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1 Natural numbers
theory Natural-Numbers
imports FOL
begin

Theory of the natural numbers: Peano’s axioms, primitive recursion. (Mod-
ernized version of Larry Paulson’s theory "Nat".)

typedecl nat
instance nat :: ‹term› ..

axiomatization
Zero :: ‹nat› (‹0 ›) and
Suc :: ‹nat => nat› and
rec :: ‹[nat, ′a, [nat, ′a] => ′a] => ′a›

where
induct [case-names 0 Suc, induct type: nat]:

‹P(0 ) ==> (!!x. P(x) ==> P(Suc(x))) ==> P(n)› and
Suc-inject: ‹Suc(m) = Suc(n) ==> m = n› and
Suc-neq-0 : ‹Suc(m) = 0 ==> R› and
rec-0 : ‹rec(0 , a, f ) = a› and
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rec-Suc: ‹rec(Suc(m), a, f ) = f (m, rec(m, a, f ))›

lemma Suc-n-not-n: ‹Suc(k) 6= k›
proof (induct ‹k›)

show ‹Suc(0 ) 6= 0 ›
proof

assume ‹Suc(0 ) = 0 ›
then show ‹False› by (rule Suc-neq-0 )

qed
next

fix n assume hyp: ‹Suc(n) 6= n›
show ‹Suc(Suc(n)) 6= Suc(n)›
proof

assume ‹Suc(Suc(n)) = Suc(n)›
then have ‹Suc(n) = n› by (rule Suc-inject)
with hyp show ‹False› by contradiction

qed
qed

definition add :: ‹nat => nat => nat› (infixl ‹+› 60 )
where ‹m + n = rec(m, n, λx y. Suc(y))›

lemma add-0 [simp]: ‹0 + n = n›
unfolding add-def by (rule rec-0 )

lemma add-Suc [simp]: ‹Suc(m) + n = Suc(m + n)›
unfolding add-def by (rule rec-Suc)

lemma add-assoc: ‹(k + m) + n = k + (m + n)›
by (induct ‹k›) simp-all

lemma add-0-right: ‹m + 0 = m›
by (induct ‹m›) simp-all

lemma add-Suc-right: ‹m + Suc(n) = Suc(m + n)›
by (induct ‹m›) simp-all

lemma
assumes ‹!!n. f (Suc(n)) = Suc(f (n))›
shows ‹f (i + j) = i + f (j)›
using assms by (induct ‹i›) simp-all

end
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2 Examples for the manual “Introduction to Is-
abelle”

theory Intro
imports FOL
begin

2.0.1 Some simple backward proofs
lemma mythm: ‹P ∨ P −→ P›
apply (rule impI )
apply (rule disjE)
prefer 3 apply (assumption)
prefer 2 apply (assumption)
apply assumption
done

lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R)›
apply (rule impI )
apply (erule disjE)
apply (drule conjunct1 )
apply (rule disjI1 )
apply (rule-tac [2 ] disjI2 )
apply assumption+
done

Correct version, delaying use of spec until last.
lemma ‹(∀ x y. P(x,y)) −→ (∀ z w. P(w,z))›
apply (rule impI )
apply (rule allI )
apply (rule allI )
apply (drule spec)
apply (drule spec)
apply assumption
done

2.0.2 Demonstration of fast
lemma ‹(∃ y. ∀ x. J (y,x)←→ ¬ J (x,x)) −→ ¬ (∀ x. ∃ y. ∀ z. J (z,y)←→ ¬ J (z,x))›
apply fast
done

lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›
apply fast
done

2.0.3 Derivation of conjunction elimination rule
lemma
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assumes major : ‹P ∧ Q›
and minor : ‹[[P; Q]] =⇒ R›

shows ‹R›
apply (rule minor)
apply (rule major [THEN conjunct1 ])
apply (rule major [THEN conjunct2 ])
done

2.1 Derived rules involving definitions

Derivation of negation introduction
lemma

assumes ‹P =⇒ False›
shows ‹¬ P›

apply (unfold not-def )
apply (rule impI )
apply (rule assms)
apply assumption
done

lemma
assumes major : ‹¬ P›

and minor : ‹P›
shows ‹R›

apply (rule FalseE)
apply (rule mp)
apply (rule major [unfolded not-def ])
apply (rule minor)
done

Alternative proof of the result above
lemma

assumes major : ‹¬ P›
and minor : ‹P›

shows ‹R›
apply (rule minor [THEN major [unfolded not-def , THEN mp, THEN FalseE ]])
done

end

3 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat
imports FOL

begin
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typedecl nat
instance nat :: ‹term› ..

axiomatization
Zero :: ‹nat› (‹0 ›) and
Suc :: ‹nat ⇒ nat› and
rec :: ‹[nat, ′a, [nat, ′a] ⇒ ′a] ⇒ ′a›

where
induct: ‹[[P(0 );

∧
x. P(x) =⇒ P(Suc(x))]] =⇒ P(n)› and

Suc-inject: ‹Suc(m)=Suc(n) =⇒ m=n› and
Suc-neq-0 : ‹Suc(m)=0 =⇒ R› and
rec-0 : ‹rec(0 ,a,f ) = a› and
rec-Suc: ‹rec(Suc(m), a, f ) = f (m, rec(m,a,f ))›

definition add :: ‹[nat, nat] ⇒ nat› (infixl ‹+› 60 )
where ‹m + n ≡ rec(m, n, λx y. Suc(y))›

3.1 Proofs about the natural numbers
lemma Suc-n-not-n: ‹Suc(k) 6= k›
apply (rule-tac n = ‹k› in induct)
apply (rule notI )
apply (erule Suc-neq-0 )
apply (rule notI )
apply (erule notE)
apply (erule Suc-inject)
done

lemma ‹(k+m)+n = k+(m+n)›
apply (rule induct)
back
back
back
back
back
back
oops

lemma add-0 [simp]: ‹0+n = n›
apply (unfold add-def )
apply (rule rec-0 )
done

lemma add-Suc [simp]: ‹Suc(m)+n = Suc(m+n)›
apply (unfold add-def )
apply (rule rec-Suc)
done

lemma add-assoc: ‹(k+m)+n = k+(m+n)›
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apply (rule-tac n = ‹k› in induct)
apply simp
apply simp
done

lemma add-0-right: ‹m+0 = m›
apply (rule-tac n = ‹m› in induct)
apply simp
apply simp
done

lemma add-Suc-right: ‹m+Suc(n) = Suc(m+n)›
apply (rule-tac n = ‹m› in induct)
apply simp-all
done

lemma
assumes prem: ‹

∧
n. f (Suc(n)) = Suc(f (n))›

shows ‹f (i+j) = i+f (j)›
apply (rule-tac n = ‹i› in induct)
apply simp
apply (simp add: prem)
done

end

4 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat-Class
imports FOL

begin

This is an abstract version of Nat.thy. Instead of axiomatizing a single type
nat, it defines the class of all these types (up to isomorphism).
Note: The rec operator has been made monomorphic, because class axioms
cannot contain more than one type variable.
class nat =

fixes Zero :: ‹ ′a› (‹0 ›)
and Suc :: ‹ ′a ⇒ ′a›
and rec :: ‹ ′a ⇒ ′a ⇒ ( ′a ⇒ ′a ⇒ ′a) ⇒ ′a›

assumes induct: ‹P(0 ) =⇒ (
∧

x. P(x) =⇒ P(Suc(x))) =⇒ P(n)›
and Suc-inject: ‹Suc(m) = Suc(n) =⇒ m = n›
and Suc-neq-Zero: ‹Suc(m) = 0 =⇒ R›
and rec-Zero: ‹rec(0 , a, f ) = a›
and rec-Suc: ‹rec(Suc(m), a, f ) = f (m, rec(m, a, f ))›

begin
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definition add :: ‹ ′a ⇒ ′a ⇒ ′a› (infixl ‹+› 60 )
where ‹m + n = rec(m, n, λx y. Suc(y))›

lemma Suc-n-not-n: ‹Suc(k) 6= (k:: ′a)›
apply (rule-tac n = ‹k› in induct)
apply (rule notI )
apply (erule Suc-neq-Zero)

apply (rule notI )
apply (erule notE)
apply (erule Suc-inject)
done

lemma ‹(k + m) + n = k + (m + n)›
apply (rule induct)
back
back
back
back
back
oops

lemma add-Zero [simp]: ‹0 + n = n›
apply (unfold add-def )
apply (rule rec-Zero)
done

lemma add-Suc [simp]: ‹Suc(m) + n = Suc(m + n)›
apply (unfold add-def )
apply (rule rec-Suc)
done

lemma add-assoc: ‹(k + m) + n = k + (m + n)›
apply (rule-tac n = ‹k› in induct)
apply simp

apply simp
done

lemma add-Zero-right: ‹m + 0 = m›
apply (rule-tac n = ‹m› in induct)
apply simp

apply simp
done

lemma add-Suc-right: ‹m + Suc(n) = Suc(m + n)›
apply (rule-tac n = ‹m› in induct)
apply simp-all

done

lemma
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assumes prem: ‹
∧

n. f (Suc(n)) = Suc(f (n))›
shows ‹f (i + j) = i + f (j)›
apply (rule-tac n = ‹i› in induct)
apply simp

apply (simp add: prem)
done

end

end

5 Intuitionistic FOL: Examples from The Founda-
tion of a Generic Theorem Prover

theory Foundation
imports IFOL
begin

lemma ‹A ∧ B −→ (C −→ A ∧ C )›
apply (rule impI )
apply (rule impI )
apply (rule conjI )
prefer 2 apply assumption
apply (rule conjunct1 )
apply assumption
done

A form of conj-elimination
lemma

assumes ‹A ∧ B›
and ‹A =⇒ B =⇒ C ›

shows ‹C ›
apply (rule assms)
apply (rule conjunct1 )
apply (rule assms)
apply (rule conjunct2 )
apply (rule assms)
done

lemma
assumes ‹

∧
A. ¬ ¬ A =⇒ A›

shows ‹B ∨ ¬ B›
apply (rule assms)
apply (rule notI )
apply (rule-tac P = ‹¬ B› in notE)
apply (rule-tac [2 ] notI )
apply (rule-tac [2 ] P = ‹B ∨ ¬ B› in notE)
prefer 2 apply assumption
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apply (rule-tac [2 ] disjI1 )
prefer 2 apply assumption
apply (rule notI )
apply (rule-tac P = ‹B ∨ ¬ B› in notE)
apply assumption
apply (rule disjI2 )
apply assumption
done

lemma
assumes ‹

∧
A. ¬ ¬ A =⇒ A›

shows ‹B ∨ ¬ B›
apply (rule assms)
apply (rule notI )
apply (rule notE)
apply (rule-tac [2 ] notI )
apply (erule-tac [2 ] notE)
apply (erule-tac [2 ] disjI1 )
apply (rule notI )
apply (erule notE)
apply (erule disjI2 )
done

lemma
assumes ‹A ∨ ¬ A›

and ‹¬ ¬ A›
shows ‹A›

apply (rule disjE)
apply (rule assms)
apply assumption
apply (rule FalseE)
apply (rule-tac P = ‹¬ A› in notE)
apply (rule assms)
apply assumption
done

5.1 Examples with quantifiers
lemma

assumes ‹∀ z. G(z)›
shows ‹∀ z. G(z) ∨ H (z)›

apply (rule allI )
apply (rule disjI1 )
apply (rule assms [THEN spec])
done

lemma ‹∀ x. ∃ y. x = y›
apply (rule allI )
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apply (rule exI )
apply (rule refl)
done

lemma ‹∃ y. ∀ x. x = y›
apply (rule exI )
apply (rule allI )
apply (rule refl)?
oops

Parallel lifting example.
lemma ‹∃ u. ∀ x. ∃ v. ∀ y. ∃w. P(u,x,v,y,w)›
apply (rule exI allI )
apply (rule exI allI )
apply (rule exI allI )
apply (rule exI allI )
apply (rule exI allI )
oops

lemma
assumes ‹(∃ z. F(z)) ∧ B›
shows ‹∃ z. F(z) ∧ B›

apply (rule conjE)
apply (rule assms)
apply (rule exE)
apply assumption
apply (rule exI )
apply (rule conjI )
apply assumption
apply assumption
done

A bigger demonstration of quantifiers – not in the paper.
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›
apply (rule impI )
apply (rule allI )
apply (rule exE , assumption)
apply (rule exI )
apply (rule allE , assumption)
apply assumption
done

end

6 First-Order Logic: PROLOG examples
theory Prolog
imports FOL
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begin

typedecl ′a list
instance list :: (‹term›) ‹term› ..

axiomatization
Nil :: ‹ ′a list› and
Cons :: ‹[ ′a, ′a list]=> ′a list› (infixr ‹:› 60 ) and
app :: ‹[ ′a list, ′a list, ′a list] => o› and
rev :: ‹[ ′a list, ′a list] => o›

where
appNil: ‹app(Nil,ys,ys)› and
appCons: ‹app(xs,ys,zs) ==> app(x:xs, ys, x:zs)› and
revNil: ‹rev(Nil,Nil)› and
revCons: ‹[| rev(xs,ys); app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)›

schematic-goal ‹app(a:b:c:Nil, d:e:Nil, ?x)›
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
done

schematic-goal ‹app(?x, c:d:Nil, a:b:c:d:Nil)›
apply (rule appNil appCons)+
done

schematic-goal ‹app(?x, ?y, a:b:c:d:Nil)›
apply (rule appNil appCons)+
back
back
back
back
done

lemmas rules = appNil appCons revNil revCons

schematic-goal ‹rev(a:b:c:d:Nil, ?x)›
apply (rule rules)+
done

schematic-goal ‹rev(a:b:c:d:e:f :g:h:i:j:k:l:m:n:Nil, ?w)›
apply (rule rules)+
done

schematic-goal ‹rev(?x, a:b:c:Nil)›
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apply (rule rules)+ — does not solve it directly!
back
back
done

ML ‹
fun prolog-tac ctxt =

DEPTH-FIRST Thm.no-prems (resolve-tac ctxt @{thms rules} 1 )
›

schematic-goal ‹rev(?x, a:b:c:Nil)›
apply (tactic ‹prolog-tac context ›)
done

schematic-goal ‹rev(a:?x:c:?y:Nil, d:?z:b:?u)›
apply (tactic ‹prolog-tac context ›)
done

schematic-goal ‹rev(a:b:c:d:e:f :g:h:i:j:k:l:m:n:o:p:Nil, ?w)›
apply (tactic ‹

DEPTH-SOLVE (resolve-tac context ([@{thm refl}, @{thm conjI}] @ @{thms
rules}) 1 )›)
done

schematic-goal ‹a:b:c:d:e:f :g:h:i:j:k:l:m:n:o:p:Nil = ?x ∧ app(?x,?x,?y) ∧ rev(?y,?w)›
apply (tactic ‹

DEPTH-SOLVE (resolve-tac context ([@{thm refl}, @{thm conjI}] @ @{thms
rules}) 1 )›)
done

end

7 Intuitionistic First-Order Logic
theory Intuitionistic
imports IFOL
begin

Metatheorem (for propositional formulae): P is classically provable iff ¬¬P
is intuitionistically provable. Therefore ¬P is classically provable iff it is
intuitionistically provable.
Proof: Let Q be the conjunction of the propositions A ∨ ¬A, one for each
atom A in P . Now ¬¬Q is intuitionistically provable because ¬¬(A∨¬A) is
and because double-negation distributes over conjunction. If P is provable
classically, then clearly Q→ P is provable intuitionistically, so ¬¬(Q→ P )

13



is also provable intuitionistically. The latter is intuitionistically equivalent
to ¬¬Q → ¬¬P , hence to ¬¬P , since ¬¬Q is intuitionistically provable.
Finally, if P is a negation then ¬¬P is intuitionstically equivalent to P .
[Andy Pitts]
lemma ‹¬ ¬ (P ∧ Q) ←→ ¬ ¬ P ∧ ¬ ¬ Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ((¬ P −→ Q) −→ (¬ P −→ ¬ Q) −→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)

Double-negation does NOT distribute over disjunction.
lemma ‹¬ ¬ (P −→ Q) ←→ (¬ ¬ P −→ ¬ ¬ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ¬ P ←→ ¬ P›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ((P −→ Q ∨ R) −→ (P −→ Q) ∨ (P −→ R))›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(P ←→ Q) ←→ (Q ←→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((P −→ (Q ∨ (Q −→ R))) −→ R) −→ R›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma
‹(((G −→ A) −→ J ) −→ D −→ E) −→ (((H −→ B) −→ I ) −→ C −→ J )
−→ (A −→ H ) −→ F −→ G −→ (((C −→ B) −→ I ) −→ D) −→ (A −→ C )
−→ (((F −→ A) −→ B) −→ I ) −→ E›

by (tactic ‹IntPr .fast-tac context 1 ›)

Admissibility of the excluded middle for negated formulae
lemma ‹(P ∨ ¬P −→ ¬Q) −→ ¬Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

The same in a more general form, no ex falso quodlibet
lemma ‹(P ∨ (P−→R) −→ Q −→ R) −→ Q −→ R›

by (tactic ‹IntPr .fast-tac context 1 ›)

7.1 Lemmas for the propositional double-negation transla-
tion

lemma ‹P −→ ¬ ¬ P›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ (¬ ¬ P −→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)
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lemma ‹¬ ¬ P ∧ ¬ ¬ (P −→ Q) −→ ¬ ¬ Q›
by (tactic ‹IntPr .fast-tac context 1 ›)

The following are classically but not constructively valid. The attempt to
prove them terminates quickly!
lemma ‹((P −→ Q) −→ P) −→ P›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(P ∧ Q −→ R) −→ (P −→ R) ∨ (Q −→ R)›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

7.2 de Bruijn formulae

de Bruijn formula with three predicates
lemma

‹((P ←→ Q) −→ P ∧ Q ∧ R) ∧
((Q ←→ R) −→ P ∧ Q ∧ R) ∧
((R ←→ P) −→ P ∧ Q ∧ R) −→ P ∧ Q ∧ R›

by (tactic ‹IntPr .fast-tac context 1 ›)

de Bruijn formula with five predicates
lemma

‹((P ←→ Q) −→ P ∧ Q ∧ R ∧ S ∧ T ) ∧
((Q ←→ R) −→ P ∧ Q ∧ R ∧ S ∧ T ) ∧
((R ←→ S) −→ P ∧ Q ∧ R ∧ S ∧ T ) ∧
((S ←→ T ) −→ P ∧ Q ∧ R ∧ S ∧ T ) ∧
((T ←→ P) −→ P ∧ Q ∧ R ∧ S ∧ T ) −→ P ∧ Q ∧ R ∧ S ∧ T ›

by (tactic ‹IntPr .fast-tac context 1 ›)

Problems from of Sahlin, Franzen and Haridi, An Intuitionistic Predicate
Logic Theorem Prover. J. Logic and Comp. 2 (5), October 1992, 619-656.

Problem 1.1
lemma

‹(∀ x. ∃ y. ∀ z. p(x) ∧ q(y) ∧ r(z)) ←→
(∀ z. ∃ y. ∀ x. p(x) ∧ q(y) ∧ r(z))›

by (tactic ‹IntPr .best-dup-tac context 1 ›) — SLOW

Problem 3.1
lemma ‹¬ (∃ x. ∀ y. mem(y,x) ←→ ¬ mem(x,x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

Problem 4.1: hopeless!
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lemma
‹(∀ x. p(x) −→ p(h(x)) ∨ p(g(x))) ∧ (∃ x. p(x)) ∧ (∀ x. ¬ p(h(x)))
−→ (∃ x. p(g(g(g(g(g(x)))))))›

oops

7.3 Intuitionistic FOL: propositional problems based on Pel-
letier.

¬¬1
lemma ‹¬ ¬ ((P −→ Q) ←→ (¬ Q −→ ¬ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬2
lemma ‹¬ ¬ (¬ ¬ P ←→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

3
lemma ‹¬ (P −→ Q) −→ (Q −→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬4
lemma ‹¬ ¬ ((¬ P −→ Q) ←→ (¬ Q −→ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬5
lemma ‹¬ ¬ ((P ∨ Q −→ P ∨ R) −→ P ∨ (Q −→ R))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬6
lemma ‹¬ ¬ (P ∨ ¬ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬7
lemma ‹¬ ¬ (P ∨ ¬ ¬ ¬ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬8. Peirce’s law
lemma ‹¬ ¬ (((P −→ Q) −→ P) −→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

9
lemma ‹((P ∨ Q) ∧ (¬ P ∨ Q) ∧ (P ∨ ¬ Q)) −→ ¬ (¬ P ∨ ¬ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

10
lemma ‹(Q −→ R) −→ (R −→ P ∧ Q) −→ (P −→ (Q ∨ R)) −→ (P ←→ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)
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7.4 11. Proved in each direction (incorrectly, says Pelletier!!)
lemma ‹P ←→ P›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬12. Dijkstra’s law
lemma ‹¬ ¬ (((P ←→ Q) ←→ R) ←→ (P ←→ (Q ←→ R)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((P ←→ Q) ←→ R) −→ ¬ ¬ (P ←→ (Q ←→ R))›
by (tactic ‹IntPr .fast-tac context 1 ›)

13. Distributive law
lemma ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬14
lemma ‹¬ ¬ ((P ←→ Q) ←→ ((Q ∨ ¬ P) ∧ (¬ Q ∨ P)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬15
lemma ‹¬ ¬ ((P −→ Q) ←→ (¬ P ∨ Q))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬16
lemma ‹¬ ¬ ((P −→ Q) ∨ (Q −→ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬17
lemma ‹¬ ¬ (((P ∧ (Q −→ R)) −→ S) ←→ ((¬ P ∨ Q ∨ S) ∧ (¬ P ∨ ¬ R ∨
S)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

Dijkstra’s “Golden Rule”
lemma ‹(P ∧ Q) ←→ P ←→ Q ←→ (P ∨ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

8 Examples with quantifiers
8.1 The converse is classical in the following implications . . .
lemma ‹(∃ x. P(x) −→ Q) −→ (∀ x. P(x)) −→ Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((∀ x. P(x)) −→ Q) −→ ¬ (∀ x. P(x) ∧ ¬ Q)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((∀ x. ¬ P(x)) −→ Q) −→ ¬ (∀ x. ¬ (P(x) ∨ Q))›
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by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(∀ x. P(x)) ∨ Q −→ (∀ x. P(x) ∨ Q)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(∃ x. P −→ Q(x)) −→ (P −→ (∃ x. Q(x)))›
by (tactic ‹IntPr .fast-tac context 1 ›)

8.2 The following are not constructively valid!

The attempt to prove them terminates quickly!
lemma ‹((∀ x. P(x)) −→ Q) −→ (∃ x. P(x) −→ Q)›

apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(P −→ (∃ x. Q(x))) −→ (∃ x. P −→ Q(x))›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(∀ x. P(x) ∨ Q) −→ ((∀ x. P(x)) ∨ Q)›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(∀ x. ¬ ¬ P(x)) −→ ¬ ¬ (∀ x. P(x))›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

Classically but not intuitionistically valid. Proved by a bug in 1986!
lemma ‹∃ x. Q(x) −→ (∀ x. Q(x))›

apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

8.3 Hard examples with quantifiers

The ones that have not been proved are not known to be valid! Some will
require quantifier duplication – not currently available.

¬¬18
lemma ‹¬ ¬ (∃ y. ∀ x. P(y) −→ P(x))›

oops — NOT PROVED

¬¬19
lemma ‹¬ ¬ (∃ x. ∀ y z . (P(y) −→ Q(z)) −→ (P(x) −→ Q(x)))›

18



oops — NOT PROVED

20
lemma

‹(∀ x y. ∃ z. ∀w. (P(x) ∧ Q(y) −→ R(z) ∧ S(w)))
−→ (∃ x y. P(x) ∧ Q(y)) −→ (∃ z. R(z))›

by (tactic ‹IntPr .fast-tac context 1 ›)

21
lemma ‹(∃ x. P −→ Q(x)) ∧ (∃ x. Q(x) −→ P) −→ ¬ ¬ (∃ x. P ←→ Q(x))›

oops — NOT PROVED; needs quantifier duplication

22
lemma ‹(∀ x. P ←→ Q(x)) −→ (P ←→ (∀ x. Q(x)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬23
lemma ‹¬ ¬ ((∀ x. P ∨ Q(x)) ←→ (P ∨ (∀ x. Q(x))))›

by (tactic ‹IntPr .fast-tac context 1 ›)

24
lemma

‹¬ (∃ x. S(x) ∧ Q(x)) ∧ (∀ x. P(x) −→ Q(x) ∨ R(x)) ∧
(¬ (∃ x. P(x)) −→ (∃ x. Q(x))) ∧ (∀ x. Q(x) ∨ R(x) −→ S(x))
−→ ¬ ¬ (∃ x. P(x) ∧ R(x))›

Not clear why fast-tac, best-tac, ASTAR and ITER-DEEPEN all take for-
ever.

apply (tactic ‹IntPr .safe-tac context ›)
apply (erule impE)
apply (tactic ‹IntPr .fast-tac context 1 ›)
apply (tactic ‹IntPr .fast-tac context 1 ›)
done

25
lemma

‹(∃ x. P(x)) ∧
(∀ x. L(x) −→ ¬ (M (x) ∧ R(x))) ∧
(∀ x. P(x) −→ (M (x) ∧ L(x))) ∧
((∀ x. P(x) −→ Q(x)) ∨ (∃ x. P(x) ∧ R(x)))
−→ (∃ x. Q(x) ∧ P(x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬26
lemma

‹(¬ ¬ (∃ x. p(x)) ←→ ¬ ¬ (∃ x. q(x))) ∧
(∀ x. ∀ y. p(x) ∧ q(y) −→ (r(x) ←→ s(y)))
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−→ ((∀ x. p(x) −→ r(x)) ←→ (∀ x. q(x) −→ s(x)))›
oops — NOT PROVED

27
lemma

‹(∃ x. P(x) ∧ ¬ Q(x)) ∧
(∀ x. P(x) −→ R(x)) ∧
(∀ x. M (x) ∧ L(x) −→ P(x)) ∧
((∃ x. R(x) ∧ ¬ Q(x)) −→ (∀ x. L(x) −→ ¬ R(x)))
−→ (∀ x. M (x) −→ ¬ L(x))›
by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬28. AMENDED
lemma

‹(∀ x. P(x) −→ (∀ x. Q(x))) ∧
(¬ ¬ (∀ x. Q(x) ∨ R(x)) −→ (∃ x. Q(x) ∧ S(x))) ∧
(¬ ¬ (∃ x. S(x)) −→ (∀ x. L(x) −→ M (x)))
−→ (∀ x. P(x) ∧ L(x) −→ M (x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

29. Essentially the same as Principia Mathematica *11.71
lemma

‹(∃ x. P(x)) ∧ (∃ y. Q(y))
−→ ((∀ x. P(x) −→ R(x)) ∧ (∀ y. Q(y) −→ S(y)) ←→
(∀ x y. P(x) ∧ Q(y) −→ R(x) ∧ S(y)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬30
lemma

‹(∀ x. (P(x) ∨ Q(x)) −→ ¬ R(x)) ∧
(∀ x. (Q(x) −→ ¬ S(x)) −→ P(x) ∧ R(x))
−→ (∀ x. ¬ ¬ S(x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

31
lemma

‹¬ (∃ x. P(x) ∧ (Q(x) ∨ R(x))) ∧
(∃ x. L(x) ∧ P(x)) ∧
(∀ x. ¬ R(x) −→ M (x))

−→ (∃ x. L(x) ∧ M (x))›
by (tactic ‹IntPr .fast-tac context 1 ›)

32
lemma

‹(∀ x. P(x) ∧ (Q(x) ∨ R(x)) −→ S(x)) ∧
(∀ x. S(x) ∧ R(x) −→ L(x)) ∧
(∀ x. M (x) −→ R(x))
−→ (∀ x. P(x) ∧ M (x) −→ L(x))›
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by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬33
lemma

‹(∀ x. ¬ ¬ (P(a) ∧ (P(x) −→ P(b)) −→ P(c))) ←→
(∀ x. ¬ ¬ ((¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c))))›

apply (tactic ‹IntPr .best-tac context 1 ›)
done

36
lemma

‹(∀ x. ∃ y. J (x,y)) ∧
(∀ x. ∃ y. G(x,y)) ∧
(∀ x y. J (x,y) ∨ G(x,y) −→ (∀ z. J (y,z) ∨ G(y,z) −→ H (x,z)))
−→ (∀ x. ∃ y. H (x,y))›
by (tactic ‹IntPr .fast-tac context 1 ›)

37
lemma

‹(∀ z. ∃w. ∀ x. ∃ y.
¬ ¬ (P(x,z) −→ P(y,w)) ∧ P(y,z) ∧ (P(y,w) −→ (∃ u. Q(u,w)))) ∧
(∀ x z. ¬ P(x,z) −→ (∃ y. Q(y,z))) ∧
(¬ ¬ (∃ x y. Q(x,y)) −→ (∀ x. R(x,x)))

−→ ¬ ¬ (∀ x. ∃ y. R(x,y))›
oops — NOT PROVED

39
lemma ‹¬ (∃ x. ∀ y. F(y,x) ←→ ¬ F(y,y))›

by (tactic ‹IntPr .fast-tac context 1 ›)

40. AMENDED
lemma

‹(∃ y. ∀ x. F(x,y) ←→ F(x,x)) −→
¬ (∀ x. ∃ y. ∀ z. F(z,y) ←→ ¬ F(z,x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

44
lemma

‹(∀ x. f (x) −→
(∃ y. g(y) ∧ h(x,y) ∧ (∃ y. g(y) ∧ ¬ h(x,y)))) ∧
(∃ x. j(x) ∧ (∀ y. g(y) −→ h(x,y)))
−→ (∃ x. j(x) ∧ ¬ f (x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

48
lemma ‹(a = b ∨ c = d) ∧ (a = c ∨ b = d) −→ a = d ∨ b = c›

by (tactic ‹IntPr .fast-tac context 1 ›)
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51
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃ z. ∀ x. ∃w. (∀ y. P(x,y) ←→ y = w) ←→ x = z)›

by (tactic ‹IntPr .fast-tac context 1 ›)

52

Almost the same as 51.
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃w. ∀ y. ∃ z. (∀ x. P(x,y) ←→ x = z) ←→ y = w)›

by (tactic ‹IntPr .fast-tac context 1 ›)

56
lemma ‹(∀ x. (∃ y. P(y) ∧ x = f (y)) −→ P(x)) ←→ (∀ x. P(x) −→ P(f (x)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

57
lemma

‹P(f (a,b), f (b,c)) ∧ P(f (b,c), f (a,c)) ∧
(∀ x y z. P(x,y) ∧ P(y,z) −→ P(x,z)) −→ P(f (a,b), f (a,c))›

by (tactic ‹IntPr .fast-tac context 1 ›)

60
lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›

by (tactic ‹IntPr .fast-tac context 1 ›)

end

9 First-Order Logic: propositional examples (in-
tuitionistic version)

theory Propositional-Int
imports IFOL
begin

commutative laws of ∧ and ∨
lemma ‹P ∧ Q −→ Q ∧ P›

by (tactic IntPr .fast-tac context 1 )

lemma ‹P ∨ Q −→ Q ∨ P›
by (tactic IntPr .fast-tac context 1 )

associative laws of ∧ and ∨
lemma ‹(P ∧ Q) ∧ R −→ P ∧ (Q ∧ R)›
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by (tactic IntPr .fast-tac context 1 )

lemma ‹(P ∨ Q) ∨ R −→ P ∨ (Q ∨ R)›
by (tactic IntPr .fast-tac context 1 )

distributive laws of ∧ and ∨
lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R) ∧ (Q ∨ R)›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(P ∨ R) ∧ (Q ∨ R) −→ (P ∧ Q) ∨ R›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(P ∨ Q) ∧ R −→ (P ∧ R) ∨ (Q ∧ R)›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(P ∧ R) ∨ (Q ∧ R) −→ (P ∨ Q) ∧ R›
by (tactic IntPr .fast-tac context 1 )

Laws involving implication
lemma ‹(P −→ R) ∧ (Q −→ R) ←→ (P ∨ Q −→ R)›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(P ∧ Q −→ R) ←→ (P −→ (Q −→ R))›
by (tactic IntPr .fast-tac context 1 )

lemma ‹((P −→ R) −→ R) −→ ((Q −→ R) −→ R) −→ (P ∧ Q −→ R) −→ R›
by (tactic IntPr .fast-tac context 1 )

lemma ‹¬ (P −→ R) −→ ¬ (Q −→ R) −→ ¬ (P ∧ Q −→ R)›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(P −→ Q ∧ R) ←→ (P −→ Q) ∧ (P −→ R)›
by (tactic IntPr .fast-tac context 1 )

Propositions-as-types
lemma ‹P −→ (Q −→ P)›

by (tactic IntPr .fast-tac context 1 )

— The combinator S
lemma ‹(P −→ Q −→ R) −→ (P −→ Q) −→ (P −→ R)›

by (tactic IntPr .fast-tac context 1 )

— Converse is classical
lemma ‹(P −→ Q) ∨ (P −→ R) −→ (P −→ Q ∨ R)›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(P −→ Q) −→ (¬ Q −→ ¬ P)›
by (tactic IntPr .fast-tac context 1 )
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Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: ‹(((Q −→ R) −→ R) −→ Q) −→ (((P −→ Q) −→ R) −→ R)
−→ P −→ Q›

by (tactic IntPr .fast-tac context 1 )

lemma stab-to-peirce:
‹(((P −→ R) −→ R) −→ P) −→ (((Q −→ R) −→ R) −→ Q)
−→ ((P −→ Q) −→ P) −→ P›

by (tactic IntPr .fast-tac context 1 )

lemma peirce-imp1 :
‹(((Q −→ R) −→ Q) −→ Q)
−→ (((P −→ Q) −→ R) −→ P −→ Q) −→ P −→ Q›

by (tactic IntPr .fast-tac context 1 )

lemma peirce-imp2 : ‹(((P −→ R) −→ P) −→ P) −→ ((P −→ Q −→ R) −→ P)
−→ P›

by (tactic IntPr .fast-tac context 1 )

lemma mints: ‹((((P −→ Q) −→ P) −→ P) −→ Q) −→ Q›
by (tactic IntPr .fast-tac context 1 )

lemma mints-solovev: ‹(P −→ (Q −→ R) −→ Q) −→ ((P −→ Q) −→ R) −→ R›
by (tactic IntPr .fast-tac context 1 )

