[sabelle/FOL — First-Order Logic

Larry Paulson and Markus Wenzel

January 18, 2026

Contents

1 Intuitionistic first-order logic

1.1

1.2

1.3

1.4

1.5
1.6
1.7
1.8

1.9

1.10
1.11
1.12
1.13

Syntax and axiomatic basiso
1.1.1 Equality o
1.1.2 Propositional logic
1.1.3 Quantifiers oo o
1.1.4 Definitions,
1.1.5 Old-style ASCIT syntax
Lemmas and proof tools
1.2.1 Sequent-style elimination rules for A — and V
1.2.2 Negation rules, which translate between — P and P
— False
1.2.3 Modus Ponens Tactics
If-and-only-if
1.3.1 Destruct rules for «+— similar to Modus Ponens
Unique existence
1.4.1 < congruence rules for simplification.
Equality ruleso
Simplifications of assumed implications
Intuitionistic Reasoning 0.
Polymorphic congruence rules
1.8.1 Congruence rules for predicate letters
Atomizing meta-level rules L.
Atomizing elimination ruleso
Calculational rules L.
“Let” declarations
Intuitionistic simplification rules
1.13.1 Conversion into rewrite rules
1.13.2 More rewrite rules

2 Classical first-order logic 18

2.1 Theclassical axiom 18
2.2 Lemmas and proof tools 0L, 19
2.2.1 Classical introduction rules for Vand 3 19

2.3 Special elimination rules L oL 20
2.3.1 Tactics for implication and contradiction. 21

3 Classical Reasoner 22
3.1 Classical simplificationrules 23
3.1.1 Miniscoping: pushing quantifiersin 23
3.1.2 Named rewrite rules proved for IFOL 24

3.2 Other simple lemmas 25
3.2.1 Monotonicity of implications 26

3.3 Proof by cases and induction 26

1 Intuitionistic first-order logic

theory IFOL
imports Pure
abbrevs < = J<;

begin

ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file
ML-file

~~ [sre/ Tools/ misc-legacy. ML)

~~ | src/ Provers/ splitter. ML»

~"~ | src/ Provers/hypsubst. ML»

~~ [sre/ Tools/ IsaPlanner | zipper. ML)
~~ [sre/ Tools/IsaPlanner isand. ML»
~~ [sre/ Tools/ IsaPlanner [rw-inst. ML»
~~ | src/ Provers/ quantifier! . ML»

~~ | src/ Tools/intuitionistic. MLy

~~ /src/ Tools/project-rule. ML»

(
(
(
(
(
(
(
(
(
<™~ [sre/ Tools/ atomize-elim. ML»

1.1 Syntax and axiomatic basis

setup Pure-Thy.old-appl-syntaz-setup
setup <Proofterm.set-preproc (Proof-Rewrite-Rules.standard-preproc [])»

class term
default-sort <term)

typedecl o

judgment
Trueprop :: <o = prop> (<(snotation=judgments-)) 5)

1.1.1 Equality

axiomatization

eq :: «['a, 'a] = o> (infix]l <=» 50)
where

refl: <a = a» and

subst: «<a = b = P(a) = P(b)

1.1.2 Propositional logic

axiomatization
False :: <oy and
conj :: <Jo, o] => o> (infixr <\> 35) and
disj :: <[o, o] => o) (infixr «V» 30) and
imp :: <o, o] => o> (infixr (—» 25)
where
congI: <[P; Q] = P A @ and
conjunctl: <P N Q = P» and
conjunct2: <P N Q = @ and

disjl1: <P = P V > and
disjI2: «Q = P V @)» and
disjE: <[PV Q; P = R; Q@ = R] = R» and

impl: «(P = @) = P — @ and
mp: <[P — @Q; P] = @ and

Fualsel: <False —> P»

1.1.3 Quantifiers

axiomatization

All =: «('a = o) = o> (binder V> 10) and

Ez :: «('"a = 0) = o> (binder «3» 10)
where

alll: «(A\z. P(z)) = (Vz. P(z))» and

spec: «(Vz. P(z)) = P(z)> and

exl: «P(z) = (3. P(z))> and

exE: ([3z. P(z); Az. P(z) = R] = R

1.1.4 Definitions
definition «True = False — Fualse»

definition Not («(<open-block notation=<prefiz —»— -)» [40] 40)
where not-def: <— P = P — Fulse)

definition iff (infixr «+— 25)
where <P +— Q= (P — Q) A (Q — P)»

definition Uniq :: (‘a = 0) = o
where «Unig(P) = (Vz y. P(z) — P(y) — y = z)»

definition Ez! :: <('a = 0) = o> (binder 31 10)
where exi-def: «(3lz. P(z) = Jz. P(z) A Vy. P(y) — y = a)»

axiomatization where — Reflection, admissible
eg-reflection: «(z = y) = (z = y)» and
iff-reflection: «(P +— Q) = (P = Q)

abbreviation not-equal :: (['a, 'a] = o> (infix]l <#%> 50)
where <z £ y = - (xz = y)»

syntax -Uniq :: pttrn = o = o («(<indent=2 notation=<binder 3<1»3I <1 -./ -
[0, 10] 10)
syntax-consts -Uniq = Uniq
translations 3<i2. P = CONST Unig (Az. P)
typed-print-translation «
[(const-syntax « Uniqy, Syntaz- Trans.preserve-binder-abs-tr’ syntax-const <-Unig»))
» — to avoid eta-contraction of body

