
Miscellaneous FOL Examples

January 18, 2026

Contents
1 Natural numbers 1

2 Examples for the manual “Introduction to Isabelle” 2
2.0.1 Some simple backward proofs 2
2.0.2 Demonstration of fast 3
2.0.3 Derivation of conjunction elimination rule 3

2.1 Derived rules involving definitions 3

3 Theory of the natural numbers: Peano’s axioms, primitive
recursion 4
3.1 Proofs about the natural numbers 5

4 Theory of the natural numbers: Peano’s axioms, primitive
recursion 6

5 Intuitionistic FOL: Examples from The Foundation of a Generic
Theorem Prover 7
5.1 Examples with quantifiers . 9

6 First-Order Logic: PROLOG examples 10

7 Intuitionistic First-Order Logic 12
7.1 Lemmas for the propositional double-negation translation . . 13
7.2 de Bruijn formulae . 13
7.3 Intuitionistic FOL: propositional problems based on Pelletier. 14
7.4 11. Proved in each direction (incorrectly, says Pelletier!!) . . . 15

8 Examples with quantifiers 16
8.1 The converse is classical in the following implications 16
8.2 The following are not constructively valid! 16
8.3 Hard examples with quantifiers 17

1

9 First-Order Logic: propositional examples (intuitionistic ver-
sion) 21

10 First-Order Logic: quantifier examples (intuitionistic ver-
sion) 23

11 Classical Predicate Calculus Problems 25
11.0.1 If and only if . 25

11.1 Pelletier’s examples . 25
11.2 Classical Logic: examples with quantifiers 27
11.3 Problems requiring quantifier duplication 27
11.4 Hard examples with quantifiers 28
11.5 Problems (mainly) involving equality or functions 32

12 First-Order Logic: propositional examples (classical ver-
sion) 35

13 First-Order Logic: quantifier examples (classical version) 38
13.1 Negation Normal Form . 40

13.1.1 de Morgan laws . 40
13.1.2 Pushing in the existential quantifiers 40
13.1.3 Pushing in the universal quantifiers 40

14 First-Order Logic: the ’if’ example 41

1 Natural numbers
theory Natural-Numbers
imports FOL
begin

Theory of the natural numbers: Peano’s axioms, primitive recursion. (Mod-
ernized version of Larry Paulson’s theory "Nat".)

typedecl nat
instance nat :: ‹term› ..

axiomatization
Zero :: ‹nat› (‹0 ›) and
Suc :: ‹nat => nat› and
rec :: ‹[nat, ′a, [nat, ′a] => ′a] => ′a›

where
induct [case-names 0 Suc, induct type: nat]:

‹P(0) ==> (!!x. P(x) ==> P(Suc(x))) ==> P(n)› and
Suc-inject: ‹Suc(m) = Suc(n) ==> m = n› and
Suc-neq-0 : ‹Suc(m) = 0 ==> R› and
rec-0 : ‹rec(0 , a, f) = a› and

2

rec-Suc: ‹rec(Suc(m), a, f) = f (m, rec(m, a, f))›

lemma Suc-n-not-n: ‹Suc(k) 6= k›
proof (induct ‹k›)

show ‹Suc(0) 6= 0 ›
proof

assume ‹Suc(0) = 0 ›
then show ‹False› by (rule Suc-neq-0)

qed
next

fix n assume hyp: ‹Suc(n) 6= n›
show ‹Suc(Suc(n)) 6= Suc(n)›
proof

assume ‹Suc(Suc(n)) = Suc(n)›
then have ‹Suc(n) = n› by (rule Suc-inject)
with hyp show ‹False› by contradiction

qed
qed

definition add :: ‹nat => nat => nat› (infixl ‹+› 60)
where ‹m + n = rec(m, n, λx y. Suc(y))›

lemma add-0 [simp]: ‹0 + n = n›
unfolding add-def by (rule rec-0)

lemma add-Suc [simp]: ‹Suc(m) + n = Suc(m + n)›
unfolding add-def by (rule rec-Suc)

lemma add-assoc: ‹(k + m) + n = k + (m + n)›
by (induct ‹k›) simp-all

lemma add-0-right: ‹m + 0 = m›
by (induct ‹m›) simp-all

lemma add-Suc-right: ‹m + Suc(n) = Suc(m + n)›
by (induct ‹m›) simp-all

lemma
assumes ‹!!n. f (Suc(n)) = Suc(f (n))›
shows ‹f (i + j) = i + f (j)›
using assms by (induct ‹i›) simp-all

end

3

2 Examples for the manual “Introduction to Is-
abelle”

theory Intro
imports FOL
begin

2.0.1 Some simple backward proofs
lemma mythm: ‹P ∨ P −→ P›
apply (rule impI)
apply (rule disjE)
prefer 3 apply (assumption)
prefer 2 apply (assumption)
apply assumption
done

lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R)›
apply (rule impI)
apply (erule disjE)
apply (drule conjunct1)
apply (rule disjI1)
apply (rule-tac [2] disjI2)
apply assumption+
done

Correct version, delaying use of spec until last.
lemma ‹(∀ x y. P(x,y)) −→ (∀ z w. P(w,z))›
apply (rule impI)
apply (rule allI)
apply (rule allI)
apply (drule spec)
apply (drule spec)
apply assumption
done

2.0.2 Demonstration of fast
lemma ‹(∃ y. ∀ x. J (y,x)←→ ¬ J (x,x)) −→ ¬ (∀ x. ∃ y. ∀ z. J (z,y)←→ ¬ J (z,x))›
apply fast
done

lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›
apply fast
done

2.0.3 Derivation of conjunction elimination rule
lemma

4

assumes major : ‹P ∧ Q›
and minor : ‹[[P; Q]] =⇒ R›

shows ‹R›
apply (rule minor)
apply (rule major [THEN conjunct1])
apply (rule major [THEN conjunct2])
done

2.1 Derived rules involving definitions

Derivation of negation introduction
lemma

assumes ‹P =⇒ False›
shows ‹¬ P›

apply (unfold not-def)
apply (rule impI)
apply (rule assms)
apply assumption
done

lemma
assumes major : ‹¬ P›

and minor : ‹P›
shows ‹R›

apply (rule FalseE)
apply (rule mp)
apply (rule major [unfolded not-def])
apply (rule minor)
done

Alternative proof of the result above
lemma

assumes major : ‹¬ P›
and minor : ‹P›

shows ‹R›
apply (rule minor [THEN major [unfolded not-def , THEN mp, THEN FalseE]])
done

end

3 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat
imports FOL

begin

5

typedecl nat
instance nat :: ‹term› ..

axiomatization
Zero :: ‹nat› (‹0 ›) and
Suc :: ‹nat ⇒ nat› and
rec :: ‹[nat, ′a, [nat, ′a] ⇒ ′a] ⇒ ′a›

where
induct: ‹[[P(0);

∧
x. P(x) =⇒ P(Suc(x))]] =⇒ P(n)› and

Suc-inject: ‹Suc(m)=Suc(n) =⇒ m=n› and
Suc-neq-0 : ‹Suc(m)=0 =⇒ R› and
rec-0 : ‹rec(0 ,a,f) = a› and
rec-Suc: ‹rec(Suc(m), a, f) = f (m, rec(m,a,f))›

definition add :: ‹[nat, nat] ⇒ nat› (infixl ‹+› 60)
where ‹m + n ≡ rec(m, n, λx y. Suc(y))›

3.1 Proofs about the natural numbers
lemma Suc-n-not-n: ‹Suc(k) 6= k›
apply (rule-tac n = ‹k› in induct)
apply (rule notI)
apply (erule Suc-neq-0)
apply (rule notI)
apply (erule notE)
apply (erule Suc-inject)
done

lemma ‹(k+m)+n = k+(m+n)›
apply (rule induct)
back
back
back
back
back
back
oops

lemma add-0 [simp]: ‹0+n = n›
apply (unfold add-def)
apply (rule rec-0)
done

lemma add-Suc [simp]: ‹Suc(m)+n = Suc(m+n)›
apply (unfold add-def)
apply (rule rec-Suc)
done

lemma add-assoc: ‹(k+m)+n = k+(m+n)›

6

apply (rule-tac n = ‹k› in induct)
apply simp
apply simp
done

lemma add-0-right: ‹m+0 = m›
apply (rule-tac n = ‹m› in induct)
apply simp
apply simp
done

lemma add-Suc-right: ‹m+Suc(n) = Suc(m+n)›
apply (rule-tac n = ‹m› in induct)
apply simp-all
done

lemma
assumes prem: ‹

∧
n. f (Suc(n)) = Suc(f (n))›

shows ‹f (i+j) = i+f (j)›
apply (rule-tac n = ‹i› in induct)
apply simp
apply (simp add: prem)
done

end

4 Theory of the natural numbers: Peano’s axioms,
primitive recursion

theory Nat-Class
imports FOL

begin

This is an abstract version of Nat.thy. Instead of axiomatizing a single type
nat, it defines the class of all these types (up to isomorphism).
Note: The rec operator has been made monomorphic, because class axioms
cannot contain more than one type variable.
class nat =

fixes Zero :: ‹ ′a› (‹0 ›)
and Suc :: ‹ ′a ⇒ ′a›
and rec :: ‹ ′a ⇒ ′a ⇒ (′a ⇒ ′a ⇒ ′a) ⇒ ′a›

assumes induct: ‹P(0) =⇒ (
∧

x. P(x) =⇒ P(Suc(x))) =⇒ P(n)›
and Suc-inject: ‹Suc(m) = Suc(n) =⇒ m = n›
and Suc-neq-Zero: ‹Suc(m) = 0 =⇒ R›
and rec-Zero: ‹rec(0 , a, f) = a›
and rec-Suc: ‹rec(Suc(m), a, f) = f (m, rec(m, a, f))›

begin

7

definition add :: ‹ ′a ⇒ ′a ⇒ ′a› (infixl ‹+› 60)
where ‹m + n = rec(m, n, λx y. Suc(y))›

lemma Suc-n-not-n: ‹Suc(k) 6= (k:: ′a)›
apply (rule-tac n = ‹k› in induct)
apply (rule notI)
apply (erule Suc-neq-Zero)

apply (rule notI)
apply (erule notE)
apply (erule Suc-inject)
done

lemma ‹(k + m) + n = k + (m + n)›
apply (rule induct)
back
back
back
back
back
oops

lemma add-Zero [simp]: ‹0 + n = n›
apply (unfold add-def)
apply (rule rec-Zero)
done

lemma add-Suc [simp]: ‹Suc(m) + n = Suc(m + n)›
apply (unfold add-def)
apply (rule rec-Suc)
done

lemma add-assoc: ‹(k + m) + n = k + (m + n)›
apply (rule-tac n = ‹k› in induct)
apply simp

apply simp
done

lemma add-Zero-right: ‹m + 0 = m›
apply (rule-tac n = ‹m› in induct)
apply simp

apply simp
done

lemma add-Suc-right: ‹m + Suc(n) = Suc(m + n)›
apply (rule-tac n = ‹m› in induct)
apply simp-all

done

lemma

8

assumes prem: ‹
∧

n. f (Suc(n)) = Suc(f (n))›
shows ‹f (i + j) = i + f (j)›
apply (rule-tac n = ‹i› in induct)
apply simp

apply (simp add: prem)
done

end

end

5 Intuitionistic FOL: Examples from The Founda-
tion of a Generic Theorem Prover

theory Foundation
imports IFOL
begin

lemma ‹A ∧ B −→ (C −→ A ∧ C)›
apply (rule impI)
apply (rule impI)
apply (rule conjI)
prefer 2 apply assumption
apply (rule conjunct1)
apply assumption
done

A form of conj-elimination
lemma

assumes ‹A ∧ B›
and ‹A =⇒ B =⇒ C ›

shows ‹C ›
apply (rule assms)
apply (rule conjunct1)
apply (rule assms)
apply (rule conjunct2)
apply (rule assms)
done

lemma
assumes ‹

∧
A. ¬ ¬ A =⇒ A›

shows ‹B ∨ ¬ B›
apply (rule assms)
apply (rule notI)
apply (rule-tac P = ‹¬ B› in notE)
apply (rule-tac [2] notI)
apply (rule-tac [2] P = ‹B ∨ ¬ B› in notE)
prefer 2 apply assumption

9

apply (rule-tac [2] disjI1)
prefer 2 apply assumption
apply (rule notI)
apply (rule-tac P = ‹B ∨ ¬ B› in notE)
apply assumption
apply (rule disjI2)
apply assumption
done

lemma
assumes ‹

∧
A. ¬ ¬ A =⇒ A›

shows ‹B ∨ ¬ B›
apply (rule assms)
apply (rule notI)
apply (rule notE)
apply (rule-tac [2] notI)
apply (erule-tac [2] notE)
apply (erule-tac [2] disjI1)
apply (rule notI)
apply (erule notE)
apply (erule disjI2)
done

lemma
assumes ‹A ∨ ¬ A›

and ‹¬ ¬ A›
shows ‹A›

apply (rule disjE)
apply (rule assms)
apply assumption
apply (rule FalseE)
apply (rule-tac P = ‹¬ A› in notE)
apply (rule assms)
apply assumption
done

5.1 Examples with quantifiers
lemma

assumes ‹∀ z. G(z)›
shows ‹∀ z. G(z) ∨ H (z)›

apply (rule allI)
apply (rule disjI1)
apply (rule assms [THEN spec])
done

lemma ‹∀ x. ∃ y. x = y›
apply (rule allI)

10

apply (rule exI)
apply (rule refl)
done

lemma ‹∃ y. ∀ x. x = y›
apply (rule exI)
apply (rule allI)
apply (rule refl)?
oops

Parallel lifting example.
lemma ‹∃ u. ∀ x. ∃ v. ∀ y. ∃w. P(u,x,v,y,w)›
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
apply (rule exI allI)
oops

lemma
assumes ‹(∃ z. F(z)) ∧ B›
shows ‹∃ z. F(z) ∧ B›

apply (rule conjE)
apply (rule assms)
apply (rule exE)
apply assumption
apply (rule exI)
apply (rule conjI)
apply assumption
apply assumption
done

A bigger demonstration of quantifiers – not in the paper.
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›
apply (rule impI)
apply (rule allI)
apply (rule exE , assumption)
apply (rule exI)
apply (rule allE , assumption)
apply assumption
done

end

6 First-Order Logic: PROLOG examples
theory Prolog
imports FOL

11

begin

typedecl ′a list
instance list :: (‹term›) ‹term› ..

axiomatization
Nil :: ‹ ′a list› and
Cons :: ‹[′a, ′a list]=> ′a list› (infixr ‹:› 60) and
app :: ‹[′a list, ′a list, ′a list] => o› and
rev :: ‹[′a list, ′a list] => o›

where
appNil: ‹app(Nil,ys,ys)› and
appCons: ‹app(xs,ys,zs) ==> app(x:xs, ys, x:zs)› and
revNil: ‹rev(Nil,Nil)› and
revCons: ‹[| rev(xs,ys); app(ys, x:Nil, zs) |] ==> rev(x:xs, zs)›

schematic-goal ‹app(a:b:c:Nil, d:e:Nil, ?x)›
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
apply (rule appNil appCons)
done

schematic-goal ‹app(?x, c:d:Nil, a:b:c:d:Nil)›
apply (rule appNil appCons)+
done

schematic-goal ‹app(?x, ?y, a:b:c:d:Nil)›
apply (rule appNil appCons)+
back
back
back
back
done

lemmas rules = appNil appCons revNil revCons

schematic-goal ‹rev(a:b:c:d:Nil, ?x)›
apply (rule rules)+
done

schematic-goal ‹rev(a:b:c:d:e:f :g:h:i:j:k:l:m:n:Nil, ?w)›
apply (rule rules)+
done

schematic-goal ‹rev(?x, a:b:c:Nil)›

12

apply (rule rules)+ — does not solve it directly!
back
back
done

ML ‹
fun prolog-tac ctxt =

DEPTH-FIRST Thm.no-prems (resolve-tac ctxt @{thms rules} 1)
›

schematic-goal ‹rev(?x, a:b:c:Nil)›
apply (tactic ‹prolog-tac context ›)
done

schematic-goal ‹rev(a:?x:c:?y:Nil, d:?z:b:?u)›
apply (tactic ‹prolog-tac context ›)
done

schematic-goal ‹rev(a:b:c:d:e:f :g:h:i:j:k:l:m:n:o:p:Nil, ?w)›
apply (tactic ‹

DEPTH-SOLVE (resolve-tac context ([@{thm refl}, @{thm conjI}] @ @{thms
rules}) 1)›)
done

schematic-goal ‹a:b:c:d:e:f :g:h:i:j:k:l:m:n:o:p:Nil = ?x ∧ app(?x,?x,?y) ∧ rev(?y,?w)›
apply (tactic ‹

DEPTH-SOLVE (resolve-tac context ([@{thm refl}, @{thm conjI}] @ @{thms
rules}) 1)›)
done

end

7 Intuitionistic First-Order Logic
theory Intuitionistic
imports IFOL
begin

Metatheorem (for propositional formulae): P is classically provable iff ¬¬P
is intuitionistically provable. Therefore ¬P is classically provable iff it is
intuitionistically provable.
Proof: Let Q be the conjunction of the propositions A ∨ ¬A, one for each
atom A in P . Now ¬¬Q is intuitionistically provable because ¬¬(A∨¬A) is
and because double-negation distributes over conjunction. If P is provable
classically, then clearly Q→ P is provable intuitionistically, so ¬¬(Q→ P)

13

is also provable intuitionistically. The latter is intuitionistically equivalent
to ¬¬Q → ¬¬P , hence to ¬¬P , since ¬¬Q is intuitionistically provable.
Finally, if P is a negation then ¬¬P is intuitionstically equivalent to P .
[Andy Pitts]
lemma ‹¬ ¬ (P ∧ Q) ←→ ¬ ¬ P ∧ ¬ ¬ Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ((¬ P −→ Q) −→ (¬ P −→ ¬ Q) −→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)

Double-negation does NOT distribute over disjunction.
lemma ‹¬ ¬ (P −→ Q) ←→ (¬ ¬ P −→ ¬ ¬ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ¬ P ←→ ¬ P›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ ((P −→ Q ∨ R) −→ (P −→ Q) ∨ (P −→ R))›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(P ←→ Q) ←→ (Q ←→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((P −→ (Q ∨ (Q −→ R))) −→ R) −→ R›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma
‹(((G −→ A) −→ J) −→ D −→ E) −→ (((H −→ B) −→ I) −→ C −→ J)
−→ (A −→ H) −→ F −→ G −→ (((C −→ B) −→ I) −→ D) −→ (A −→ C)
−→ (((F −→ A) −→ B) −→ I) −→ E›

by (tactic ‹IntPr .fast-tac context 1 ›)

Admissibility of the excluded middle for negated formulae
lemma ‹(P ∨ ¬P −→ ¬Q) −→ ¬Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

The same in a more general form, no ex falso quodlibet
lemma ‹(P ∨ (P−→R) −→ Q −→ R) −→ Q −→ R›

by (tactic ‹IntPr .fast-tac context 1 ›)

7.1 Lemmas for the propositional double-negation transla-
tion

lemma ‹P −→ ¬ ¬ P›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹¬ ¬ (¬ ¬ P −→ P)›
by (tactic ‹IntPr .fast-tac context 1 ›)

14

lemma ‹¬ ¬ P ∧ ¬ ¬ (P −→ Q) −→ ¬ ¬ Q›
by (tactic ‹IntPr .fast-tac context 1 ›)

The following are classically but not constructively valid. The attempt to
prove them terminates quickly!
lemma ‹((P −→ Q) −→ P) −→ P›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(P ∧ Q −→ R) −→ (P −→ R) ∨ (Q −→ R)›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

7.2 de Bruijn formulae

de Bruijn formula with three predicates
lemma

‹((P ←→ Q) −→ P ∧ Q ∧ R) ∧
((Q ←→ R) −→ P ∧ Q ∧ R) ∧
((R ←→ P) −→ P ∧ Q ∧ R) −→ P ∧ Q ∧ R›

by (tactic ‹IntPr .fast-tac context 1 ›)

de Bruijn formula with five predicates
lemma

‹((P ←→ Q) −→ P ∧ Q ∧ R ∧ S ∧ T) ∧
((Q ←→ R) −→ P ∧ Q ∧ R ∧ S ∧ T) ∧
((R ←→ S) −→ P ∧ Q ∧ R ∧ S ∧ T) ∧
((S ←→ T) −→ P ∧ Q ∧ R ∧ S ∧ T) ∧
((T ←→ P) −→ P ∧ Q ∧ R ∧ S ∧ T) −→ P ∧ Q ∧ R ∧ S ∧ T ›

by (tactic ‹IntPr .fast-tac context 1 ›)

Problems from of Sahlin, Franzen and Haridi, An Intuitionistic Predicate
Logic Theorem Prover. J. Logic and Comp. 2 (5), October 1992, 619-656.

Problem 1.1
lemma

‹(∀ x. ∃ y. ∀ z. p(x) ∧ q(y) ∧ r(z)) ←→
(∀ z. ∃ y. ∀ x. p(x) ∧ q(y) ∧ r(z))›

by (tactic ‹IntPr .best-dup-tac context 1 ›) — SLOW

Problem 3.1
lemma ‹¬ (∃ x. ∀ y. mem(y,x) ←→ ¬ mem(x,x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

Problem 4.1: hopeless!

15

lemma
‹(∀ x. p(x) −→ p(h(x)) ∨ p(g(x))) ∧ (∃ x. p(x)) ∧ (∀ x. ¬ p(h(x)))
−→ (∃ x. p(g(g(g(g(g(x)))))))›

oops

7.3 Intuitionistic FOL: propositional problems based on Pel-
letier.

¬¬1
lemma ‹¬ ¬ ((P −→ Q) ←→ (¬ Q −→ ¬ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬2
lemma ‹¬ ¬ (¬ ¬ P ←→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

3
lemma ‹¬ (P −→ Q) −→ (Q −→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬4
lemma ‹¬ ¬ ((¬ P −→ Q) ←→ (¬ Q −→ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬5
lemma ‹¬ ¬ ((P ∨ Q −→ P ∨ R) −→ P ∨ (Q −→ R))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬6
lemma ‹¬ ¬ (P ∨ ¬ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬7
lemma ‹¬ ¬ (P ∨ ¬ ¬ ¬ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬8. Peirce’s law
lemma ‹¬ ¬ (((P −→ Q) −→ P) −→ P)›

by (tactic ‹IntPr .fast-tac context 1 ›)

9
lemma ‹((P ∨ Q) ∧ (¬ P ∨ Q) ∧ (P ∨ ¬ Q)) −→ ¬ (¬ P ∨ ¬ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

10
lemma ‹(Q −→ R) −→ (R −→ P ∧ Q) −→ (P −→ (Q ∨ R)) −→ (P ←→ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

16

7.4 11. Proved in each direction (incorrectly, says Pelletier!!)
lemma ‹P ←→ P›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬12. Dijkstra’s law
lemma ‹¬ ¬ (((P ←→ Q) ←→ R) ←→ (P ←→ (Q ←→ R)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((P ←→ Q) ←→ R) −→ ¬ ¬ (P ←→ (Q ←→ R))›
by (tactic ‹IntPr .fast-tac context 1 ›)

13. Distributive law
lemma ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬14
lemma ‹¬ ¬ ((P ←→ Q) ←→ ((Q ∨ ¬ P) ∧ (¬ Q ∨ P)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬15
lemma ‹¬ ¬ ((P −→ Q) ←→ (¬ P ∨ Q))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬16
lemma ‹¬ ¬ ((P −→ Q) ∨ (Q −→ P))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬17
lemma ‹¬ ¬ (((P ∧ (Q −→ R)) −→ S) ←→ ((¬ P ∨ Q ∨ S) ∧ (¬ P ∨ ¬ R ∨
S)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

Dijkstra’s “Golden Rule”
lemma ‹(P ∧ Q) ←→ P ←→ Q ←→ (P ∨ Q)›

by (tactic ‹IntPr .fast-tac context 1 ›)

8 Examples with quantifiers
8.1 The converse is classical in the following implications . . .
lemma ‹(∃ x. P(x) −→ Q) −→ (∀ x. P(x)) −→ Q›

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((∀ x. P(x)) −→ Q) −→ ¬ (∀ x. P(x) ∧ ¬ Q)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹((∀ x. ¬ P(x)) −→ Q) −→ ¬ (∀ x. ¬ (P(x) ∨ Q))›

17

by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(∀ x. P(x)) ∨ Q −→ (∀ x. P(x) ∨ Q)›
by (tactic ‹IntPr .fast-tac context 1 ›)

lemma ‹(∃ x. P −→ Q(x)) −→ (P −→ (∃ x. Q(x)))›
by (tactic ‹IntPr .fast-tac context 1 ›)

8.2 The following are not constructively valid!

The attempt to prove them terminates quickly!
lemma ‹((∀ x. P(x)) −→ Q) −→ (∃ x. P(x) −→ Q)›

apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(P −→ (∃ x. Q(x))) −→ (∃ x. P −→ Q(x))›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(∀ x. P(x) ∨ Q) −→ ((∀ x. P(x)) ∨ Q)›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

lemma ‹(∀ x. ¬ ¬ P(x)) −→ ¬ ¬ (∀ x. P(x))›
apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

Classically but not intuitionistically valid. Proved by a bug in 1986!
lemma ‹∃ x. Q(x) −→ (∀ x. Q(x))›

apply (tactic ‹IntPr .fast-tac context 1 ›)?
apply (rule asm-rl) — Checks that subgoals remain: proof failed.
oops

8.3 Hard examples with quantifiers

The ones that have not been proved are not known to be valid! Some will
require quantifier duplication – not currently available.

¬¬18
lemma ‹¬ ¬ (∃ y. ∀ x. P(y) −→ P(x))›

oops — NOT PROVED

¬¬19
lemma ‹¬ ¬ (∃ x. ∀ y z . (P(y) −→ Q(z)) −→ (P(x) −→ Q(x)))›

18

oops — NOT PROVED

20
lemma

‹(∀ x y. ∃ z. ∀w. (P(x) ∧ Q(y) −→ R(z) ∧ S(w)))
−→ (∃ x y. P(x) ∧ Q(y)) −→ (∃ z. R(z))›

by (tactic ‹IntPr .fast-tac context 1 ›)

21
lemma ‹(∃ x. P −→ Q(x)) ∧ (∃ x. Q(x) −→ P) −→ ¬ ¬ (∃ x. P ←→ Q(x))›

oops — NOT PROVED; needs quantifier duplication

22
lemma ‹(∀ x. P ←→ Q(x)) −→ (P ←→ (∀ x. Q(x)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬23
lemma ‹¬ ¬ ((∀ x. P ∨ Q(x)) ←→ (P ∨ (∀ x. Q(x))))›

by (tactic ‹IntPr .fast-tac context 1 ›)

24
lemma

‹¬ (∃ x. S(x) ∧ Q(x)) ∧ (∀ x. P(x) −→ Q(x) ∨ R(x)) ∧
(¬ (∃ x. P(x)) −→ (∃ x. Q(x))) ∧ (∀ x. Q(x) ∨ R(x) −→ S(x))
−→ ¬ ¬ (∃ x. P(x) ∧ R(x))›

Not clear why fast-tac, best-tac, ASTAR and ITER-DEEPEN all take for-
ever.

apply (tactic ‹IntPr .safe-tac context ›)
apply (erule impE)
apply (tactic ‹IntPr .fast-tac context 1 ›)
apply (tactic ‹IntPr .fast-tac context 1 ›)
done

25
lemma

‹(∃ x. P(x)) ∧
(∀ x. L(x) −→ ¬ (M (x) ∧ R(x))) ∧
(∀ x. P(x) −→ (M (x) ∧ L(x))) ∧
((∀ x. P(x) −→ Q(x)) ∨ (∃ x. P(x) ∧ R(x)))
−→ (∃ x. Q(x) ∧ P(x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬26
lemma

‹(¬ ¬ (∃ x. p(x)) ←→ ¬ ¬ (∃ x. q(x))) ∧
(∀ x. ∀ y. p(x) ∧ q(y) −→ (r(x) ←→ s(y)))

19

−→ ((∀ x. p(x) −→ r(x)) ←→ (∀ x. q(x) −→ s(x)))›
oops — NOT PROVED

27
lemma

‹(∃ x. P(x) ∧ ¬ Q(x)) ∧
(∀ x. P(x) −→ R(x)) ∧
(∀ x. M (x) ∧ L(x) −→ P(x)) ∧
((∃ x. R(x) ∧ ¬ Q(x)) −→ (∀ x. L(x) −→ ¬ R(x)))
−→ (∀ x. M (x) −→ ¬ L(x))›
by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬28. AMENDED
lemma

‹(∀ x. P(x) −→ (∀ x. Q(x))) ∧
(¬ ¬ (∀ x. Q(x) ∨ R(x)) −→ (∃ x. Q(x) ∧ S(x))) ∧
(¬ ¬ (∃ x. S(x)) −→ (∀ x. L(x) −→ M (x)))
−→ (∀ x. P(x) ∧ L(x) −→ M (x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

29. Essentially the same as Principia Mathematica *11.71
lemma

‹(∃ x. P(x)) ∧ (∃ y. Q(y))
−→ ((∀ x. P(x) −→ R(x)) ∧ (∀ y. Q(y) −→ S(y)) ←→
(∀ x y. P(x) ∧ Q(y) −→ R(x) ∧ S(y)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬30
lemma

‹(∀ x. (P(x) ∨ Q(x)) −→ ¬ R(x)) ∧
(∀ x. (Q(x) −→ ¬ S(x)) −→ P(x) ∧ R(x))
−→ (∀ x. ¬ ¬ S(x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

31
lemma

‹¬ (∃ x. P(x) ∧ (Q(x) ∨ R(x))) ∧
(∃ x. L(x) ∧ P(x)) ∧
(∀ x. ¬ R(x) −→ M (x))

−→ (∃ x. L(x) ∧ M (x))›
by (tactic ‹IntPr .fast-tac context 1 ›)

32
lemma

‹(∀ x. P(x) ∧ (Q(x) ∨ R(x)) −→ S(x)) ∧
(∀ x. S(x) ∧ R(x) −→ L(x)) ∧
(∀ x. M (x) −→ R(x))
−→ (∀ x. P(x) ∧ M (x) −→ L(x))›

20

by (tactic ‹IntPr .fast-tac context 1 ›)

¬¬33
lemma

‹(∀ x. ¬ ¬ (P(a) ∧ (P(x) −→ P(b)) −→ P(c))) ←→
(∀ x. ¬ ¬ ((¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c))))›

apply (tactic ‹IntPr .best-tac context 1 ›)
done

36
lemma

‹(∀ x. ∃ y. J (x,y)) ∧
(∀ x. ∃ y. G(x,y)) ∧
(∀ x y. J (x,y) ∨ G(x,y) −→ (∀ z. J (y,z) ∨ G(y,z) −→ H (x,z)))
−→ (∀ x. ∃ y. H (x,y))›
by (tactic ‹IntPr .fast-tac context 1 ›)

37
lemma

‹(∀ z. ∃w. ∀ x. ∃ y.
¬ ¬ (P(x,z) −→ P(y,w)) ∧ P(y,z) ∧ (P(y,w) −→ (∃ u. Q(u,w)))) ∧
(∀ x z. ¬ P(x,z) −→ (∃ y. Q(y,z))) ∧
(¬ ¬ (∃ x y. Q(x,y)) −→ (∀ x. R(x,x)))

−→ ¬ ¬ (∀ x. ∃ y. R(x,y))›
oops — NOT PROVED

39
lemma ‹¬ (∃ x. ∀ y. F(y,x) ←→ ¬ F(y,y))›

by (tactic ‹IntPr .fast-tac context 1 ›)

40. AMENDED
lemma

‹(∃ y. ∀ x. F(x,y) ←→ F(x,x)) −→
¬ (∀ x. ∃ y. ∀ z. F(z,y) ←→ ¬ F(z,x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

44
lemma

‹(∀ x. f (x) −→
(∃ y. g(y) ∧ h(x,y) ∧ (∃ y. g(y) ∧ ¬ h(x,y)))) ∧
(∃ x. j(x) ∧ (∀ y. g(y) −→ h(x,y)))
−→ (∃ x. j(x) ∧ ¬ f (x))›

by (tactic ‹IntPr .fast-tac context 1 ›)

48
lemma ‹(a = b ∨ c = d) ∧ (a = c ∨ b = d) −→ a = d ∨ b = c›

by (tactic ‹IntPr .fast-tac context 1 ›)

21

51
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃ z. ∀ x. ∃w. (∀ y. P(x,y) ←→ y = w) ←→ x = z)›

by (tactic ‹IntPr .fast-tac context 1 ›)

52

Almost the same as 51.
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃w. ∀ y. ∃ z. (∀ x. P(x,y) ←→ x = z) ←→ y = w)›

by (tactic ‹IntPr .fast-tac context 1 ›)

56
lemma ‹(∀ x. (∃ y. P(y) ∧ x = f (y)) −→ P(x)) ←→ (∀ x. P(x) −→ P(f (x)))›

by (tactic ‹IntPr .fast-tac context 1 ›)

57
lemma

‹P(f (a,b), f (b,c)) ∧ P(f (b,c), f (a,c)) ∧
(∀ x y z. P(x,y) ∧ P(y,z) −→ P(x,z)) −→ P(f (a,b), f (a,c))›

by (tactic ‹IntPr .fast-tac context 1 ›)

60
lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›

by (tactic ‹IntPr .fast-tac context 1 ›)

end

9 First-Order Logic: propositional examples (in-
tuitionistic version)

theory Propositional-Int
imports IFOL
begin

commutative laws of ∧ and ∨
lemma ‹P ∧ Q −→ Q ∧ P›

by (tactic IntPr .fast-tac context 1)

lemma ‹P ∨ Q −→ Q ∨ P›
by (tactic IntPr .fast-tac context 1)

associative laws of ∧ and ∨
lemma ‹(P ∧ Q) ∧ R −→ P ∧ (Q ∧ R)›

22

by (tactic IntPr .fast-tac context 1)

lemma ‹(P ∨ Q) ∨ R −→ P ∨ (Q ∨ R)›
by (tactic IntPr .fast-tac context 1)

distributive laws of ∧ and ∨
lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R) ∧ (Q ∨ R)›

by (tactic IntPr .fast-tac context 1)

lemma ‹(P ∨ R) ∧ (Q ∨ R) −→ (P ∧ Q) ∨ R›
by (tactic IntPr .fast-tac context 1)

lemma ‹(P ∨ Q) ∧ R −→ (P ∧ R) ∨ (Q ∧ R)›
by (tactic IntPr .fast-tac context 1)

lemma ‹(P ∧ R) ∨ (Q ∧ R) −→ (P ∨ Q) ∧ R›
by (tactic IntPr .fast-tac context 1)

Laws involving implication
lemma ‹(P −→ R) ∧ (Q −→ R) ←→ (P ∨ Q −→ R)›

by (tactic IntPr .fast-tac context 1)

lemma ‹(P ∧ Q −→ R) ←→ (P −→ (Q −→ R))›
by (tactic IntPr .fast-tac context 1)

lemma ‹((P −→ R) −→ R) −→ ((Q −→ R) −→ R) −→ (P ∧ Q −→ R) −→ R›
by (tactic IntPr .fast-tac context 1)

lemma ‹¬ (P −→ R) −→ ¬ (Q −→ R) −→ ¬ (P ∧ Q −→ R)›
by (tactic IntPr .fast-tac context 1)

lemma ‹(P −→ Q ∧ R) ←→ (P −→ Q) ∧ (P −→ R)›
by (tactic IntPr .fast-tac context 1)

Propositions-as-types
lemma ‹P −→ (Q −→ P)›

by (tactic IntPr .fast-tac context 1)

— The combinator S
lemma ‹(P −→ Q −→ R) −→ (P −→ Q) −→ (P −→ R)›

by (tactic IntPr .fast-tac context 1)

— Converse is classical
lemma ‹(P −→ Q) ∨ (P −→ R) −→ (P −→ Q ∨ R)›

by (tactic IntPr .fast-tac context 1)

lemma ‹(P −→ Q) −→ (¬ Q −→ ¬ P)›
by (tactic IntPr .fast-tac context 1)

23

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: ‹(((Q −→ R) −→ R) −→ Q) −→ (((P −→ Q) −→ R) −→ R)
−→ P −→ Q›

by (tactic IntPr .fast-tac context 1)

lemma stab-to-peirce:
‹(((P −→ R) −→ R) −→ P) −→ (((Q −→ R) −→ R) −→ Q)
−→ ((P −→ Q) −→ P) −→ P›

by (tactic IntPr .fast-tac context 1)

lemma peirce-imp1 :
‹(((Q −→ R) −→ Q) −→ Q)
−→ (((P −→ Q) −→ R) −→ P −→ Q) −→ P −→ Q›

by (tactic IntPr .fast-tac context 1)

lemma peirce-imp2 : ‹(((P −→ R) −→ P) −→ P) −→ ((P −→ Q −→ R) −→ P)
−→ P›

by (tactic IntPr .fast-tac context 1)

lemma mints: ‹((((P −→ Q) −→ P) −→ P) −→ Q) −→ Q›
by (tactic IntPr .fast-tac context 1)

lemma mints-solovev: ‹(P −→ (Q −→ R) −→ Q) −→ ((P −→ Q) −→ R) −→ R›
by (tactic IntPr .fast-tac context 1)

lemma tatsuta:
‹(((P7 −→ P1) −→ P10) −→ P4 −→ P5)
−→ (((P8 −→ P2) −→ P9) −→ P3 −→ P10)
−→ (P1 −→ P8) −→ P6 −→ P7
−→ (((P3 −→ P2) −→ P9) −→ P4)
−→ (P1 −→ P3) −→ (((P6 −→ P1) −→ P2) −→ P9) −→ P5 ›
by (tactic IntPr .fast-tac context 1)

lemma tatsuta1 :
‹(((P8 −→ P2) −→ P9) −→ P3 −→ P10)
−→ (((P3 −→ P2) −→ P9) −→ P4)
−→ (((P6 −→ P1) −→ P2) −→ P9)
−→ (((P7 −→ P1) −→ P10) −→ P4 −→ P5)
−→ (P1 −→ P3) −→ (P1 −→ P8) −→ P6 −→ P7 −→ P5 ›
by (tactic IntPr .fast-tac context 1)

end

10 First-Order Logic: quantifier examples (intu-
itionistic version)

theory Quantifiers-Int
imports IFOL

24

begin

lemma ‹(∀ x y. P(x,y)) −→ (∀ y x . P(x,y))›
by (tactic IntPr .fast-tac context 1)

lemma ‹(∃ x y. P(x,y)) −→ (∃ y x . P(x,y))›
by (tactic IntPr .fast-tac context 1)

— Converse is false
lemma ‹(∀ x. P(x)) ∨ (∀ x. Q(x)) −→ (∀ x. P(x) ∨ Q(x))›

by (tactic IntPr .fast-tac context 1)

lemma ‹(∀ x. P −→ Q(x)) ←→ (P −→ (∀ x. Q(x)))›
by (tactic IntPr .fast-tac context 1)

lemma ‹(∀ x. P(x) −→ Q) ←→ ((∃ x. P(x)) −→ Q)›
by (tactic IntPr .fast-tac context 1)

Some harder ones
lemma ‹(∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1)

— Converse is false
lemma ‹(∃ x. P(x) ∧ Q(x)) −→ (∃ x. P(x)) ∧ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1)

Basic test of quantifier reasoning
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›

by (tactic IntPr .fast-tac context 1)

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by (tactic IntPr .fast-tac context 1)

The following should fail, as they are false!
lemma ‹(∀ x. ∃ y. Q(x,y)) −→ (∃ y. ∀ x. Q(x,y))›

apply (tactic IntPr .fast-tac context 1)?
oops

lemma ‹(∃ x. Q(x)) −→ (∀ x. Q(x))›
apply (tactic IntPr .fast-tac context 1)?
oops

schematic-goal ‹P(?a) −→ (∀ x. P(x))›
apply (tactic IntPr .fast-tac context 1)?
oops

schematic-goal ‹(P(?a) −→ (∀ x. Q(x))) −→ (∀ x. P(x) −→ Q(x))›

25

apply (tactic IntPr .fast-tac context 1)?
oops

Back to things that are provable . . .
lemma ‹(∀ x. P(x) −→ Q(x)) ∧ (∃ x. P(x)) −→ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1)

— An example of why exI should be delayed as long as possible
lemma ‹(P −→ (∃ x. Q(x))) ∧ P −→ (∃ x. Q(x))›

by (tactic IntPr .fast-tac context 1)

schematic-goal ‹(∀ x. P(x) −→ Q(f (x))) ∧ (∀ x. Q(x) −→ R(g(x))) ∧ P(d) −→
R(?a)›

by (tactic IntPr .fast-tac context 1)

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by (tactic IntPr .fast-tac context 1)

Some slow ones
lemma ‹(∀ x y. P(x) −→ Q(y)) ←→ ((∃ x. P(x)) −→ (∀ y. Q(y)))›

by (tactic IntPr .fast-tac context 1)

lemma ‹(∃ x y. P(x) ∧ Q(x,y)) ←→ (∃ x. P(x) ∧ (∃ y. Q(x,y)))›
by (tactic IntPr .fast-tac context 1)

lemma ‹(∃ y. ∀ x. P(x) −→ Q(x,y)) −→ (∀ x. P(x) −→ (∃ y. Q(x,y)))›
by (tactic IntPr .fast-tac context 1)

end

11 Classical Predicate Calculus Problems
theory Classical
imports FOL
begin

lemma ‹(P −→ Q ∨ R) −→ (P −→ Q) ∨ (P −→ R)›
by blast

11.0.1 If and only if
lemma ‹(P ←→ Q) ←→ (Q ←→ P)›

by blast

lemma ‹¬ (P ←→ ¬ P)›
by blast

26

11.1 Pelletier’s examples

Sample problems from

• F. J. Pelletier, Seventy-Five Problems for Testing Automatic Theorem
Provers, J. Automated Reasoning 2 (1986), 191-216. Errata, JAR 4
(1988), 236-236.

The hardest problems – judging by experience with several theorem provers,
including matrix ones – are 34 and 43.

1
lemma ‹(P −→ Q) ←→ (¬ Q −→ ¬ P)›

by blast

2
lemma ‹¬ ¬ P ←→ P›

by blast

3
lemma ‹¬ (P −→ Q) −→ (Q −→ P)›

by blast

4
lemma ‹(¬ P −→ Q) ←→ (¬ Q −→ P)›

by blast

5
lemma ‹((P ∨ Q) −→ (P ∨ R)) −→ (P ∨ (Q −→ R))›

by blast

6
lemma ‹P ∨ ¬ P›

by blast

7
lemma ‹P ∨ ¬ ¬ ¬ P›

by blast

8. Peirce’s law
lemma ‹((P −→ Q) −→ P) −→ P›

by blast

9
lemma ‹((P ∨ Q) ∧ (¬ P ∨ Q) ∧ (P ∨ ¬ Q)) −→ ¬ (¬ P ∨ ¬ Q)›

by blast

27

10
lemma ‹(Q −→ R) ∧ (R −→ P ∧ Q) ∧ (P −→ Q ∨ R) −→ (P ←→ Q)›

by blast

11. Proved in each direction (incorrectly, says Pelletier!!)
lemma ‹P ←→ P›

by blast

12. "Dijkstra’s law"
lemma ‹((P ←→ Q) ←→ R) ←→ (P ←→ (Q ←→ R))›

by blast

13. Distributive law
lemma ‹P ∨ (Q ∧ R) ←→ (P ∨ Q) ∧ (P ∨ R)›

by blast

14
lemma ‹(P ←→ Q) ←→ ((Q ∨ ¬ P) ∧ (¬ Q ∨ P))›

by blast

15
lemma ‹(P −→ Q) ←→ (¬ P ∨ Q)›

by blast

16
lemma ‹(P −→ Q) ∨ (Q −→ P)›

by blast

17
lemma ‹((P ∧ (Q −→ R)) −→ S) ←→ ((¬ P ∨ Q ∨ S) ∧ (¬ P ∨ ¬ R ∨ S))›

by blast

11.2 Classical Logic: examples with quantifiers
lemma ‹(∀ x. P(x) ∧ Q(x)) ←→ (∀ x. P(x)) ∧ (∀ x. Q(x))›

by blast

lemma ‹(∃ x. P −→ Q(x)) ←→ (P −→ (∃ x. Q(x)))›
by blast

lemma ‹(∃ x. P(x) −→ Q) ←→ (∀ x. P(x)) −→ Q›
by blast

lemma ‹(∀ x. P(x)) ∨ Q ←→ (∀ x. P(x) ∨ Q)›
by blast

Discussed in Avron, Gentzen-Type Systems, Resolution and Tableaux, JAR
10 (265-281), 1993. Proof is trivial!

28

lemma ‹¬ ((∃ x. ¬ P(x)) ∧ ((∃ x. P(x)) ∨ (∃ x. P(x) ∧ Q(x))) ∧ ¬ (∃ x. P(x)))›
by blast

11.3 Problems requiring quantifier duplication

Theorem B of Peter Andrews, Theorem Proving via General Matings, JACM
28 (1981).
lemma ‹(∃ x. ∀ y. P(x) ←→ P(y)) −→ ((∃ x. P(x)) ←→ (∀ y. P(y)))›

by blast

Needs multiple instantiation of ALL.
lemma ‹(∀ x. P(x) −→ P(f (x))) ∧ P(d) −→ P(f (f (f (d))))›

by blast

Needs double instantiation of the quantifier
lemma ‹∃ x. P(x) −→ P(a) ∧ P(b)›

by blast

lemma ‹∃ z. P(z) −→ (∀ x. P(x))›
by blast

lemma ‹∃ x. (∃ y. P(y)) −→ P(x)›
by blast

V. Lifschitz, What Is the Inverse Method?, JAR 5 (1989), 1–23. NOT
PROVED.
lemma

‹∃ x x ′. ∀ y. ∃ z z ′.
(¬ P(y,y) ∨ P(x,x) ∨ ¬ S(z,x)) ∧
(S(x,y) ∨ ¬ S(y,z) ∨ Q(z ′,z ′)) ∧
(Q(x ′,y) ∨ ¬ Q(y,z ′) ∨ S(x ′,x ′))›

oops

11.4 Hard examples with quantifiers

18
lemma ‹∃ y. ∀ x. P(y) −→ P(x)›

by blast

19
lemma ‹∃ x. ∀ y z. (P(y) −→ Q(z)) −→ (P(x) −→ Q(x))›

by blast

20
lemma ‹(∀ x y. ∃ z. ∀w. (P(x) ∧ Q(y) −→ R(z) ∧ S(w)))
−→ (∃ x y. P(x) ∧ Q(y)) −→ (∃ z. R(z))›

29

by blast

21
lemma ‹(∃ x. P −→ Q(x)) ∧ (∃ x. Q(x) −→ P) −→ (∃ x. P ←→ Q(x))›

by blast

22
lemma ‹(∀ x. P ←→ Q(x)) −→ (P ←→ (∀ x. Q(x)))›

by blast

23
lemma ‹(∀ x. P ∨ Q(x)) ←→ (P ∨ (∀ x. Q(x)))›

by blast

24
lemma

‹¬ (∃ x. S(x) ∧ Q(x)) ∧ (∀ x. P(x) −→ Q(x) ∨ R(x)) ∧
(¬ (∃ x. P(x)) −→ (∃ x. Q(x))) ∧ (∀ x. Q(x) ∨ R(x) −→ S(x))
−→ (∃ x. P(x) ∧ R(x))›

by blast

25
lemma

‹(∃ x. P(x)) ∧
(∀ x. L(x) −→ ¬ (M (x) ∧ R(x))) ∧
(∀ x. P(x) −→ (M (x) ∧ L(x))) ∧
((∀ x. P(x) −→ Q(x)) ∨ (∃ x. P(x) ∧ R(x)))
−→ (∃ x. Q(x) ∧ P(x))›

by blast

26
lemma

‹((∃ x. p(x)) ←→ (∃ x. q(x))) ∧
(∀ x. ∀ y. p(x) ∧ q(y) −→ (r(x) ←→ s(y)))
−→ ((∀ x. p(x) −→ r(x)) ←→ (∀ x. q(x) −→ s(x)))›
by blast

27
lemma

‹(∃ x. P(x) ∧ ¬ Q(x)) ∧
(∀ x. P(x) −→ R(x)) ∧
(∀ x. M (x) ∧ L(x) −→ P(x)) ∧
((∃ x. R(x) ∧ ¬ Q(x)) −→ (∀ x. L(x) −→ ¬ R(x)))
−→ (∀ x. M (x) −→ ¬ L(x))›
by blast

28. AMENDED

30

lemma
‹(∀ x. P(x) −→ (∀ x. Q(x))) ∧
((∀ x. Q(x) ∨ R(x)) −→ (∃ x. Q(x) ∧ S(x))) ∧
((∃ x. S(x)) −→ (∀ x. L(x) −→ M (x)))
−→ (∀ x. P(x) ∧ L(x) −→ M (x))›
by blast

29. Essentially the same as Principia Mathematica *11.71
lemma

‹(∃ x. P(x)) ∧ (∃ y. Q(y))
−→ ((∀ x. P(x) −→ R(x)) ∧ (∀ y. Q(y) −→ S(y)) ←→
(∀ x y. P(x) ∧ Q(y) −→ R(x) ∧ S(y)))›

by blast

30
lemma

‹(∀ x. P(x) ∨ Q(x) −→ ¬ R(x)) ∧
(∀ x. (Q(x) −→ ¬ S(x)) −→ P(x) ∧ R(x))
−→ (∀ x. S(x))›

by blast

31
lemma

‹¬ (∃ x. P(x) ∧ (Q(x) ∨ R(x))) ∧
(∃ x. L(x) ∧ P(x)) ∧
(∀ x. ¬ R(x) −→ M (x))
−→ (∃ x. L(x) ∧ M (x))›
by blast

32
lemma

‹(∀ x. P(x) ∧ (Q(x) ∨ R(x)) −→ S(x)) ∧
(∀ x. S(x) ∧ R(x) −→ L(x)) ∧
(∀ x. M (x) −→ R(x))
−→ (∀ x. P(x) ∧ M (x) −→ L(x))›
by blast

33
lemma

‹(∀ x. P(a) ∧ (P(x) −→ P(b)) −→ P(c)) ←→
(∀ x. (¬ P(a) ∨ P(x) ∨ P(c)) ∧ (¬ P(a) ∨ ¬ P(b) ∨ P(c)))›

by blast

34. AMENDED (TWICE!!). Andrews’s challenge.
lemma

‹((∃ x. ∀ y. p(x) ←→ p(y)) ←→ ((∃ x. q(x)) ←→ (∀ y. p(y)))) ←→
((∃ x. ∀ y. q(x) ←→ q(y)) ←→ ((∃ x. p(x)) ←→ (∀ y. q(y))))›

by blast

31

35
lemma ‹∃ x y. P(x,y) −→ (∀ u v. P(u,v))›

by blast

36
lemma

‹(∀ x. ∃ y. J (x,y)) ∧
(∀ x. ∃ y. G(x,y)) ∧
(∀ x y. J (x,y) ∨ G(x,y) −→ (∀ z. J (y,z) ∨ G(y,z) −→ H (x,z)))
−→ (∀ x. ∃ y. H (x,y))›
by blast

37
lemma

‹(∀ z. ∃w. ∀ x. ∃ y.
(P(x,z) −→ P(y,w)) ∧ P(y,z) ∧ (P(y,w) −→ (∃ u. Q(u,w)))) ∧
(∀ x z. ¬ P(x,z) −→ (∃ y. Q(y,z))) ∧
((∃ x y. Q(x,y)) −→ (∀ x. R(x,x)))
−→ (∀ x. ∃ y. R(x,y))›
by blast

38
lemma

‹(∀ x. p(a) ∧ (p(x) −→ (∃ y. p(y) ∧ r(x,y))) −→
(∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))) ←→
(∀ x. (¬ p(a) ∨ p(x) ∨ (∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))) ∧
(¬ p(a) ∨ ¬ (∃ y. p(y) ∧ r(x,y)) ∨
(∃ z. ∃w. p(z) ∧ r(x,w) ∧ r(w,z))))›

by blast

39
lemma ‹¬ (∃ x. ∀ y. F(y,x) ←→ ¬ F(y,y))›

by blast

40. AMENDED
lemma

‹(∃ y. ∀ x. F(x,y) ←→ F(x,x)) −→
¬ (∀ x. ∃ y. ∀ z. F(z,y) ←→ ¬ F(z,x))›

by blast

41
lemma

‹(∀ z. ∃ y. ∀ x. f (x,y) ←→ f (x,z) ∧ ¬ f (x,x))
−→ ¬ (∃ z. ∀ x. f (x,z))›

by blast

42

32

lemma ‹¬ (∃ y. ∀ x. p(x,y) ←→ ¬ (∃ z. p(x,z) ∧ p(z,x)))›
by blast

43
lemma

‹(∀ x. ∀ y. q(x,y) ←→ (∀ z. p(z,x) ←→ p(z,y)))
−→ (∀ x. ∀ y. q(x,y) ←→ q(y,x))›

by blast

Other proofs: Can use auto, which cheats by using rewriting! Deepen-tac
alone requires 253 secs. Or by (mini-tac 1 THEN Deepen-tac 5 1).

44
lemma

‹(∀ x. f (x) −→ (∃ y. g(y) ∧ h(x,y) ∧ (∃ y. g(y) ∧ ¬ h(x,y)))) ∧
(∃ x. j(x) ∧ (∀ y. g(y) −→ h(x,y)))
−→ (∃ x. j(x) ∧ ¬ f (x))›
by blast

45
lemma

‹(∀ x. f (x) ∧ (∀ y. g(y) ∧ h(x,y) −→ j(x,y))
−→ (∀ y. g(y) ∧ h(x,y) −→ k(y))) ∧
¬ (∃ y. l(y) ∧ k(y)) ∧
(∃ x. f (x) ∧ (∀ y. h(x,y) −→ l(y)) ∧ (∀ y. g(y) ∧ h(x,y) −→ j(x,y)))
−→ (∃ x. f (x) ∧ ¬ (∃ y. g(y) ∧ h(x,y)))›

by blast

46
lemma

‹(∀ x. f (x) ∧ (∀ y. f (y) ∧ h(y,x) −→ g(y)) −→ g(x)) ∧
((∃ x. f (x) ∧ ¬ g(x)) −→
(∃ x. f (x) ∧ ¬ g(x) ∧ (∀ y. f (y) ∧ ¬ g(y) −→ j(x,y)))) ∧
(∀ x y. f (x) ∧ f (y) ∧ h(x,y) −→ ¬ j(y,x))
−→ (∀ x. f (x) −→ g(x))›

by blast

11.5 Problems (mainly) involving equality or functions

48
lemma ‹(a = b ∨ c = d) ∧ (a = c ∨ b = d) −→ a = d ∨ b = c›

by blast

49. NOT PROVED AUTOMATICALLY. Hard because it involves substi-
tution for Vars; the type constraint ensures that x,y,z have the same type
as a,b,u.
lemma

33

‹(∃ x y:: ′a. ∀ z. z = x ∨ z = y) ∧ P(a) ∧ P(b) ∧ a 6= b −→ (∀ u:: ′a. P(u))›
apply safe
apply (rule-tac x = ‹a› in allE , assumption)
apply (rule-tac x = ‹b› in allE , assumption)
apply fast — blast’s treatment of equality can’t do it
done

50. (What has this to do with equality?)
lemma ‹(∀ x. P(a,x) ∨ (∀ y. P(x,y))) −→ (∃ x. ∀ y. P(x,y))›

by blast

51
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃ z. ∀ x. ∃w. (∀ y. P(x,y) ←→ y=w) ←→ x = z)›

by blast

52

Almost the same as 51.
lemma

‹(∃ z w. ∀ x y. P(x,y) ←→ (x = z ∧ y = w)) −→
(∃w. ