl: <P N Q = P» and
conjunct2: <P N Q = @ and

disjl1: <P = P V > and
disjI2: «Q = P V @)» and
disjE: <[PV Q; P = R; Q@ = R] = R» and

impl: «(P = @) = P — @ and
mp: <[P — @Q; P] = @ and

Fualsel: <False —> P»

1.1.3 Quantifiers

axiomatization

All =: «('a = o) = o> (binder V> 10) and

Ez :: «('"a = 0) = o> (binder «3» 10)
where

alll: «(A\z. P(z)) = (Vz. P(z))» and

spec: «(Vz. P(z)) = P(z)> and

exl: «P(z) = (3. P(z))> and

exE: ([3z. P(z); Az. P(z) = R] = R

1.1.4 Definitions
definition «True = False — Fualse»

definition Not («(<open-block notation=<prefiz —»— -)» [40] 40)
where not-def: <— P = P — Fulse)

definition iff (infixr «+— 25)
where <P +— Q= (P — Q) A (Q — P)»



definition Uniq :: (‘a = 0) = o
where «Unig(P) = (Vz y. P(z) — P(y) — y = z)»

definition Ez! :: <('a = 0) = o> (binder 31 10)
where exi-def: «(3lz. P(z) = Jz. P(z) A Vy. P(y) — y = a)»

axiomatization where — Reflection, admissible
eg-reflection: «(z = y) = (z = y)» and
iff-reflection: «(P +— Q) = (P = Q)

abbreviation not-equal :: (['a, 'a] = o> (infix]l <#%> 50)
where <z £ y = - (xz = y)»

syntax -Uniq :: pttrn = o = o («(<indent=2 notation=<binder 3<1»3I <1 -./ -
[0, 10] 10)
syntax-consts -Uniq = Uniq
translations 3<i2. P = CONST Unig (Az. P)
typed-print-translation «
[(const-syntax « Uniqy, Syntaz- Trans.preserve-binder-abs-tr’ syntax-const <-Unig»))
» — to avoid eta-contraction of body

1.1.5 Old-style ASCII syntax

notation (ASCII)
not-equal (infixl «¥=) 50) and
Not («(copen-block notation=<prefix ~»"~ -)» [40] 40) and
conj (infixr &> 35) and
disj (infixr «|» 30) and
All (binder <ALL » 10) and
Ez (binder <EX » 10) and
Ez! (binder «EX!» 10) and
imp (infixr (——>» 25) and
iff (infixr (<—>» 25)

1.2 Lemmas and proof tools

lemmas strip = impl alll

lemma Truel: <True»
unfolding True-def by (rule impl)

1.2.1 Sequent-style elimination rules for A — and V

lemma conjE:
assumes major: <P N @Q»
and r: ([P; Q] = R»
shows (R»
proof (rule r)
show P
by (rule major [THEN conjunctl])



show @
by (rule major [THEN conjunct2])
qed

lemma impFE:
assumes major: <P — @Q»
and <P
and 7 «QQ = R»
shows (R)»
proof (rule r)
show @
by (rule mp [OF magor <P»])
qed

lemma allE:
assumes major: <V xz. P(z))
and r: <P(z) = R
shows (R»
proof (rule r)
show P(z)
by (rule major [THEN spec])
qed

Duplicates the quantifier; for use with eresolve_tac.

lemma all-dupFE:
assumes magjor: ¥ z. P(z)
and r: ([P(z); Vz. P(z)] = R
shows (R»
proof (rule r)
show P(z)
by (rule major [THEN spec])
qed (rule major)

1.2.2 Negation rules, which translate between — P and P — Fulse

lemma notl: «(P = False) = - P
unfolding not-def by (erule impl)

lemma notE: [~ P; P] = R»
unfolding not-def by (erule mp [THEN FalseE))

lemma rev-notE: <[P; - P] = R»
by (erule notE)

This is useful with the special implication rules for each kind of P.

lemma not-to-imp:
assumes <— P)
and r: (P — False = @
shows Q>



apply (rule r)

apply (rule impI)

apply (erule notE [OF <= P»))
done

For substitution into an assumption P, reduce @ to P — (@), substitute into
this implication, then apply ¢mpl to move P back into the assumptions.

lemma rev-mp: <[P; P — Q] = @
by (erule mp)

Contrapositive of an inference rule.

lemma contrapos:
assumes major: (—
and minor: <P = @
shows (= P»
apply (rule major [THEN notE, THEN notl))
apply (erule minor)
done

1.2.3 Modus Ponens Tactics

Finds P — @ and P in the assumptions, replaces implication by @.