lemma tatsuta:
‹(((P7 −→ P1 ) −→ P10 ) −→ P4 −→ P5 )
−→ (((P8 −→ P2 ) −→ P9 ) −→ P3 −→ P10 )
−→ (P1 −→ P8 ) −→ P6 −→ P7
−→ (((P3 −→ P2 ) −→ P9 ) −→ P4 )
−→ (P1 −→ P3 ) −→ (((P6 −→ P1 ) −→ P2 ) −→ P9 ) −→ P5 ›
by (tactic IntPr .fast-tac context 1 )

lemma tatsuta1 :
‹(((P8 −→ P2 ) −→ P9 ) −→ P3 −→ P10 )
−→ (((P3 −→ P2 ) −→ P9 ) −→ P4 )
−→ (((P6 −→ P1 ) −→ P2 ) −→ P9 )
−→ (((P7 −→ P1 ) −→ P10 ) −→ P4 −→ P5 )
−→ (P1 −→ P3 ) −→ (P1 −→ P8 ) −→ P6 −→ P7 −→ P5 ›
by (tactic IntPr .fast-tac context 1 )

end

10 First-Order Logic: quantifier examples (intu-
itionistic version)

theory Quantifiers-Int
imports IFOL
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begin

lemma ‹(∀ x y. P(x,y)) −→ (∀ y x . P(x,y))›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(∃ x y. P(x,y)) −→ (∃ y x . P(x,y))›
by (tactic IntPr .fast-tac context 1 )

— Converse is false
lemma ‹(∀ x. P(x)) ∨ (∀ x. Q(x)) −→ (∀ x. P(x) ∨ Q(x))›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(∀ x. P −→ Q(x)) ←→ (P −→ (∀ x. Q(x)))›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(∀ x. P(x) −→ Q) ←→ ((∃ x. P(x)) −→ Q)›
by (tactic IntPr .fast-tac context 1 )

Some harder ones
lemma ‹(∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1 )

— Converse is false
lemma ‹(∃ x. P(x) ∧ Q(x)) −→ (∃ x. P(x)) ∧ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1 )

Basic test of quantifier reasoning
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by (tactic IntPr .fast-tac context 1 )

The following should fail, as they are false!
lemma ‹(∀ x. ∃ y. Q(x,y)) −→ (∃ y. ∀ x. Q(x,y))›

apply (tactic IntPr .fast-tac context 1 )?
oops

lemma ‹(∃ x. Q(x)) −→ (∀ x. Q(x))›
apply (tactic IntPr .fast-tac context 1 )?
oops

schematic-goal ‹P(?a) −→ (∀ x. P(x))›
apply (tactic IntPr .fast-tac context 1 )?
oops

schematic-goal ‹(P(?a) −→ (∀ x. Q(x))) −→ (∀ x. P(x) −→ Q(x))›
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apply (tactic IntPr .fast-tac context 1 )?
oops

Back to things that are provable . . .
lemma ‹(∀ x. P(x) −→ Q(x)) ∧ (∃ x. P(x)) −→ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1 )

— An example of why exI should be delayed as long as possible
lemma ‹(P −→ (∃ x. Q(x))) ∧ P −→ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1 )

schematic-goal ‹(∀ x. P(x) −→ Q(f (x))) ∧ (∀ x. Q(x) −→ R(g(x))) ∧ P(d) −→
R(?a)›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by (tactic IntPr .fast-tac context 1 )

Some slow ones
lemma ‹(∀ x y. P(x) −→ Q(y)) ←→ ((∃ x. P(x)) −→ (∀ y. Q(y)))›

by (tactic IntPr .fast-tac context 1 )

lemma ‹(∃ x y. P(x) ∧ Q(x,y)) ←→ (∃ x. P(x) ∧ (∃ y. Q(x,y)))›
by (tactic IntPr .fast-tac context 1 )

lemma ‹(∃ y. ∀ x. P(x) −→ Q(x,y)) −→ (∀ x. P(x) −→ (∃ y. Q(x,y)))›
by (tactic IntPr .fast-tac context 1 )

end

11 Classical Predicate Calculus Problems
theory Classical
imports FOL
begin

lemma ‹(P −→ Q ∨ R) −→ (P −→ Q) ∨ (P −→ R)›
by blast

11.0.1 If and only if
lemma ‹(P ←→ Q) ←→ (Q ←→ P)›

by blast

lemma ‹¬ (P ←→ ¬ P)›
by blast
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11.1 Pelletier’s examples

Sample problems from

• F. J. Pelletier, Seventy-Five Problems for Testing Automatic Theorem
Provers, J. Automated Reasoning 2 (1986), 191-216. Errata, JAR 4
(1988), 236-236.

The hardest problems – judging by experience with several theorem provers,
including matrix ones – are 34 and 43.

1
lemma ‹(P −→ Q) ←→ (¬ Q −→ ¬ P)›

by blast

2
lemma ‹¬ ¬ P ←→ P›

by blast

3
lemma ‹¬ (P −→ Q) −→ (Q −→ P)›

by blast

4
lemma ‹(¬ P −→ Q) ←→ (¬ Q −→ P)›

by blast

5
lemma ‹((P ∨ Q) −→ (P ∨ R)) −→ (P ∨ (Q −→ R))›

by blast

6
lemma ‹P ∨ ¬ P›

by blast

7
lemma ‹P ∨ ¬ ¬ ¬ P›

by blast

8. Peirce’s law
lemma ‹((P −→ Q) −→ P) −→ P›

by blast

9
lemma ‹((P ∨ Q) ∧ (¬ P ∨ Q) ∧ (P ∨ ¬ Q)) −→ ¬ (¬ P ∨ ¬ Q)›

by blast
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10
lemma ‹(Q −→ R) ∧ (R −→ P ∧ Q) ∧ (P −→ Q ∨ R) −→ (P ←→ Q)›

by blast

11. Proved in each direction (incorrectly, says Pelletier!!)
lemma ‹P ←→ P›

by blast

12. "Dijkstra’s law"
lemma ‹((P ←→ Q) ←→ R) ←→ (P ←→ (Q ←→ R))›

by blast

13. Distributive law
lemma ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)›

by blast

14
lemma ‹(P ←→ Q) ←→ ((Q ∨ ¬ P) ∧ (¬ Q ∨ P))›

by blast

15
lemma ‹(P −→ Q) ←→ (¬ P ∨ Q)›

by blast

16
lemma ‹(P −→ Q) ∨ (Q −→ P)›

by blast

17
lemma ‹((P ∧ (Q −→ R)) −→ S) ←→ ((¬ P ∨ Q ∨ S) ∧ (¬ P ∨ ¬ R ∨ S))›

by blast

11.2 Classical Logic: examples with quantifiers
lemma ‹(∀ x. P(x) ∧ Q(x)) ←→ (∀ x. P(x)) ∧ (∀ x. Q(x))›

by blast

lemma ‹(∃ x. P −→ Q(x)) ←→ (P −→ (∃ x. Q(x)))›
by blast

lemma ‹(∃ x. P(x) −→ Q) ←→ (∀ x. P(x)) −→ Q›
by blast

lemma ‹(∀ x. P(x)) ∨ Q ←→ (∀ x. P(x) ∨ Q)›
by blast

Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR
10 (265-281), 1993. Proof is trivial!
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lemma ‹¬ ((∃ x. ¬ P(x)) ∧ ((∃ x. P(x)) ∨ (∃ x. P(x) ∧ Q(x))) ∧ ¬ (∃ x. P(x)))›
by blast

11.3 Problems requiring quantifier duplication

Theorem B of Peter Andrews, Theorem Proving via General Matings, JACM
28 (1981).
lemma ‹(∃ x. ∀ y. P(x) ←→ P(y)) −→ ((∃ x. P(x)) ←→ (∀ y. P(y)))›

by blast

Needs multiple instantiation of ALL.
lemma ‹(∀ x. P(x) −→ P(f (x))) ∧ P(d) −→ P(f (f (f (d))))›

by blast

Needs double instantiation of the quantifier
lemma ‹∃ x. P(x) −→ P(a) ∧ P(b)›

by blast

lemma ‹∃ z. P(z) −→ (∀ x. P(x))›
by blast

lemma ‹∃ x. (∃ y. P(y)) −→ P(x)›
by blast

V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1–23. NOT
PROVED.
lemma

‹∃ x x ′. ∀ y. ∃ z z ′.
(¬ P(y,y) ∨ P(x,x) ∨ ¬ S(z,x)) ∧
(S(x,y) ∨ ¬ S(y,z) ∨ Q(z ′,z ′)) ∧
(Q(x ′,y) ∨ ¬ Q(y,z ′) ∨ S(x ′,x ′))›

oops

11.4 Hard examples with quantifiers

18
lemma ‹∃ y. ∀ x. P(y) −→ P(x)›

by blast

19
lemma ‹∃ x. ∀ y z. (P(y) −→ Q(z)) −→ (P(x) −→ Q(x))›

by blast

20
lemma ‹(∀ x y. ∃ z. ∀w. (P(x) ∧ Q(y) −→ R(z) ∧ S(w)))
−→ (∃ x y. P(x) ∧ Q(y)) −→ (∃ z. R(z))›
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by blast

21
lemma ‹(∃ x. P −→ Q(x)) ∧ (∃ x. Q(x) −→ P) −→ (∃ x. P ←→ Q(x))›

by blast

22
lemma ‹(∀ x. P ←→ Q(x)) −→ (P ←→ (∀ x. Q(x)))›

by blast

23
lemma ‹(∀ x. P ∨ Q(x)) ←→ (P ∨ (∀ x. Q(x)))›

by blast

24
lemma

‹¬ (∃ x. S(x) ∧ Q(x)) ∧ (∀ x. P(x) −→ Q(x) ∨ R(x)) ∧
(¬ (∃ x. P(x)) −→ (∃ x. Q(x))) ∧ (∀ x. Q(x) ∨ R(x) −→ S(x))
−→ (∃ x. P(x) ∧ R(x))›

by blast

25
lemma

‹(∃ x. P(x)) ∧
(∀ x. L(x) −→ ¬ (M (x) ∧ R(x))) ∧
(∀ x. P(x) −→ (M (x) ∧ L(x))) ∧
((∀ x. P(x) −→ Q(x)) ∨ (∃ x. P(x) ∧ R(x)))
−→ (∃ x. Q(x) ∧ P(x))›

by blast

26
lemma

‹((∃ x. p(x)) ←→ (∃ x. q(x))) ∧
(∀ x. ∀ y. p(x) ∧ q(y) −→ (r(x) ←→ s(y)))
−→ ((∀ x. p(x) −→ r(x)) ←→ (∀ x. q(x) −→ s(x)))›
by blast

27
lemma

‹(∃ x. P(x) ∧ ¬ Q(x)) ∧
(∀ x. P(x) −→ R(x)) ∧
(∀ x. M (x) ∧ L(x) −→ P(x)) ∧
((∃ x. R(x) ∧ ¬ Q(x)) −→ (∀ x. L(x) −→ ¬ R(x)))
−→ (∀ x. M (x) −→ ¬ L(x))›
by blast

28. AMENDED
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lemma
‹(∀ x. P(x) −→ (∀ x. Q(x))) ∧
((∀ x. Q(x) ∨ R(x)) −→ (∃ x. Q(x) ∧ S(x))) ∧
((∃ x. S(x)) −→ (∀ x. L(x) −→ M (x)))
−→ (∀ x. P(x) ∧ L(x) −→ M (x))›
by blast

29. Essentially the same as Principia Mathematica *11.71
lemma

‹(∃ x. P(x)) ∧ (∃ y. Q(y))
−→ ((∀ x. P(x) −→ R(x)) ∧ (∀ y. Q(y) −→ S(y)) ←→
(∀ x y. P(x) ∧ Q(y) −→ R(x) ∧ S(y)))›

by blast

30
lemma

‹(∀ x. P(x) ∨ Q(x) −→ ¬ R(x)) ∧
(∀ x. (Q(x) −→ ¬ S(x)) −→ P(x) ∧ R(x))
−→ (∀ x. S(x))›

by blast

31
lemma

‹¬ (∃ x. P(x) ∧ (Q(x) ∨ R(x))) ∧
(∃ x. L(x) ∧ P(x)) ∧
(∀ x. ¬ R(x) −→ M (x))
−→ (∃ x. L(x) ∧ M (x))›
by blast

32
lemma

‹(∀ x. P(x) ∧ (Q(x) ∨ R(x)) −→ S(x)) ∧
(∀ x. S(x) ∧ R(x) −→ L(x)) ∧
(∀ x. M (x) −→ R(x))
−→ (∀ x. P(x) ∧ M (x) −→ L(x))›
by blast

33
lemma

‹(∀ x. P(a) ∧ (P(x) −→ P(b)) −→ P(c)) ←→
(∀ x. (¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c)))›

by blast

34. AMENDED (TWICE!!). Andrews’s challenge.
lemma

‹((∃ x. ∀ y. p(x) ←→ p(y)) ←→ ((∃ x. q(x)) ←→ (∀ y. p(y)))) ←→
((∃ x. ∀ y. q(x) ←→ q(y)) ←→ ((∃ x. p(x)) ←→ (∀ y. q(y))))›

by blast
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35
lemma ‹∃ x y. P(x,y) −→ (∀ u v. P(u,v))›

by blast

36
lemma

‹(∀ x. ∃ y. J (x,y)) ∧
(∀ x. ∃ y. G(x,y)) ∧
(∀ x y. J (x,y) ∨ G(x,y) −→ (∀ z. J (y,z) ∨ G(y,z) −→ H (x,z)))
−→ (∀ x. ∃ y. H (x,y))›
by blast

37
lemma

‹(∀ z. ∃w. ∀ x. ∃ y.
(P(x,z) −→ P(y,w)) ∧ P(y,z) ∧ (P(y,w) −→ (∃ u. Q(u,w)))) ∧
(∀ x z. ¬ P(x,z) −→ (∃ y. Q(y,z))) ∧
((∃ x y. Q(x,y)) −→ (∀ x. R(x,x)))
−→ (∀ x. ∃ y. R(x,y))›
by blast

38
lemma

‹(∀ x. p(a) ∧ (p(x) −→ (∃ y. p(y) ∧ r(x,y))) −→
(∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))) ←→
(∀ x. (¬ p(a) ∨ p(x) ∨ (∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))) ∧
(¬ p(a) ∨ ¬ (∃ y. p(y) ∧ r(x,y)) ∨
(∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))))›

by blast

39
lemma ‹¬ (∃ x. ∀ y. F(y,x) ←→ ¬ F(y,y))›

by blast

40. AMENDED
lemma

‹(∃ y. ∀ x. F(x,y) ←→ F(x,x)) −→
¬ (∀ x. ∃ y. ∀ z. F(z,y) ←→ ¬ F(z,x))›

by blast

41
lemma

‹(∀ z. ∃ y. ∀ x. f (x,y) ←→ f (x,z) ∧ ¬ f (x,x))
−→ ¬ (∃ z. ∀ x. f (x,z))›

by blast

42
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lemma ‹¬ (∃ y. ∀ x. p(x,y) ←→ ¬ (∃ z. p(x,z) ∧ p(z,x)))›
by blast

43
lemma

‹(∀ x. ∀ y. q(x,y) ←→ (∀ z. p(z,x) ←→ p(z,y)))
−→ (∀ x. ∀ y. q(x,y) ←→ q(y,x))›

by blast

Other proofs: Can use auto, which cheats by using rewriting! Deepen-tac
alone requires 253 secs. Or by (mini-tac 1 THEN Deepen-tac 5 1 ).

44
lemma

‹(∀ x. f (x) −→ (∃ y. g(y) ∧ h(x,y) ∧ (∃ y. g(y) ∧ ¬ h(x,y)))) ∧
(∃ x. j(x) ∧ (∀ y. g(y) −→ h(x,y)))
−→ (∃ x. j(x) ∧ ¬ f (x))›
by blast

45
lemma

‹(∀ x. f (x) ∧ (∀ y. g(y) ∧ h(x,y) −→ j(x,y))
−→ (∀ y. g(y) ∧ h(x,y) −→ k(y))) ∧
¬ (∃ y. l(y) ∧ k(y)) ∧
(∃ x. f (x) ∧ (∀ y. h(x,y) −→ l(y)) ∧ (∀ y. g(y) ∧ h(x,y) −→ j(x,y)))
−→ (∃ x. f (x) ∧ ¬ (∃ y. g(y) ∧ h(x,y)))›

by blast

46
lemma

‹(∀ x. f (x) ∧ (∀ y. f (y) ∧ h(y,x) −→ g(y)) −→ g(x)) ∧
((∃ x. f (x) ∧ ¬ g(x)) −→
(∃ x. f (x) ∧ ¬ g(x) ∧ (∀ y. f (y) ∧ ¬ g(y) −→ j(x,y)))) ∧
(∀ x y. f (x) ∧ f (y) ∧ h(x,y) −→ ¬ j(y,x))
−→ (∀ x. f (x) −→ g(x))›

by blast

11.5 Problems (mainly) involving equality or functions

48
lemma ‹(a = b ∨ c = d) ∧ (a = c ∨ b = d) −→ a = d ∨ b = c›

by blast

49. NOT PROVED AUTOMATICALLY. Hard because it involves substi-
tution for Vars; the type constraint ensures that x,y,z have the same type
as a,b,u.
lemma
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‹(∃ x y:: ′a. ∀ z. z = x ∨ z = y) ∧ P(a) ∧ P(b) ∧ a 6= b −→ (∀ u:: ′a. P(u))›
apply safe
apply (rule-tac x = ‹a› in allE , assumption)
apply (rule-tac x = ‹b› in allE , assumption)
apply fast — blast’s treatment of equality can’t do it
done

50. (What has this to do with equality?)
lemma ‹(∀ x. P(a,x) ∨ (∀ y. P(x,y))) −→ (∃ x. ∀ y. P(x,y))›

by blast

51
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃ z. ∀ x. ∃w. (∀ y. P(x,y) ←→ y=w) ←→ x = z)›

by blast

52

Almost the same as 51.
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃w. ∀ y. ∃ z. (∀ x. P(x,y) ←→ x = z) ←→ y = w)›

by blast

55

Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
fast DISCOVERS who killed Agatha.
schematic-goal

‹lives(agatha) ∧ lives(butler) ∧ lives(charles) ∧
(killed(agatha,agatha) ∨ killed(butler ,agatha) ∨ killed(charles,agatha)) ∧
(∀ x y. killed(x,y) −→ hates(x,y) ∧ ¬ richer(x,y)) ∧
(∀ x. hates(agatha,x) −→ ¬ hates(charles,x)) ∧
(hates(agatha,agatha) ∧ hates(agatha,charles)) ∧
(∀ x. lives(x) ∧ ¬ richer(x,agatha) −→ hates(butler ,x)) ∧
(∀ x. hates(agatha,x) −→ hates(butler ,x)) ∧
(∀ x. ¬ hates(x,agatha) ∨ ¬ hates(x,butler) ∨ ¬ hates(x,charles)) −→
killed(?who,agatha)›

by fast — MUCH faster than blast

56
lemma ‹(∀ x. (∃ y. P(y) ∧ x = f (y)) −→ P(x)) ←→ (∀ x. P(x) −→ P(f (x)))›

by blast

57
lemma

‹P(f (a,b), f (b,c)) ∧ P(f (b,c), f (a,c)) ∧
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(∀ x y z. P(x,y) ∧ P(y,z) −→ P(x,z)) −→ P(f (a,b), f (a,c))›
by blast

58 NOT PROVED AUTOMATICALLY
lemma ‹(∀ x y. f (x) = g(y)) −→ (∀ x y. f (f (x)) = f (g(y)))›

by (slow elim: subst-context)

59
lemma ‹(∀ x. P(x) ←→ ¬ P(f (x))) −→ (∃ x. P(x) ∧ ¬ P(f (x)))›

by blast

60
lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›

by blast

62 as corrected in JAR 18 (1997), page 135
lemma

‹(∀ x. p(a) ∧ (p(x) −→ p(f (x))) −→ p(f (f (x)))) ←→
(∀ x. (¬ p(a) ∨ p(x) ∨ p(f (f (x)))) ∧
(¬ p(a) ∨ ¬ p(f (x)) ∨ p(f (f (x)))))›

by blast

From Davis, Obvious Logical Inferences, IJCAI-81, 530-531 fast indeed copes!
lemma

‹(∀ x. F(x) ∧ ¬ G(x) −→ (∃ y. H (x,y) ∧ J (y))) ∧
(∃ x. K (x) ∧ F(x) ∧ (∀ y. H (x,y) −→ K (y))) ∧
(∀ x. K (x) −→ ¬ G(x)) −→ (∃ x. K (x) ∧ J (x))›

by fast

From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem
obvious!
lemma

‹(∀ x. F(x) ∧ ¬ G(x) −→ (∃ y. H (x,y) ∧ J (y))) ∧
(∃ x. K (x) ∧ F(x) ∧ (∀ y. H (x,y) −→ K (y))) ∧
(∀ x. K (x) −→ ¬ G(x)) −→ (∃ x. K (x) −→ ¬ G(x))›

by fast

Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
author U. Egly.
lemma

‹((∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z)))) −→
(∃w. C (w) ∧ (∀ y. C (y) −→ (∀ z. D(w,y,z)))))
∧
(∀w. C (w) ∧ (∀ u. C (u) −→ (∀ v. D(w,u,v))) −→

(∀ y z.
(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))))
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∧
(∀w. C (w) ∧
(∀ y z .

(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))) −→

(∃ v. C (v) ∧
(∀ y. ((C (y) ∧ Q(w,y,y)) ∧ OO(w,g) −→ ¬ P(v,y)) ∧

((C (y) ∧ Q(w,y,y)) ∧ OO(w,b) −→ P(v,y) ∧ OO(v,b)))))
−→ ¬ (∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z))))›

by (blast 12 )
— Needed because the search for depths below 12 is very slow.

Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p. 105.
lemma

‹((∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z)))) −→
(∃w. C (w) ∧ (∀ y. C (y) −→ (∀ z. D(w,y,z)))))
∧
(∀w. C (w) ∧ (∀ u. C (u) −→ (∀ v. D(w,u,v))) −→

(∀ y z.
(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))))

∧
((∃w. C (w) ∧ (∀ y. (C (y) ∧ P(y,y) −→ Q(w,y,y) ∧ OO(w,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ Q(w,y,y) ∧ OO(w,b))))
−→
(∃ v. C (v) ∧ (∀ y. (C (y) ∧ P(y,y) −→ P(v,y) ∧ OO(v,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(v,y) ∧ OO(v,b)))))
−→
((∃ v. C (v) ∧ (∀ y. (C (y) ∧ P(y,y) −→ P(v,y) ∧ OO(v,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(v,y) ∧ OO(v,b))))
−→
(∃ u. C (u) ∧ (∀ y. (C (y) ∧ P(y,y) −→ ¬ P(u,y)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(u,y) ∧ OO(u,b)))))
−→ ¬ (∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z))))›

by blast

Challenge found on info-hol.
lemma ‹∀ x. ∃ v w. ∀ y z. P(x) ∧ Q(y) −→ (P(v) ∨ R(w)) ∧ (R(z) −→ Q(v))›

by blast

Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
can be deleted.
lemma

‹(∀ x. honest(x) ∧ industrious(x) −→ healthy(x)) ∧
¬ (∃ x. grocer(x) ∧ healthy(x)) ∧
(∀ x. industrious(x) ∧ grocer(x) −→ honest(x)) ∧
(∀ x. cyclist(x) −→ industrious(x)) ∧
(∀ x. ¬ healthy(x) ∧ cyclist(x) −→ ¬ honest(x))
−→ (∀ x. grocer(x) −→ ¬ cyclist(x))›
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by blast

end

12 First-Order Logic: propositional examples (clas-
sical version)

theory Propositional-Cla
imports FOL
begin

commutative laws of ∧ and ∨
lemma ‹P ∧ Q −→ Q ∧ P›

by (tactic IntPr .fast-tac context 1 )

lemma ‹P ∨ Q −→ Q ∨ P›
by fast

associative laws of ∧ and ∨
lemma ‹(P ∧ Q) ∧ R −→ P ∧ (Q ∧ R)›

by fast

lemma ‹(P ∨ Q) ∨ R −→ P ∨ (Q ∨ R)›
by fast

distributive laws of ∧ and ∨
lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R) ∧ (Q ∨ R)›

by fast

lemma ‹(P ∨ R) ∧ (Q ∨ R) −→ (P ∧ Q) ∨ R›
by fast

lemma ‹(P ∨ Q) ∧ R −→ (P ∧ R) ∨ (Q ∧ R)›
by fast

lemma ‹(P ∧ R) ∨ (Q ∧ R) −→ (P ∨ Q) ∧ R›
by fast

Laws involving implication
lemma ‹(P −→ R) ∧ (Q −→ R) ←→ (P ∨ Q −→ R)›

by fast

lemma ‹(P ∧ Q −→ R) ←→ (P −→ (Q −→ R))›
by fast
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lemma ‹((P −→ R) −→ R) −→ ((Q −→ R) −→ R) −→ (P ∧ Q −→ R) −→ R›
by fast

lemma ‹¬ (P −→ R) −→ ¬ (Q −→ R) −→ ¬ (P ∧ Q −→ R)›
by fast

lemma ‹(P −→ Q ∧ R) ←→ (P −→ Q) ∧ (P −→ R)›
by fast

Propositions-as-types
lemma ‹P −→ (Q −→ P)›

by fast

— The combinator S
lemma ‹(P −→ Q −→ R) −→ (P −→ Q) −→ (P −→ R)›

by fast

— Converse is classical
lemma ‹(P −→ Q) ∨ (P −→ R) −→ (P −→ Q ∨ R)›

by fast

lemma ‹(P −→ Q) −→ (¬ Q −→ ¬ P)›
by fast

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: ‹(((Q −→ R) −→ R) −→ Q) −→ (((P −→ Q) −→ R) −→ R)
−→ P −→ Q›

by fast

lemma stab-to-peirce:
‹(((P −→ R) −→ R) −→ P) −→ (((Q −→ R) −→ R) −→ Q)
−→ ((P −→ Q) −→ P) −→ P›

by fast

lemma peirce-imp1 :
‹(((Q −→ R) −→ Q) −→ Q)
−→ (((P −→ Q) −→ R) −→ P −→ Q) −→ P −→ Q›

by fast

lemma peirce-imp2 : ‹(((P −→ R) −→ P) −→ P) −→ ((P −→ Q −→ R) −→ P)
−→ P›

by fast

lemma mints: ‹((((P −→ Q) −→ P) −→ P) −→ Q) −→ Q›
by fast

lemma mints-solovev: ‹(P −→ (Q −→ R) −→ Q) −→ ((P −→ Q) −→ R) −→ R›
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by fast

lemma tatsuta:
‹(((P7 −→ P1 ) −→ P10 ) −→ P4 −→ P5 )
−→ (((P8 −→ P2 ) −→ P9 ) −→ P3 −→ P10 )
−→ (P1 −→ P8 ) −→ P6 −→ P7
−→ (((P3 −→ P2 ) −→ P9 ) −→ P4 )
−→ (P1 −→ P3 ) −→ (((P6 −→ P1 ) −→ P2 ) −→ P9 ) −→ P5 ›
by fast

lemma tatsuta1 :
‹(((P8 −→ P2 ) −→ P9 ) −→ P3 −→ P10 )
−→ (((P3 −→ P2 ) −→ P9 ) −→ P4 )
−→ (((P6 −→ P1 ) −→ P2 ) −→ P9 )
−→ (((P7 −→ P1 ) −→ P10 ) −→ P4 −→ P5 )
−→ (P1 −→ P3 ) −→ (P1 −→ P8 ) −→ P6 −→ P7 −→ P5 ›
by fast

end

13 First-Order Logic: quantifier examples (classi-
cal version)

theory Quantifiers-Cla
imports FOL
begin

lemma ‹(∀ x y. P(x,y)) −→ (∀ y x . P(x,y))›
by fast

lemma ‹(∃ x y. P(x,y)) −→ (∃ y x . P(x,y))›
by fast

Converse is false.
lemma ‹(∀ x. P(x)) ∨ (∀ x. Q(x)) −→ (∀ x. P(x) ∨ Q(x))›

by fast

lemma ‹(∀ x. P −→ Q(x)) ←→ (P −→ (∀ x. Q(x)))›
by fast

lemma ‹(∀ x. P(x) −→ Q) ←→ ((∃ x. P(x)) −→ Q)›
by fast

Some harder ones.
lemma ‹(∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›

by fast
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— Converse is false.
lemma ‹(∃ x. P(x) ∧ Q(x)) −→ (∃ x. P(x)) ∧ (∃ x. Q(x))›

by fast

Basic test of quantifier reasoning.
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›

by fast

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by fast

The following should fail, as they are false!
lemma ‹(∀ x. ∃ y. Q(x,y)) −→ (∃ y. ∀ x. Q(x,y))›

apply fast?
oops

lemma ‹(∃ x. Q(x)) −→ (∀ x. Q(x))›
apply fast?
oops

schematic-goal ‹P(?a) −→ (∀ x. P(x))›
apply fast?
oops

schematic-goal ‹(P(?a) −→ (∀ x. Q(x))) −→ (∀ x. P(x) −→ Q(x))›
apply fast?
oops

Back to things that are provable . . .
lemma ‹(∀ x. P(x) −→ Q(x)) ∧ (∃ x. P(x)) −→ (∃ x. Q(x))›

by fast

An example of why exI should be delayed as long as possible.
lemma ‹(P −→ (∃ x. Q(x))) ∧ P −→ (∃ x. Q(x))›

by fast

schematic-goal ‹(∀ x. P(x) −→ Q(f (x))) ∧ (∀ x. Q(x) −→ R(g(x))) ∧ P(d) −→
R(?a)›

by fast

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by fast

Some slow ones

Principia Mathematica *11.53
lemma ‹(∀ x y. P(x) −→ Q(y)) ←→ ((∃ x. P(x)) −→ (∀ y. Q(y)))›

by fast
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lemma ‹(∃ x y. P(x) ∧ Q(x,y)) ←→ (∃ x. P(x) ∧ (∃ y. Q(x,y)))›
by fast

lemma ‹(∃ y. ∀ x. P(x) −→ Q(x,y)) −→ (∀ x. P(x) −→ (∃ y. Q(x,y)))›
by fast

end

theory Miniscope
imports FOL
begin

lemmas ccontr = FalseE [THEN classical]

13.1 Negation Normal Form
13.1.1 de Morgan laws
lemma demorgans1 :

‹¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q›
‹¬ (P ∨ Q) ←→ ¬ P ∧ ¬ Q›
‹¬ ¬ P ←→ P›
by blast+

lemma demorgans2 :
‹
∧

P. ¬ (∀ x. P(x)) ←→ (∃ x. ¬ P(x))›
‹
∧

P. ¬ (∃ x. P(x)) ←→ (∀ x. ¬ P(x))›
by blast+

lemmas demorgans = demorgans1 demorgans2

lemma nnf-simps:
‹(P −→ Q) ←→ (¬ P ∨ Q)›
‹¬ (P −→ Q) ←→ (P ∧ ¬ Q)›
‹(P ←→ Q) ←→ (¬ P ∨ Q) ∧ (¬ Q ∨ P)›
‹¬ (P ←→ Q) ←→ (P ∨ Q) ∧ (¬ P ∨ ¬ Q)›
by blast+

13.1.2 Pushing in the existential quantifiers
lemma ex-simps:

‹(∃ x. P) ←→ P›
‹
∧

P Q. (∃ x. P(x) ∧ Q) ←→ (∃ x. P(x)) ∧ Q›
‹
∧

P Q. (∃ x. P ∧ Q(x)) ←→ P ∧ (∃ x. Q(x))›
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‹
∧

P Q. (∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›
‹
∧

P Q. (∃ x. P(x) ∨ Q) ←→ (∃ x. P(x)) ∨ Q›
‹
∧

P Q. (∃ x. P ∨ Q(x)) ←→ P ∨ (∃ x. Q(x))›
by blast+

13.1.3 Pushing in the universal quantifiers
lemma all-simps:

‹(∀ x. P) ←→ P›
‹
∧

P Q. (∀ x. P(x) ∧ Q(x)) ←→ (∀ x. P(x)) ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) ∧ Q) ←→ (∀ x. P(x)) ∧ Q›
‹
∧

P Q. (∀ x. P ∧ Q(x)) ←→ P ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) ∨ Q) ←→ (∀ x. P(x)) ∨ Q›
‹
∧

P Q. (∀ x. P ∨ Q(x)) ←→ P ∨ (∀ x. Q(x))›
by blast+

lemmas mini-simps = demorgans nnf-simps ex-simps all-simps

ML ‹
val mini-ss = simpset-of (context |> Simplifier .add-simps @{thms mini-simps});
fun mini-tac ctxt =

resolve-tac ctxt @{thms ccontr} THEN ′ asm-full-simp-tac (put-simpset mini-ss
ctxt);
›

end

14 First-Order Logic: the ’if’ example
theory If
imports FOL
begin

definition if :: ‹[o,o,o]=>o›
where ‹if (P,Q,R) ≡ P ∧ Q ∨ ¬ P ∧ R›

lemma ifI : ‹[[P =⇒ Q; ¬ P =⇒ R]] =⇒ if (P,Q,R)›
unfolding if-def by blast

lemma ifE : ‹[[if (P,Q,R); [[P; Q]] =⇒ S ; [[¬ P; R]] =⇒ S ]] =⇒ S›
unfolding if-def by blast

lemma if-commute: ‹if (P, if (Q,A,B), if (Q,C ,D))←→ if (Q, if (P,A,C ), if (P,B,D))›
apply (rule iffI )
apply (erule ifE)
apply (erule ifE)
apply (rule ifI )
apply (rule ifI )
oops
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Trying again from the beginning in order to use blast
declare ifI [intro!]
declare ifE [elim!]

lemma if-commute: ‹if (P, if (Q,A,B), if (Q,C ,D))←→ if (Q, if (P,A,C ), if (P,B,D))›
by blast

lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,A,B))›
by blast

Trying again from the beginning in order to prove from the definitions
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,A,B))›

unfolding if-def by blast

An invalid formula. High-level rules permit a simpler diagnosis.
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,B,A))›

apply auto
— The next step will fail unless subgoals remain

apply (tactic all-tac)
oops

Trying again from the beginning in order to prove from the definitions.
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,B,A))›

unfolding if-def
apply auto

— The next step will fail unless subgoals remain
apply (tactic all-tac)
oops

end
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