1.1.5 Old-style ASCII syntax

notation (ASCII)
not-equal (infixl «¥=) 50) and
Not («(copen-block notation=<prefix ~»"~ -)» [40] 40) and
conj (infixr &> 35) and
disj (infixr «|» 30) and
All (binder <ALL » 10) and
Ez (binder <EX » 10) and
Ez! (binder «EX!» 10) and
imp (infixr (——>» 25) and
iff (infixr (<—>» 25)

1.2 Lemmas and proof tools

lemmas strip = impl alll

lemma Truel: <True»
unfolding True-def by (rule impl)

1.2.1 Sequent-style elimination rules for A — and V

lemma conjE:
assumes major: <P N @Q»
and r: ([P; Q] = R»
shows (R»
proof (rule r)
show P
by (rule major [THEN conjunctl])

show @
by (rule major [THEN conjunct2])
qed

lemma impFE:
assumes major: <P — @Q»
and <P
and 7 «QQ = R»
shows (R)»
proof (rule r)
show @
by (rule mp [OF magor <P»])
qed

lemma allE:
assumes major: <V xz. P(z))
and r: <P(z) = R
shows (R»
proof (rule r)
show P(z)
by (rule major [THEN spec])
qed

Duplicates the quantifier; for use with eresolve_tac.

lemma all-dupFE:
assumes magjor: ¥ z. P(z)
and r: ([P(z); Vz. P(z)] = R
shows (R»
proof (rule r)
show P(z)
by (rule major [THEN spec])
qed (rule major)

1.2.2 Negation rules, which translate between — P and P — Fulse

lemma notl: «(P = False) = - P
unfolding not-def by (erule impl)

lemma notE: [~ P; P] = R»
unfolding not-def by (erule mp [THEN FalseE))

lemma rev-notE: <[P; - P] = R»
by (erule notE)

This is useful with the special implication rules for each kind of P.

lemma not-to-imp:
assumes <— P)
and r: (P — False = @
shows Q>

apply (rule r)

apply (rule impI)

apply (erule notE [OF <= P»))
done

For substitution into an assumption P, reduce @ to P — (@), substitute into
this implication, then apply ¢mpl to move P back into the assumptions.

lemma rev-mp: <[P; P — Q] = @
by (erule mp)

Contrapositive of an inference rule.

lemma contrapos:
assumes major: (—
and minor: <P = @
shows (= P»
apply (rule major [THEN notE, THEN notl))
apply (erule minor)
done

1.2.3 Modus Ponens Tactics

Finds P — @ and P in the assumptions, replaces implication by @.

ML «
fun mp-tac ctxt i =
eresolve-tac ctat Q{thms notE impE} i THEN assume-tac ctat i;
fun eg-mp-tac ctxt © =
eresolve-tac ctxt Q{thms notE impE} i THEN eg-assume-tac i

1.3 If-and-only-if

lemma iffl: <[P = Q; Q = P] = P +—
unfolding iff-def
by (rule conjI; erule impl)

lemma iffE:
assumes major: <P +— @
and r: ([P — Q; Q — P] = R
shows (R)»
using major
unfolding iff-def
apply (rule conjE)
apply (erule r)
apply assumption
done

1.3.1 Destruct rules for «— similar to Modus Ponens

lemma iffDI1: <[P +— Q; P] = @

unfolding iff-def

apply (erule conjunctl [THEN mp))
apply assumption

done

lemma iffD2: <[P +— Q; Q] = P»
unfolding iff-def
apply (erule conjunct2 [THEN mp))
apply assumption
done

lemma rev-iff D1: <[P; P +— Q] = &

apply (erule iffD1)
apply assumption
done

lemma rev-iffD2: <[Q; P +— Q] = P»

apply (erule iffD2)
apply assumption
done

lemma iff-refl: <P <— P»
by (rule iffI)

lemma iff-sym: <Q +— P = P +— ()
apply (erule iffE)
apply (rule iffT)
apply (assumption | erule mp)+
done

lemma iff-trans: <[P +— @Q; Q +— R] = P +— R»
apply (rule iffT)
apply (assumption | erule iffE | erule (1) notE impE)+
done

1.4 Unique existence

NOTE THAT the following 2 quantifications:

o Jlz such that [3!y such that P(x,y)] (sequential)

o Jlz,y such that P(x,y) (simultaneous)

do NOT mean the same thing. The parser treats 3!z y.P(x,y) as sequential.

lemma ex1l: <P(a) = (A\z. P(z) = = = a) = 3lz. P(z)
unfolding ex!-def
apply (assumption | rule exI conjl alll impI)+
done

Sometimes easier to use: the premises have no shared variables. Safe!

lemma ez-exll: <3z. P(z) = (Az y. [P(2); P(y)] = = = y) = Ilz. P(a)
apply (erule exE)
apply (rule ex1I)
apply assumption
apply assumption
done

lemma ez1E: 3! z. P(z) = (Az. [P(2); Vy. Ply) — y=12] = R) = R
unfolding ez1-def
apply (assumption | erule exE conjE)+
done

1.4.1 <+— congruence rules for simplification

Use iffE on a premise. For conj-cong, imp-cong, all-cong, ex-cong.

ML ¢
fun iff-tac ctxt prems i =
resolve-tac ctrt (prems RL Q{thms iffE}) ¢ THEN
REPEAT! (eresolve-tac ctxt Q{thms asm-rl mp} i);
)

method-setup iff =
CAttrib.thms >>
(fn prems => fn ctat => SIMPLE-METHOD' (iff-tac ctzt prems))»

lemma conj-cong:
assumes (P +— P/
and «(P' = Q «— Q"
shows (P A Q) «— (P’ A Q")
apply (insert assms)
apply (assumption | rule iffT conjl | erule iffE conjE mp | iff assms)+
done

Reversed congruence rule! Used in ZF /Order.

lemma conj-cong?2:
assumes (P +— P/
and <P/ = Q +— Q"
shows <(Q A P) «— (Q' A P)»
apply (insert assms)
apply (assumption | rule iffI conjl | erule iffE conjE mp | iff assms)+
done

lemma disj-cong:
assumes (P +— Py and <Q +— Q"
shows «(P V Q) +— (P'V Q')
apply (insert assms)
apply (erule iff E disjE disjI1 disjI2 |

assumption | rule iffI | erule (1) notE impE)+
done

lemma imp-cong:
assumes (P «— P/
and «(P' = Q «— Q"
shows «((P — Q) +— (P' — Q')
apply (insert assms)
apply (assumption | rule iffl impl | erule iffE | erule (1) notE impE | iff assms)+
done

lemma iff-cong: ([P +— P; Q +— Q] = (P +— Q) +— (P'+— Q')
apply (erule iffE | assumption | rule iffI | erule (1) notE impE)+
done

lemma not-cong: <P «— P'=> = P <— = P’
apply (assumption | rule iffI notl | erule (1) notE impE | erule iffE notE)+
done

lemma all-cong:
assumes (A\z. P(z) «+— Q(z)
shows «(Vz. P(z)) +— (Vz. Q(z))»
apply (assumption | rule iffI alll | erule (1) notE impE | erule allE | iff assms)+
done

lemma ex-cong:
assumes (A\z. P(z) «— Q(z)
shows «(3z. P(z)) +— (Fz. Q(z))»
apply (erule exE | assumption | rule iffI exI | erule (1) notE impE | iff assms)+
done

lemma exI-cong:

assumes (A\z. P(z) «— Q(z)»

shows «(3!z. P(z)) «— (3lz. Q(z))

apply (erule ex1E spec [THEN mp] | assumption | rule iffI ex1I | erule (1) notE
impE | iff assms)+

done

1.5 Equality rules

lemma sym: <a = b= b= w
apply (erule subst)

apply (rule refl)
done

lemma trans: Ja=b;b=¢c] = a=0©
apply (erule subst, assumption)
done

lemma not-sym: <b # a = a # b
apply (erule contrapos)

apply (erule sym)
done

Two theorems for rewriting only one instance of a definition: the first for
definitions of formulae and the second for terms.

lemma def-imp-iff: (A= B) = A «— B»
apply unfold

apply (rule iff-refl)
done

lemma meta-eg-to-obj-eq: <(A
apply unfold
apply (rule refl)
done

B) = A=hHB

lemma meta-eq-to-iff: <z = y = = +— ¥
by unfold (rule iff-refl)

Substitution.

lemma ssubst: «[b = a; P(a)] = P(b)
apply (drule sym)
apply (erule (1) subst)
done

A special case of ex1FE that would otherwise need quantifier expansion.

lemma exI-equalsE: «[3'z. P(x); P(a); P(b)] = a = b
apply (erule ex1FE)
apply (rule trans)
apply (rule-tac [2] sym)
apply (assumption | erule spec [THEN mp])+
done

1.6 Simplifications of assumed implications

Roy Dyckhoff has proved that conj-impE, disj-impE, and imp-impE used
with mp_tac (restricted to atomic formulae) is COMPLETE for intuitionistic
propositional logic.

See R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic (preprint,
University of St Andrews, 1991).

lemma conj-impE:
assumes major: <(P A Q) — S
and . <P — (Q — 5) = R»
shows (R)»
by (assumption | rule conjl impI major [THEN mp) r)+

10

lemma disj-impkE:
assumes magjor: (P V Q) — S
and (P — S; Q@ — 5] = R
shows (R)»
by (assumption | rule disjI1 disjiI2 impI major [THEN mp])+

Simplifies the implication. Classical version is stronger. Still UNSAFE since
Q must be provable — backtracking needed.

lemma imp-impkE:
assumes magjor: (P — Q) — S
and r1: «([P; @ — S] = @
and 72: <SS = R»
shows (R»
by (assumption | rule impI major [THEN mp] r1 r2)+

Simplifies the implication. Classical version is stronger. Still UNSAFE since
P must be provable — backtracking needed.

lemma not-impE: <= P — S = (P = Fulse) = (S = R) = I»
apply (drule mp)
apply (rule notl | assumption)+
done

Simplifies the implication. UNSAFE.

lemma iff-impFE:
assumes magjor: (P +— Q) — S
and r1: ([P; Q — 5] = @
and r2: ([Q; P — S] = P»
and r3: «S = R»
shows (R»
by (assumption | rule iffI impI major [THEN mp| r1 r2 r3)+

What if (Vz. = = P(z)) — = = (V2. P(z)) is an assumption? UNSAFE.

lemma all-impFE:
assumes magjor: (VY z. P(z)) — S»
and r1: «Az. P(z)
and r2: (S = R»
shows «R»
by (rule alll impI major [THEN mp] r1 r2)+

Unsafe: 3z. P(z)) — S is equivalent to Vz. P(z) — S.

lemma ex-impkFE:
assumes major: <(3z. P(xz)) — S
and r: (P(z) — S = R»
shows «R»
by (assumption | rule exI impI major [THEN mp] r)+

Courtesy of Krzysztof Grabczewski.
lemma disj-imp-disj: <PV Q — (P —= R) = (@ = S) = RV S

11

apply (erule disjE)

apply (rule disjl1) apply assumption
apply (rule disjI2) apply assumption
done

ML «

structure Project-Rule = Project-Rule

(
val conjunctl] = Q{thm conjunct!}
val conjunct2 = Q{thm conjunct2}
val mp = Q{thm mp}

ML-file «fologic. ML>»
lemma thin-refl: [t = x; PROP W] = PROP W .

ML «
structure Hypsubst = Hypsubst
(
val dest-eq = FOLogic.dest-eq
val dest-Trueprop = dest-judgment
val dest-imp = FOLogic.dest-imp
val eq-reflection = @Q{thm eg-reflection}
val rev-eg-reflection = Q{thm meta-eg-to-obj-eq}
val imp-intr = Q{thm impl}
val rev-mp = Q{thm rev-mp}
val subst = @{thm subst}
val sym = @{thm sym}
val thin-refl = Q{thm thin-refl}
)i
open Hypsubst;
)

ML-file <intprover. ML

1.7 Intuitionistic Reasoning

setup <Intuitionistic.method-setup binding <iproversy

lemma impFE":
assumes 1: <P —
and 2: «Q = R»
and 3: <P — Q = P»
shows (R»
proof —
from & and 1 have <P) .
with 7 have «Q» by (rule impFE)

12

with 2 show (R) .
qed

lemma allE":
assumes 1: Vz. P(z)
and 2: (P(z) = Vz. P(z) = @
shows <(Q»
proof —
from ! have <P(z)) by (rule spec)
from this and 1 show «@Q> by (rule 2)
qed

lemma notE":

assumes 1: - P»

and 2: (- P — P>

shows (R»
proof —

from 2 and 1 have P> .

with 1 show (R» by (rule notE)
qed

lemmas [Pure.elim!] = disjE iffE FalseE conjE exE
and [Pure.introl] = iffI conjl impI Truel notl alll refl
and [Pure.elim 2] = allE notE’ impE’
and [Pure.intro] = exl disjI2 disjl1

setup <«
Context-Rules.addS Wrapper
(fn ctzt => fn tac => hyp-subst-tac ctzt ORELSE’ tac)

lemma iff-not-sym: <= (Q <+— P) = = (P «— Q)
by iprover

lemmas [sym] = sym iff-sym not-sym iff-not-sym

and [Pure.elim?] = iff D1 iff D2 impE

lemma eg-commute: <a = b +— b = a>
by iprover

1.8 Polymorphic congruence rules

lemma subst-context: <a = b = t(a) = t(b)
by iprover

lemma subst-context2: Ja = b; ¢ = d] = t(a,c) = t(b,d)»
by iprover

13

lemma subst-contexts: Ja = b; ¢ = d; e = f] = t(a,c,e) = t(b,d,f)
by iprover

Useful with eresolve_tac for proving equalities from known equalities.
a=b||lc=d

lemma boz-equals: <Ja =b;a=c¢;b=d] = c=d
by iprover

Dual of boz-equals: for proving equalities backwards.

lemma simp-equals: (Ja = ¢; b=d; c =d] = a = b
by iprover

1.8.1 Congruence rules for predicate letters

lemma predi-cong: <a = a’ = P(a) <— P(a’)
by iprover

lemma pred2-cong: <[a = a’; b = b'] = P(a,b) +— P(a’,b’)
by iprover

lemma pred3-cong: <[a = a’; b = b’; ¢ = ¢/]| = P(a,b,c) «— P(a’,b’,c')
by iprover

Special case for the equality predicate!

lemma eg-cong: <Ja=a5b=0] = a=b++— a’'=b"
by iprover

1.9 Atomizing meta-level rules

lemma atomize-all [atomize]: «(\z. P(z)) = Trueprop (Vz. P(x))
proof
assume <Az. P(z)
then show «Vz. P(z)) ..
next
assume <V z. P(z))
then show (Az. P(z)» ..
qed

lemma atomize-imp [atomize]: «(A = B) = Trueprop (A — B)»
proof
assume (A = B»
then show <A — B ..
next
assume <A — B) and (4>
then show «B) by (rule mp)
qed

lemma atomize-eq [atomize]: «(x = y) = Trueprop (z = y)»

14

proof

assume (z = i

show «z = y unfolding <z = y» by (rule refl)
next

assume (z = y»

then show <z = y» by (rule eq-reflection)
qed

lemma atomize-iff [atomize]: «(A = B) = Trueprop (A +— B)»
proof
assume (4 = B»
show (A +— B) unfolding <A = B» by (rule iff-refl)
next
assume (A «+— B
then show <A = B) by (rule iff-reflection)
qed

lemma atomize-conj [atomize]: (A &&& B) = Trueprop (A A B)»
proof
assume conj: <A &&& B>
show (A A B»
proof (rule conjI)
from conj show (A by (rule conjunctionD1)
from conj show (B> by (rule conjunctionD2)
qed
next
assume conj: <A A B»
show <4 &&& B
proof —
from conj show <A ..
from conj show B> ..
qed
qed

lemmas [symmetric, rulify] = atomize-all atomize-imp

and [symmetric, defn] = atomize-all atomize-imp atomize-eq atomize-iff
1.10 Atomizing elimination rules
lemma atomize-exL[atomize-elim]: «(Az. P(z) = Q) = ((3z. P(z)) = Q)

by rule iprover+

lemma atomize-conjL{atomize-elim]|: «(A = B = C) = (AN B = C)
by rule iprover+

lemma atomize-disjL[atomize-elim|: «(A = C) = (B = () = () = ((4

VB= C)= C)
by rule iprover+

15

lemma atomize-elimL[atomize-elim]: <(AB. (A = B) = B) = Trueprop(4); ..

1.11 Calculational rules

lemma forw-subst: <a = b = P(b) = P(a))
by (rule ssubst)

lemma back-subst: <P(a) = a = b = P(b)»
by (rule subst)

Note that this list of rules is in reverse order of priorities.

lemmas basic-trans-rules [trans] =
forw-subst
back-subst
rev-mp
mp
trans

1.12 “Let” declarations
nonterminal letbinds and letbind

definition Let :: «['a::{}, 'a => 'b] = ("b::{})
where <Let(s, f) = f(s)

syntax

-bind i «[pttrn, ‘a] => letbindy («(<indent=2 notation=<infix let binding>»-
=/) 10)

i «letbind => letbinds» (¢=))

-binds i «[letbind, letbinds] => letbindsy (s-;/ -»)

-Let i «([letbinds, 'a] => 'ay («(<notation=<mizfix let expressionylet (-)/
in (-)) 10)
syntax-consts

-Let = Let
translations

-Let(-binds(b, bs), e) == -Let(b, -Let(bs, ¢))

letz=aine == CONST Let(a, \z. €)

lemma Letl:
assumes (A\z. z = t = P(u(z))
shows (P(let x = ¢ in u(x))>
unfolding Let-def
apply (rule refl [THEN assms])
done

1.13 Intuitionistic simplification rules

lemma conj-simps:
<P A True <— P»
<True N\ P <— P»

16

<P A Fulse +— Fulse)

<False N P +— Fulse)

(PN P +— P
«(PANPANQ<+—PANQ

<P N = P <— False

<= P N P <— Fualser
(PANQ)ANR<+—PA(QANR)
by iprover+

lemma disj-simps:
<PV True «<— True»
<True V P <— True)
<PV Fualse <— P»
<False V P +— P»
<PV P +— P
«<PVPVQ+—PVQ
(PV Q) VR+—PV(QV R)
by iprover+

lemma not-simps:
<—|(P\/Q)<—>—‘P/\—\Q>
<= False «+— True»
<= True <— False»
by iprover+

lemma imp-simps:
(P — False) «— — P»
(P — True) +— True
<(False — P) «— True»
«(True — P) «— P»
(P — P) +— True
(P— 2 P)+— P
by iprover+

lemma iff-simps:
(True +— P) «— P
(P «— True) «— P
(P +— P) «— True
((False +— P) «— = P
((P <— Fualse) «— - P

by iprover+

The x = t versions are needed for the simplification procedures.

lemma quant-simps:
(ANP. (Vz. P) «— P
«(Vz. z =t — P(z)) «— P(t)
«(Vz. t =2 — P(z)) «— P(t)
<AP. (3z. P) «— P»
dz.z =1t

17

Jz. t = o
«(Fz.z =1t A P(z)) «— P(1)
«(Jz. t =z AN P(z)) «— P(t)
by iprover+

~

These are NOT supplied by default!

lemma distrib-simps:
(PA(QV R)«—PANQVPAR
(QVR)YANP+— QANPVRAP
(PVQ-—R)+— (P— R)AN(Q— R
by iprover+

lemma subst-all:
«(A\z. z = a = PROP P(z)) = PROP P(a)
«(A\z. a = £ = PROP P(z)) = PROP P(a)
proof —
show «(A\z. £ = a = PROP P(z)) = PROP P(a)
proof (rule equal-intr-rule)
assume *: (A\z. = a = PROP P(z)»
show (PROP P(a)»
by (rule x) (rule refl)
next
fix »
assume <PROP P(a)) and «x = a)
from <z = a» have <z = o
by (rule eg-reflection)
with «+PROP P(a)> show «(PROP P(x)»
by simp
qed
show «(Az. a = £ = PROP P(z)) = PROP P(a)
proof (rule equal-intr-rule)
assume *: <A\z. a = £ = PROP P(z))
show <PROP P(a))
by (rule %) (rule refl)
next
fix z
assume <PROP P(a)) and <a = >
from <a = 2> have <a = o
by (rule eg-reflection)
with «+PROP P(a)» show (PROP P(x)»
by simp
qed
qed

1.13.1 Conversion into rewrite rules

lemma P-iff-F: <= P = (P <— Fulse)»
by iprover
lemma iff-reflection-F: <— P = (P = Fulse))

18

by (rule P-iff-F [THEN iff-reflection])

lemma P-iff-T: <P = (P <— True)»
by iprover

lemma iff-reflection-T: <P = (P = True)»
by (rule P-iff-T [THEN iff-reflection))

1.13.2 More rewrite rules

lemma conj-commute: <P A @Q <— @Q A P» by iprover
lemma conj-left-commute: <P A (Q AN R) «— Q A (P A R)» by iprover
lemmas conj-comms = conj-commute conj-left-commute

lemma disj-commute: <P V Q +— @Q V P» by iprover
lemma disj-left-commute: <P V (Q V R) +— Q V (P V R)) by iprover
lemmas disj-comms = disj-commute disj-left-commute

lemma conj-disj-distribL: <P AN (Q V R) +— (P A Q@ V P A R)» by iprover
lemma conj-disj-distribR: «(PV Q) AN R +— (P AN RV Q A R)) by iprover

lemma disj-conj-distribL: <P V (Q N R) +— (P V Q) A (P V R)» by iprover
lemma disj-conj-distribR: (P A Q) V R «<— (P V R) A (Q V R)» by iprover

lemma imp-conj-distrib: (P — (Q A R)) «— (P — Q) N (P — R)) by
iprover

lemma imp-conj: <«((P AN Q) — R) +— (P — (Q — R))» by iprover
lemma imp-disj: «(PV @ — R) +— (P — R) A (Q — R)» by iprover
lemma de-Morgan-disj: <«(—= (P V Q)) <— (= P A = Q) by iprover

lemma not-ex: <«(= (Jz. P(x))) «— (Vz. = P(z))> by iprover
lemma imp-ex: <((3z. P(z)) — Q) «— (Vz. P(z) — @Q)» by iprover

lemma ex-disj-distrib: «(3z. P(z) V Q(z)) «— ((Fz. P(z)) V (Fz. Q(z)))
by iprover

lemma all-conj-distrib: <«(Vx. P(z) A Q(z)) +— ((Vz. P(z)) A (Vz. Q(x)))
by iprover

end

2 Classical first-order logic

theory FOL

imports IFOL

keywords print-claset print-induct-rules :: diag
begin

ML-file <~ /src/ Provers/ classical. ML»

19

ML-file <~ /src/ Provers/blast. ML)
ML-file <~ /src/ Provers/ clasimp. ML»

2.1 The classical axiom

axiomatization where
classical: «(- P = P) = P»

2.2 Lemmas and proof tools

lemma ccontr: «(—- P = False) = P
by (erule FalseE [THEN classical])

2.2.1 Classical introduction rules for vV and 3

lemma disjCI: «(- Q = P) = PV @
apply (rule classical)
apply (assumption | erule meta-mp | rule disjl1 notl)+
apply (erule notE disjI2)+
done

Introduction rule involving only 3

lemma ex-classical:
assumes r: <— (3z. P(z)) = P(a)
shows <Jz. P(z)»
apply (rule classical)
apply (rule exl, erule r)
done

Version of above, simplifying =3 to V —.

lemma exCI:
assumes r: <Vz. = P(z) = P(a)
shows «3z. P(z)»
apply (rule ex-classical)
apply (rule notl [THEN alll, THEN r])
apply (erule notE)
apply (erule exl)
done

lemma excluded-middle: <— P V P
apply (rule disjCI)
apply assumption
done

lemma case-split [case-names True False]:
assumes r1: (P = @
and 72: <= P =
shows <(Q»
apply (rule excluded-middle [THEN disjE])

20

apply (erule r2)
apply (erule r1)
done

ML ¢
fun case-tac ctxt a fires =
Rule-Insts.res-inst-tac ctat [(((P, 0), Position.none), a)| fizes Q{thm case-split};
)

method-setup case-tac = «

Args.goal-spec —— Scan.lift (Parse.embedded-inner-syntax —— Parse.for-fizes)
>>

(fn (quant, (s, fizes)) => fn ctat => SIMPLE-METHOD" quant (case-tac ctat
s fizes))

» case-tac emulation (dynamic instantiation!)

2.3 Special elimination rules

Classical implies (—) elimination.

lemma impCE:
assumes major: (P — @Q»
and ri: «- P = R»
and 72: «\Q = R»
shows (R)»
apply (rule excluded-middle [THEN disjE])
apply (erule r1)
apply (rule r2)
apply (erule major [THEN mp))
done

This version of — elimination works on) before P. It works best for those
cases in which P holds “almost everywhere”. Can’t install as default: would
break old proofs.

lemma impCE":
assumes major: <P —
and r1: «Q = R»
and r2: <= P = R»
shows (R»
apply (rule excluded-middle [THEN disjE])
apply (erule r2)
apply (rule r1)
apply (erule major [THEN mp))
done

Double negation law.

lemma notnotD: (- = P = P»
apply (rule classical)
apply (erule notE)

21

apply assumption
done

lemma contrapos2: (J@Q; -~ P = - Q] = P>
apply (rule classical)
apply (drule (1) meta-mp)
apply (erule (1) notE)
done

2.3.1 Tactics for implication and contradiction

Classical «+— elimination. Proof substitutes P = @ in = P = = @ and P
== Q.

lemma iffCE:

assumes major: <P <— @
and r1: «([P; Q] = R
and 72: <[~ P; - Q] = R»

shows (R)»

apply (rule major [unfolded iff-def, THEN conjE])

apply (elim impCE)
apply (erule (1) r2)
apply (erule (1) notE)+

apply (erule (1) r1)

done

lemma alt-exlE:
assumes major: 3! z. P(z)
and r: <Az. [P(z); Vyy' Ply) A P(y) — y =y] = R
shows «R»
using major
proof (rule ex1FE)
fix z
assume * : Vy. P(y) — y =2
assume <P(z)
then show «R»
proof (rule r)
{
fix yy'
assume <P(y)» and <P(y’)
with x have (x = y» and <z = y"
by — (tactic IntPr.fast-tac context 1)+
then have <y = y" by (rule subst)
} note r’ = this
show «Vy y". P(y) A P(y") — y = y»
by (intro strip, elim conjE) (rule ')
qed
qed

22

lemma imp-elim: <P — Q@ — (- R — P) — (@ = R) = R»
by (rule classical) iprover

lemma swap: <+ P = (- R= P) = R
by (rule classical) iprover

3 Classical Reasoner

ML ¢

structure Cla = Classical

(
val imp-elim = @Q{thm imp-elim}
val not-elim = @Q{thm notE}
val swap = Q{thm swap}
val classical = Q{thm classical}
val sizef = size-of-thm
val hyp-subst-tacs = [hyp-subst-tac]

);

structure Basic-Classical: BASIC-CLASSICAL = Cla;
open Basic-Classical,
)

lemmas [intro!] = refl Truel congl disjCI impl notl iffI
and [elim!] = conjE disjE impCE FalseE iffCE
ML <wal prop-cs = claset-of context)

lemmas [intro!] = alll ex-ex1]
and [intro] = exl
and [elim!] = exFE alt-exlE
and [elim] = allE
ML <wval FOL-cs = claset-of context»

ML «
structure Blast = Blast
(
structure Classical = Cla
val Trueprop-const = dest-Const Const < Trueprops
val equality-name = const-name <eq>
val not-name = const-name «Not»
val notE = Q{thm notE}
val ccontr = Q{thm ccontr}
val hyp-subst-tac = Hypsubst.blast-hyp-subst-tac
)i
val blast-tac = Blast.blast-tac;
)

23

lemma ex!-functional: <[3! z. P(a,2); P(a,b); P(a,c)] = b= o
by blast

Elimination of True from assumptions:

lemma True-implies-equals: «(True = PROP P) = PROP P
proof
assume < True = PROP P)
from this and Truel show <PROP P .
next
assume (PROP P)
then show <PROP P .
qed

lemma uncurry: <P — Q@ — R=— P AN Q — R
by blast

lemma iff-alll: <(Az. P(z) +— Q(z)) = (Vz. P(z)) «— (Vz. Q(z))
by blast

lemma iff-exl: «(Az. P(z) +— Q(z)) = (Jz. P(z)) +— (Fz. Qz)»
by blast

lemma all-comm: «(Vz y. P(z,y)) «— (Vy z. P(z,y))
by blast

lemma ex-comm: «(3z y. P(z,y)) +— By z. P(z,y))
by blast

3.1 Classical simplification rules
Avoids duplication of subgoals after expand-if, when the true and false cases
boil down to the same thing.
lemma cases-simp: (P — Q) A (- P — Q) «— @
by blast

3.1.1 Miniscoping: pushing quantifiers in

We do NOT distribute of V over A, or dually that of 3 over V.
Baaz and Leitsch, On Skolemization and Proof Complexity (1994) show that

this step can increase proof length!
Existential miniscoping.

lemma int-ex-simps:
(AP Q. 3z. P(z) A Q) «— (Fz. P(z)) A O
(AP Q. (3z. PA Q(z)) «— P A (Fz. Qx))

24

(AP Q. 3z. P(z) V Q) «— (3z. P(x)) V
AP Q. (3z. PV Q(z)) «— P Vv (3z. Qz))
by iprover+

Classical rules.

lemma cla-ez-simps:
AP Q. (3z. P(z) — Q) «— (Vz. P(z)) — @
(AP Q. (3z. P — Q(z)) «— P — (Fz. Q)
by blast+

lemmas ex-simps = int-ex-simps cla-ex-simps

Universal miniscoping.

lemma int-all-simps:
AP Q. (Vz. P(z) A Q) «— (Va. P(z)) A Q»
AP Q. (Vz. PA Q(z)) «— P A (Vz. Q(z))
AP Q. (Vz. P(z) — Q) «— (3 2. P(z)) — @
AP Q. (Vz. P — Q(z)) «— P — (Vz. Q(z))
by iprover+

Classical rules.

lemma cla-all-simps:
AP Q. (Vz. P(z) V Q) «— (V. P(z)) V
AP Q. (Vz. PV Q(z)) «— PV (Vz. Q(z))
by blast+

lemmas all-simps = int-all-simps cla-all-simps

3.1.2 Named rewrite rules proved for IFOL

lemma imp-disjl: «(P — Q) V R +— (P — @ V R)» by blast
lemma imp-disj2: <Q V (P — R) «— (P — @ V R)» by blast
lemma de-Morgan-conj: <«(— (P A Q)) «— (- P V = Q)» by blast

lemma not-imp: <= (P — Q) <— (P A = @)» by blast
lemma not-iff: <= (P +— Q) +— (P «— — Q)» by blast

lemma not-all: «(= (Vz. P(z))) +— (2. - P(z))» by blast
lemma imp-all: <«(Vz. P(z)) — Q) +— (Fz. P(z) — Q)» by blast

lemmas meta-simps =
triv-forall-equality — prunes params
True-implies-equals — prune asms True

lemmas IFOL-simps =

refl [THEN P-iff-T| conj-simps disj-simps not-simps
imp-simps iff-simps quant-simps

25

lemma notFualsel: <= Falsey by iprover

lemma cla-simps-misc:
<—|(P/\Q)<—>—‘P\/—\Q>
<PV = P
<= PV P
<1 P+— P
(2 P— P)¢— P
(= P+— = Q) «— (P +— Q) by blast+

lemmas cla-simps =
de-Morgan-conj de-Morgan-disj imp-disjl imp-disj2
not-imp not-all not-ex cases-simp cla-simps-misc

ML-file <simpdata.ML>

simproc-setup defined-Ex («3z. P(z)) = <K Quantifier! .rearrange-Ex)
simproc-setup defined-All (\Vz. P(z)y) = <K Quantifierl .rearrange-All»
simproc-setup defined-all(\z. PROP P(z)) = <K Quantifier! .rearrange-ally

ML «
(xintuitionistic simprules onlyx)
val IFOL-ss =
put-simpset FOL-basic-ss context
|> Simplifier.add-simps Q{thms meta-simps IFOL-simps int-ex-simps int-all-simps
subst-all}
|> Simplifier.add-proc simproc «defined-Alls
|> Simplifier.add-proc simproc «defined-Ex»
|> Simplifier.add-cong Q{thm imp-cong}
|> simpset-of;

(xclassical simprules toox)

val FOL-ss =
put-simpset IFOL-ss context
|> Simplifier.add-simps Q{thms cla-simps cla-ex-simps cla-all-simps}
|> simpset-of';

)

setup <«
map-theory-simpset (put-simpset FOL-ss) #>
Simplifier.method-setup Splitter.split-modifiers
)

ML-file <~ /src/ Tools/ eqsubst. ML)

26

3.2 Other simple lemmas
lemma [simp]: <((P — R) +— (@ — R)) +— ((P «— Q) V R)»
by blast

lemma [simp]: <«((P — Q) «— (P — R)) +— (P — (Q <— R))»
by blast

lemma not-disj-iff-imp: <= PV Q +— (P — Q)
by blast

3.2.1 Monotonicity of implications
lemma conj-mono: <([P1 — Q1; P2 — Q2] = (P1 AN P2) — (Q1 A Q2)
by fast

lemma disj-mono: <([P1 — Q1; P2 — Q2] = (P1 V P2) — (Q1 vV Q2)»
by fast

lemma imp-mono: <(JQ1 — PI1; P2 — Q2] = (P1 — P2) — (Q1 —
Q2)
by fast

lemma imp-refl: <P — P>
by (rule impI)
The quantifier monotonicity rules are also intuitionistically valid.
lemma ex-mono: «(Az. P(z) — Q(z)) = (Jz. P(z)) — (3Fz. Q(z))
by blast

lemma all-mono: <«(Az. P(z) — Q(z)) = (Vz. P(z)) — (Vz. Q(z))»
by blast

3.3 Proof by cases and induction

Proper handling of non-atomic rule statements.

context
begin

qualified definition <induct-forall(P) = Vz. P(x)
qualified definition <induct-implies(A, B) = A — B»
qualified definition <induct-equal(z, y) = z =
qualified definition <induct-conj(A, B) = A A B»

lemma induct-forall-eq: <«(A\z. P(z)) = Trueprop(induct-forall(Az. P(z)))>
unfolding atomize-all induct-forall-def .

lemma induct-implies-eq: <(A = B) = Trueprop(induct-implies(A, B))»
unfolding atomize-imp induct-implies-def .

27

lemma induct-equal-eq: «(z = y) = Trueprop(induct-equal(z, y))»
unfolding atomize-eq induct-equal-def .

lemma induct-conj-eq: (A &&& B) = Trueprop(induct-conj(A, B))»
unfolding atomize-conj induct-conj-def .

lemmas induct-atomize = induct-forall-eq induct-implies-eq induct-equal-eq induct-conj-eq
lemmas induct-rulify [symmetric] = induct-atomize
lemmas induct-rulify-fallback =

induct-forall-def induct-implies-def induct-equal-def induct-conj-def

Method setup.

ML-file <~ /sre/ Tools/induct. ML)
ML <
structure Induct = Induct

(

val cases-default = Q{thm case-split}

val atomize = @Q{thms induct-atomize}

val rulify = @Q{thms induct-rulify}

val rulify-fallback = @Q{thms induct-rulify-fallback}
val equal-def = @Q{thm induct-equal-def}

fun dest-def - = NONE

fun trivial-tac - - = no-tac

);
)
declare case-split [cases type: o]

end

ML-file <~ /src/ Tools/ case-product. ML»

hide-const (open) eq

end

28

	Intuitionistic first-order logic
	Syntax and axiomatic basis
	Equality
	Propositional logic
	Quantifiers
	Definitions
	Old-style ASCII syntax

	Lemmas and proof tools
	Sequent-style elimination rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 --3mu and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000
	Negation rules, which translate between 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 P --3mu False
	Modus Ponens Tactics

	If-and-only-if
	Destruct rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu similar to Modus Ponens

	Unique existence
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 -3mu congruence rules for simplification

	Equality rules
	Simplifications of assumed implications
	Intuitionistic Reasoning
	Polymorphic congruence rules
	Congruence rules for predicate letters

	Atomizing meta-level rules
	Atomizing elimination rules
	Calculational rules
	``Let'' declarations
	Intuitionistic simplification rules
	Conversion into rewrite rules
	More rewrite rules

	Classical first-order logic
	The classical axiom
	Lemmas and proof tools
	Classical introduction rules for 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 and 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000

	Special elimination rules
	Tactics for implication and contradiction

	Classical Reasoner
	Classical simplification rules
	Miniscoping: pushing quantifiers in
	Named rewrite rules proved for IFOL

	Other simple lemmas
	Monotonicity of implications

	Proof by cases and induction