ML «
fun mp-tac ctxt i =
eresolve-tac ctat Q{thms notE impE} i THEN assume-tac ctat i;
fun eg-mp-tac ctxt © =
eresolve-tac ctxt Q{thms notE impE} i THEN eg-assume-tac i

1.3 If-and-only-if

lemma iffl: <[P = Q; Q = P] = P +—
unfolding iff-def
by (rule conjI; erule impl)

lemma iffE:
assumes major: <P +— @
and r: ([P — Q; Q — P] = R
shows (R)»
using major
unfolding iff-def
apply (rule conjE)
apply (erule r)
apply assumption
done

1.3.1 Destruct rules for «— similar to Modus Ponens

lemma iffDI1: <[P +— Q; P] = @



unfolding iff-def

apply (erule conjunctl [THEN mp))
apply assumption

done

lemma iffD2: <[P +— Q; Q] = P»
unfolding iff-def
apply (erule conjunct2 [THEN mp))
apply assumption
done

lemma rev-iff D1: <[P; P +— Q] = &

apply (erule iffD1)
apply assumption
done

lemma rev-iffD2: <[Q; P +— Q] = P»

apply (erule iffD2)
apply assumption
done

lemma iff-refl: <P <— P»
by (rule iffI)

lemma iff-sym: <Q +— P = P +— ()
apply (erule iffE)
apply (rule iffT)
apply (assumption | erule mp)+
done

lemma iff-trans: <[P +— @Q; Q +— R] = P +— R»
apply (rule iffT)
apply (assumption | erule iffE | erule (1) notE impE)+
done

1.4 Unique existence

NOTE THAT the following 2 quantifications:

o Jlz such that [3!y such that P(x,y)] (sequential)

o Jlz,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats 3!z y.P(x,y) as sequential.

lemma ex1l: <P(a) = (A\z. P(z) = = = a) = 3lz. P(z)
unfolding ex!-def
apply (assumption | rule exI conjl alll impI)+
done



Sometimes easier to use: the premises have no shared variables. Safe!

lemma ez-exll: <3z. P(z) = (Az y. [P(2); P(y)] = = = y) = Ilz. P(a)
apply (erule exE)
apply (rule ex1I)
apply assumption
apply assumption
done

lemma ez1E: 3! z. P(z) = (Az. [P(2); Vy. Ply) — y=12] = R) = R
unfolding ez1-def
apply (assumption | erule exE conjE)+
done

1.4.1 <+— congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.

ML ¢
fun iff-tac ctxt prems i =
resolve-tac ctrt (prems RL Q{thms iffE}) ¢ THEN
REPEAT! (eresolve-tac ctxt Q{thms asm-rl mp} i);
)

method-setup iff =
CAttrib.thms >>
(fn prems => fn ctat => SIMPLE-METHOD' (iff-tac ctzt prems))»

lemma conj-cong:
assumes (P +— P/
and «(P' = Q «— Q"
shows (P A Q) «— (P’ A Q")
apply (insert assms)
apply (assumption | rule iffT conjl | erule iffE conjE mp | iff assms)+
done

Reversed congruence rule! Used in ZF /Order.

lemma conj-cong?2:
assumes (P +— P/
and <P/ = Q +— Q"
shows <(Q A P) «— (Q' A P)»
apply (insert assms)
apply (assumption | rule iffI conjl | erule iffE conjE mp | iff assms)+
done

lemma disj-cong:
assumes (P +— Py and <Q +— Q"
shows «(P V Q) +— (P'V Q')
apply (insert assms)
apply (erule iff E disjE disjI1 disjI2 |



assumption | rule iffI | erule (1) notE impE)+
done

lemma imp-cong:
assumes (P «— P/
and «(P' = Q «— Q"
shows «((P — Q) +— (P' — Q')
apply (insert assms)
apply (assumption | rule iffl impl | erule iffE | erule (1) notE impE | iff assms)+
done

lemma iff-cong: ([P +— P; Q +— Q] = (P +— Q) +— (P'+— Q')
apply (erule iffE | assumption | rule iffI | erule (1) notE impE)+
done

lemma not-cong: <P «— P'=> = P <— = P’
apply (assumption | rule iffI notl | erule (1) notE impE | erule iffE notE)+
done

lemma all-cong:
assumes (A\z. P(z) «+— Q(z)
shows «(Vz. P(z)) +— (Vz. Q(z))»
apply (assumption | rule iffI alll | erule (1) notE impE | erule allE | iff assms)+
done

lemma ex-cong:
assumes (A\z. P(z) «— Q(z)
shows «(3z. P(z)) +— (Fz. Q(z))»
apply (erule exE | assumption | rule iffI exI | erule (1) notE impE | iff assms)+
done

lemma exI-cong:

assumes (A\z. P(z) «— Q(z)»

shows «(3!z. P(z)) «— (3lz. Q(z))

apply (erule ex1E spec [THEN mp] | assumption | rule iffI ex1I | erule (1) notE
impE | iff assms)+

done

1.5 Equality rules

lemma sym: <a = b= b= w
apply (erule subst)

apply (rule refl)
done

lemma trans: Ja=b;b=¢c] = a=0©
apply (erule subst, assumption)
done



lemma not-sym: <b # a = a # b
apply (erule contrapos)

apply (erule sym)
done

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.

lemma def-imp-iff: (A= B) = A «— B»
apply unfold

apply (rule iff-refl)
done

lemma meta-eg-to-obj-eq: <(A
apply unfold
apply (rule refl)
done

B) = A=hHB

lemma meta-eq-to-iff: <z = y = = +— ¥
by unfold (rule iff-refl)

Substitution.

lemma ssubst: «[b = a; P(a)] = P(b)
apply (drule sym)
apply (erule (1) subst)
done

A special case of ex1FE that would otherwise need quantifier expansion.

lemma exI-equalsE: «[3'z. P(x); P(a); P(b)] = a = b
apply (erule ex1FE)
apply (rule trans)
apply (rule-tac [2] sym)
apply (assumption | erule spec [THEN mp])+
done

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.

See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).

lemma conj-impE:
assumes major: <(P A Q) — S
and . <P — (Q — 5) = R»
shows (R)»
by (assumption | rule conjl impI major [THEN mp) r)+
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lemma disj-impkE:
assumes magjor: (P V Q) — S
and (P — S; Q@ — 5] = R
shows (R)»
by (assumption | rule disjI1 disjiI2 impI major [THEN mp] )+

Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable — backtracking needed.

lemma imp-impkE:
assumes magjor: (P — Q) — S
and r1: «([P; @ — S] = @
and 72: <SS = R»
shows (R»
by (assumption | rule impI major [THEN mp] r1 r2)+

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable — backtracking needed.

lemma not-impE: <= P — S = (P = Fulse) = (S = R) = I»
apply (drule mp)
apply (rule notl | assumption)+
done

Simplifies the implication. UNSAFE.

lemma iff-impFE:
assumes magjor: (P +— Q) — S
and r1: ([P; Q — 5] = @
and r2: ([Q; P — S] = P»
and r3: «S = R»
shows (R»
by (assumption | rule iffI impI major [THEN mp| r1 r2 r3)+

What if (Vz. = = P(z)) — = = (V2. P(z)) is an assumption? UNSAFE.

lemma all-impFE:
assumes magjor: (VY z. P(z)) — S»
and r1: «Az. P(z)
and r2: (S = R»
shows «R»
by (rule alll impI major [THEN mp] r1 r2)+

Unsafe: 3z. P(z)) — S is equivalent to Vz. P(z) — S.

lemma ex-impkFE:
assumes major: <(3z. P(xz)) — S
and r: (P(z) — S = R»
shows «R»
by (assumption | rule exI impI major [THEN mp] r)+

Courtesy of Krzysztof Grabczewski.
lemma disj-imp-disj: <PV Q — (P —= R) = (@ = S) = RV S

11



apply (erule disjE)

apply (rule disjl1) apply assumption
apply (rule disjI2) apply assumption
done

ML «

structure Project-Rule = Project-Rule

(
val conjunctl] = Q{thm conjunct!}
val conjunct2 = Q{thm conjunct2}
val mp = Q{thm mp}

ML-file «fologic. ML>»
lemma thin-refl: [t = x; PROP W] = PROP W .

ML «
structure Hypsubst = Hypsubst
(
val dest-eq = FOLogic.dest-eq
val dest-Trueprop = dest-judgment
val dest-imp = FOLogic.dest-imp
val eq-reflection = @Q{thm eg-reflection}
val rev-eg-reflection = Q{thm meta-eg-to-obj-eq}
val imp-intr = Q{thm impl}
val rev-mp = Q{thm rev-mp}
val subst = @{thm subst}
val sym = @{thm sym}
val thin-refl = Q{thm thin-refl}
)i
open Hypsubst;
)

ML-file <intprover. ML

1.7 Intuitionistic Reasoning

setup <Intuitionistic.method-setup binding <iproversy

lemma impFE":
assumes 1: <P —
and 2: «Q = R»
and 3: <P — Q = P»
shows (R»
proof —
from & and 1 have <P) .
with 7 have «Q» by (rule impFE)

12



with 2 show (R) .
qed

lemma allE":
assumes 1: Vz. P(z)
and 2: (P(z) = Vz. P(z) = @
shows <(Q»
proof —
from ! have <P(z)) by (rule spec)
from this and 1 show «@Q> by (rule 2)
qed

lemma notE":

assumes 1: - P»

and 2: (- P — P>

shows (R»
proof —

from 2 and 1 have P> .

with 1 show (R» by (rule notE)
qed

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.introl] = iffI conjl impI Truel notl alll refl
and [Pure.elim 2] = allE notE’ impE’
and [Pure.intro] = exl disjI2 disjl1

setup <«
Context-Rules.addS Wrapper
(fn ctzt => fn tac => hyp-subst-tac ctzt ORELSE’ tac)

lemma iff-not-sym: <= (Q <+— P) = = (P «— Q)
by iprover

lemmas [sym] = sym iff-sym not-sym iff-not-sym

and [Pure.elim?] = iff D1 iff D2 impE

lemma eg-commute: <a = b +— b = a>
by iprover

1.8 Polymorphic congruence rules

lemma subst-context: <a = b = t(a) = t(b)
by iprover

lemma subst-context2: Ja = b; ¢ = d] = t(a,c) = t(b,d)»
by iprover

13



lemma subst-contexts: Ja = b; ¢ = d; e = f] = t(a,c,e) = t(b,d,f)
by iprover

Useful with eresolve_tac for proving equalities from known equalities.
a=b||lc=d

lemma boz-equals: <Ja =b;a=c¢;b=d] = c=d
by iprover

Dual of boz-equals: for proving equalities backwards.

lemma simp-equals: (Ja = ¢; b=d; c =d] = a = b
by iprover

1.8.1 Congruence rules for predicate letters

lemma predi-cong: <a = a’ = P(a) <— P(a’)
by iprover

lemma pred2-cong: <[a = a’; b = b'] = P(a,b) +— P(a’,b’)
by iprover

lemma pred3-cong: <[a = a’; b = b’; ¢ = ¢/]| = P(a,b,c) «— P(a’,b’,c')
by iprover

Special case for the equality predicate!

lemma eg-cong: <Ja=a5b=0] = a=b++— a’'=b"
by iprover

1.9 Atomizing meta-level rules

lemma atomize-all [atomize]: «(\z. P(z)) = Trueprop (Vz. P(x))
proof
assume <Az. P(z)
then show «Vz. P(z)) ..
next
assume <V z. P(z))
then show (Az. P(z)» ..
qed

lemma atomize-imp [atomize]: «(A = B) = Trueprop (A — B)»
proof
assume (A = B»
then show <A — B ..
next
assume <A — B) and (4>
then show «B) by (rule mp)
qed

lemma atomize-eq [atomize]: «(x = y) = Trueprop (z = y)»

14



proof

assume (z = i

show «z = y unfolding <z = y» by (rule refl)
next

assume (z = y»

then show <z = y» by (rule eq-reflection)
qed

lemma atomize-iff [atomize]: «(A = B) = Trueprop (A +— B)»
proof
assume (4 = B»
show (A +— B) unfolding <A = B» by (rule iff-refl)
next
assume (A «+— B
then show <A = B) by (rule iff-reflection)
qed

lemma atomize-conj [atomize]: (A &&& B) = Trueprop (A A B)»
proof
assume conj: <A &&& B>
show (A A B»
proof (rule conjI)
from conj show (A by (rule conjunctionD1)
from conj show (B> by (rule conjunctionD2)
qed
next
assume conj: <A A B»
show <4 &&& B
proof —
from conj show <A ..
from conj show B> ..
qed
qed

lemmas [symmetric, rulify] = atomize-all atomize-imp

and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff
1.10 Atomizing elimination rules
lemma atomize-exL[atomize-elim]: «(Az. P(z) = Q) = ((3z. P(z)) = Q)

by rule iprover+

lemma atomize-conjL{atomize-elim]|: «(A = B = C) = (AN B = C)
by rule iprover+

lemma atomize-disjL[atomize-elim|: «(A = C) = (B = () = () = ((4

VB= C)= C)
by rule iprover+

15



lemma atomize-elimL[atomize-elim]: <(AB. (A = B) = B) = Trueprop(4); ..

1.11 Calculational rules

lemma forw-subst: <a = b = P(b) = P(a))
by (rule ssubst)

lemma back-subst: <P(a) = a = b = P(b)»
by (rule subst)

Note that this list of rules is in reverse order of priorities.

lemmas basic-trans-rules [trans] =
forw-subst
back-subst
rev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: «['a::{}, 'a => 'b] = ("b::{})
where <Let(s, f) = f(s)

syntax

-bind i «[pttrn, ‘a] => letbindy («(<indent=2 notation=<infix let binding>»-
=/ ) 10)

i «letbind => letbinds» (¢=))

-binds i «[letbind, letbinds] => letbindsy (s-;/ -»)

-Let i «([letbinds, 'a] => 'ay  («(<notation=<mizfix let expressionylet (-)/
in (-)) 10)
syntax-consts

-Let = Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, ¢))

letz=aine == CONST Let(a, \z. €)

lemma Letl:
assumes (A\z. z = t = P(u(z))
shows (P(let x = ¢ in u(x))>
unfolding Let-def
apply (rule refl [THEN assms])
done

1.13 Intuitionistic simplification rules

lemma conj-simps:
<P A True <— P»
<True N\ P <— P»

16



<P A Fulse +— Fulse)

<False N P +— Fulse)

(PN P +— P
«(PANPANQ<+—PANQ

<P N = P <— False

<= P N P <— Fualser
(PANQ)ANR<+—PA(QANR)
by iprover+

lemma disj-simps:
<PV True «<— True»
<True V P <— True)
<PV Fualse <— P»
<False V P +— P»
<PV P +— P
«<PVPVQ+—PVQ
(PV Q) VR+—PV(QV R)
by iprover+

lemma not-simps:
<—|(P\/Q)<—>—‘P/\—\Q>
<= False «+— True»
<= True <— False»
by iprover+

lemma imp-simps:
(P — False) «— — P»
(P — True) +— True
<(False — P) «— True»
«(True — P) «— P»
(P — P) +— True
(P— 2 P)+— P
by iprover+

lemma iff-simps:
(True +— P) «— P
(P «— True) «— P
(P +— P) «— True
((False +— P) «— = P
((P <— Fualse) «— - P

by iprover+

The x = t versions are needed for the simplification procedures.

lemma quant-simps:
(ANP. (Vz. P) «— P
«(Vz. z =t — P(z)) «— P(t)
«(Vz. t =2 — P(z)) «— P(t)
<AP. (3z. P) «— P»
dz.z =1t
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Jz. t = o
«(Fz.z =1t A P(z)) «— P(1)
«(Jz. t =z AN P(z)) «— P(t)
by iprover+

~

These are NOT supplied by default!

lemma distrib-simps:
(PA(QV R)«—PANQVPAR
(QVR)YANP+— QANPVRAP
(PVQ-—R)+— (P— R)AN(Q— R
by iprover+

lemma subst-all:
«(A\z. z = a = PROP P(z)) = PROP P(a)
«(A\z. a = £ = PROP P(z)) = PROP P(a)
proof —
show «(A\z. £ = a = PROP P(z)) = PROP P(a)
proof (rule equal-intr-rule)
assume *: (A\z. = a = PROP P(z)»
show (PROP P(a)»
by (rule x) (rule refl)
next
fix »
assume <PROP P(a)) and «x = a)
from <z = a» have <z = o
by (rule eg-reflection)
with «+PROP P(a)> show «(PROP P(x)»
by simp
qed
show «(Az. a = £ = PROP P(z)) = PROP P(a)
proof (rule equal-intr-rule)
assume *: <A\z. a = £ = PROP P(z))
show <PROP P(a))
by (rule %) (rule refl)
next
fix z
assume <PROP P(a)) and <a = >
from <a = 2> have <a = o
by (rule eg-reflection)
with «+PROP P(a)» show (PROP P(x)»
by simp
qed
qed

1.13.1 Conversion into rewrite rules

lemma P-iff-F: <= P = (P <— Fulse)»
by iprover
lemma iff-reflection-F: <— P = (P = Fulse))
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by (rule P-iff-F [THEN iff-reflection])

lemma P-iff-T: <P = (P <— True)»
by iprover

lemma iff-reflection-T: <P = (P = True)»
by (rule P-iff-T [THEN iff-reflection))

1.13.2 More rewrite rules

lemma conj-commute: <P A @Q <— @Q A P» by iprover
lemma conj-left-commute: <P A (Q AN R) «— Q A (P A R)» by iprover
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: <P V Q +— @Q V P» by iprover
lemma disj-left-commute: <P V (Q V R) +— Q V (P V R)) by iprover
lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: <P AN (Q V R) +— (P A Q@ V P A R)» by iprover
lemma conj-disj-distribR: «(PV Q) AN R +— (P AN RV Q A R)) by iprover

lemma disj-conj-distribL: <P V (Q N R) +— (P V Q) A (P V R)» by iprover
lemma disj-conj-distribR: (P A Q) V R «<— (P V R) A (Q V R)» by iprover

lemma imp-conj-distrib: (P — (Q A R)) «— (P — Q) N (P — R)) by
iprover

lemma imp-conj: <«((P AN Q) — R) +— (P — (Q — R))» by iprover
lemma imp-disj: «(PV @ — R) +— (P — R) A (Q — R)» by iprover
lemma de-Morgan-disj: <«(—= (P V Q)) <— (= P A = Q) by iprover

lemma not-ex: <«(= (Jz. P(x))) «— (Vz. = P(z))> by iprover
lemma imp-ex: <((3z. P(z)) — Q) «— (Vz. P(z) — @Q)» by iprover

lemma ex-disj-distrib: «(3z. P(z) V Q(z)) «— ((Fz. P(z)) V (Fz. Q(z)))
by iprover

lemma all-conj-distrib: <«(Vx. P(z) A Q(z)) +— ((Vz. P(z)) A (Vz. Q(x)))
by iprover

end

2 Classical first-order logic

theory FOL

imports IFOL

keywords print-claset print-induct-rules :: diag
begin

ML-file <~ /src/ Provers/ classical. ML»
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ML-file <~ /src/ Provers/blast. ML)
ML-file <~ /src/ Provers/ clasimp. ML»

2.1 The classical axiom

axiomatization where
classical: «(- P = P) = P»

2.2 Lemmas and proof tools

lemma ccontr: «(—- P = False) = P
by (erule FalseE [THEN classical])

2.2.1 Classical introduction rules for vV and 3

lemma disjCI: «(- Q = P) = PV @
apply (rule classical)
apply (assumption | erule meta-mp | rule disjl1 notl)+
apply (erule notE disjI2)+
done

Introduction rule involving only 3

lemma ex-classical:
assumes r: <— (3z. P(z)) = P(a)
shows <Jz. P(z)»
apply (rule classical)
apply (rule exl, erule r)
done

Version of above, simplifying =3 to V —.

lemma exCI:
assumes r: <Vz. = P(z) = P(a)
shows «3z. P(z)»
apply (rule ex-classical)
apply (rule notl [THEN alll, THEN r])
apply (erule notE)
apply (erule exl)
done

lemma excluded-middle: <— P V P
apply (rule disjCI)
apply assumption
done

lemma case-split [case-names True False]:
assumes r1: (P = @
and 72: <= P =
shows <(Q»
apply (rule excluded-middle [THEN disjE])
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apply (erule r2)
apply (erule r1)
done

ML ¢
fun case-tac ctxt a fires =
Rule-Insts.res-inst-tac ctat [(((P, 0), Position.none), a)| fizes Q{thm case-split};
)

method-setup case-tac = «

Args.goal-spec —— Scan.lift (Parse.embedded-inner-syntax —— Parse.for-fizes)
>>

(fn (quant, (s, fizes)) => fn ctat => SIMPLE-METHOD" quant (case-tac ctat
s fizes))

» case-tac emulation (dynamic instantiation!)

2.3 Special elimination rules

Classical implies (—) elimination.

lemma impCE:
assumes major: (P — @Q»
and ri: «- P = R»
and 72: «\Q = R»
shows (R)»
apply (rule excluded-middle [THEN disjE])
apply (erule r1)
apply (rule r2)
apply (erule major [THEN mp))
done

This version of — elimination works on ) before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.

lemma impCE":
assumes major: <P —
and r1: «Q = R»
and r2: <= P = R»
shows (R»
apply (rule excluded-middle [THEN disjE])
apply (erule r2)
apply (rule r1)
apply (erule major [THEN mp))
done

Double negation law.

lemma notnotD: (- = P = P»
apply (rule classical)
apply (erule notE)
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apply assumption
done

lemma contrapos2: (J@Q; -~ P = - Q] = P>
apply (rule classical)
apply (drule (1) meta-mp)
apply (erule (1) notE)
done

2.3.1 Tactics for implication and contradiction

Classical «+— elimination. Proof substitutes P = @ in = P = = @ and P
== Q.

lemma iffCE:

assumes major: <P <— @
and r1: «([P; Q] = R
and 72: <[~ P; - Q] = R»

shows (R)»

apply (rule major [unfolded iff-def, THEN conjE])

apply (elim impCE)
apply (erule (1) r2)
apply (erule (1) notE)+

apply (erule (1) r1)

done

lemma alt-exlE:
assumes major: 3! z. P(z)
and r: <Az. [P(z); Vyy' Ply) A P(y) — y =y ] = R
shows «R»
using major
proof (rule ex1FE)
fix z
assume * : Vy. P(y) — y =2
assume <P(z)
then show «R»
proof (rule r)
{
fix yy'
assume <P(y)» and <P(y’)
with x have (x = y» and <z = y"
by — (tactic IntPr.fast-tac context 1)+
then have <y = y" by (rule subst)
} note r’ = this
show «Vy y". P(y) A P(y") — y = y»
by (intro strip, elim conjE) (rule ')
qed
qed
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lemma imp-elim: <P — Q@ — (- R — P) — (@ = R) = R»
by (rule classical) iprover

lemma swap: <+ P = (- R= P) = R
by (rule classical) iprover

3 Classical Reasoner

ML ¢

structure Cla = Classical

(
val imp-elim = @Q{thm imp-elim}
val not-elim = @Q{thm notE}
val swap = Q{thm swap}
val classical = Q{thm classical}
val sizef = size-of-thm
val hyp-subst-tacs = [hyp-subst-tac]

);

structure Basic-Classical: BASIC-CLASSICAL = Cla;
open Basic-Classical,
)

lemmas [intro!] = refl Truel congl disjCI impl notl iffI
and [elim!] = conjE disjE impCE FalseE iffCE
ML <wal prop-cs = claset-of context)

lemmas [intro!] = alll ex-ex1]
and [intro] = exl
and [elim!] = exFE alt-exlE
and [elim] = allE
ML <wval FOL-cs = claset-of context»

ML «
structure Blast = Blast
(
structure Classical = Cla
val Trueprop-const = dest-Const Const < Trueprops
val equality-name = const-name <eq>
val not-name = const-name «Not»
val notE = Q{thm notE}
val ccontr = Q{thm ccontr}
val hyp-subst-tac = Hypsubst.blast-hyp-subst-tac
)i
val blast-tac = Blast.blast-tac;
)
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lemma ex!-functional: <[3! z. P(a,2); P(a,b); P(a,c)] = b= o
by blast

Elimination of True from assumptions:

lemma True-implies-equals: «(True = PROP P) = PROP P
proof
assume < True = PROP P)
from this and Truel show <PROP P .
next
assume (PROP P)
then show <PROP P .
qed

lemma uncurry: <P — Q@ — R=— P AN Q — R
by blast

lemma iff-alll: <(Az. P(z) +— Q(z)) = (Vz. P(z)) «— (Vz. Q(z))
by blast

lemma iff-exl: «(Az. P(z) +— Q(z)) = (Jz. P(z)) +— (Fz. Qz)»
by blast

lemma all-comm: «(Vz y. P(z,y)) «— (Vy z. P(z,y))
by blast

lemma ex-comm: «(3z y. P(z,y)) +— By z. P(z,y))
by blast

3.1 Classical simplification rules
Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.
lemma cases-simp: (P — Q) A (- P — Q) «— @
by blast

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of V over A, or dually that of 3 over V.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that

this step can increase proof length!
Existential miniscoping.

lemma int-ex-simps:
(AP Q. 3z. P(z) A Q) «— (Fz. P(z)) A O
(AP Q. (3z. PA Q(z)) «— P A (Fz. Qx))
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(AP Q. 3z. P(z) V Q) «— (3z. P(x)) V
AP Q. (3z. PV Q(z)) «— P Vv (3z. Qz))
by iprover+

Classical rules.

lemma cla-ez-simps:
AP Q. (3z. P(z) — Q) «— (Vz. P(z)) — @
(AP Q. (3z. P — Q(z)) «— P — (Fz. Q)
by blast+

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.

lemma int-all-simps:
AP Q. (Vz. P(z) A Q) «— (Va. P(z)) A Q»
AP Q. (Vz. PA Q(z)) «— P A (Vz. Q(z))
AP Q. (Vz. P(z) — Q) «— (3 2. P(z)) — @
AP Q. (Vz. P — Q(z)) «— P — (Vz. Q(z))
by iprover+

Classical rules.

lemma cla-all-simps:
AP Q. (Vz. P(z) V Q) «— (V. P(z)) V
AP Q. (Vz. PV Q(z)) «— PV (Vz. Q(z))
by blast+

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL

lemma imp-disjl: «(P — Q) V R +— (P — @ V R)» by blast
lemma imp-disj2: <Q V (P — R) «— (P — @ V R)» by blast
lemma de-Morgan-conj: <«(— (P A Q)) «— (- P V = Q)» by blast

lemma not-imp: <= (P — Q) <— (P A = @)» by blast
lemma not-iff: <= (P +— Q) +— (P «— — Q)» by blast

lemma not-all: «(= (Vz. P(z))) +— (2. - P(z))» by blast
lemma imp-all: <«(Vz. P(z)) — Q) +— (Fz. P(z) — Q)» by blast

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =

refl [THEN P-iff-T| conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps
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lemma notFualsel: <= Falsey by iprover

lemma cla-simps-misc:
<—|(P/\Q)<—>—‘P\/—\Q>
<PV = P
<= PV P
<1 P+— P
(2 P— P)¢— P
(= P+— = Q) «— (P +— Q) by blast+

lemmas cla-simps =
de-Morgan-conj de-Morgan-disj imp-disjl imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc

ML-file <simpdata.ML>

simproc-setup defined-Ex («3z. P(z)) = <K Quantifier! .rearrange-Ex)
simproc-setup defined-All (\Vz. P(z)y) = <K Quantifierl .rearrange-All»
simproc-setup defined-all(\z. PROP P(z)) = <K Quantifier! .rearrange-ally

ML «
(xintuitionistic simprules onlyx)
val IFOL-ss =
put-simpset FOL-basic-ss context
|> Simplifier.add-simps Q{thms meta-simps IFOL-simps int-ex-simps int-all-simps
subst-all}
|> Simplifier.add-proc simproc «defined-Alls
|> Simplifier.add-proc simproc «defined-Ex»
|> Simplifier.add-cong Q{thm imp-cong}
|> simpset-of;

(xclassical simprules toox)

val FOL-ss =
put-simpset IFOL-ss context
|> Simplifier.add-simps Q{thms cla-simps cla-ex-simps cla-all-simps}
|> simpset-of';

)

setup <«
map-theory-simpset (put-simpset FOL-ss) #>
Simplifier.method-setup Splitter.split-modifiers
)

ML-file <~ /src/ Tools/ eqsubst. ML)
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3.2 Other simple lemmas
lemma [simp]: <((P — R) +— (@ — R)) +— ((P «— Q) V R)»
by blast

lemma [simp]: <«((P — Q) «— (P — R)) +— (P — (Q <— R))»
by blast

lemma not-disj-iff-imp: <= PV Q +— (P — Q)
by blast

3.2.1 Monotonicity of implications
lemma conj-mono: <([P1 — Q1; P2 — Q2] = (P1 AN P2) — (Q1 A Q2)
by fast

lemma disj-mono: <([P1 — Q1; P2 — Q2] = (P1 V P2) — (Q1 vV Q2)»
by fast

lemma imp-mono: <(JQ1 — PI1; P2 — Q2] = (P1 — P2) — (Q1 —
Q2)
by fast

lemma imp-refl: <P — P>
by (rule impI)
The quantifier monotonicity rules are also intuitionistically valid.
lemma ex-mono: «(Az. P(z) — Q(z)) = (Jz. P(z)) — (3Fz. Q(z))
by blast

lemma all-mono: <«(Az. P(z) — Q(z)) = (Vz. P(z)) — (Vz. Q(z))»
by blast

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.

context
begin

qualified definition <induct-forall(P) = Vz. P(x)
qualified definition <induct-implies(A, B) = A — B»
qualified definition <induct-equal(z, y) = z =
qualified definition <induct-conj(A, B) = A A B»

lemma induct-forall-eq: <«(A\z. P(z)) = Trueprop(induct-forall(Az. P(z)))>
unfolding atomize-all induct-forall-def .

lemma induct-implies-eq: <(A = B) = Trueprop(induct-implies(A, B))»
unfolding atomize-imp induct-implies-def .
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lemma induct-equal-eq: «(z = y) = Trueprop(induct-equal(z, y))»
unfolding atomize-eq induct-equal-def .

lemma induct-conj-eq: (A &&& B) = Trueprop(induct-conj(A, B))»
unfolding atomize-conj induct-conj-def .

lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.

ML-file <~ /sre/ Tools/induct. ML)
ML <
structure Induct = Induct

(

val cases-default = Q{thm case-split}

val atomize = @Q{thms induct-atomize}

val rulify = @Q{thms induct-rulify}

val rulify-fallback = @Q{thms induct-rulify-fallback}
val equal-def = @Q{thm induct-equal-def}

fun dest-def - = NONE

fun trivial-tac - - = no-tac

);
)
declare case-split [cases type: o]

end

ML-file <~ /src/ Tools/ case-product. ML»

hide-const (open) eq

end
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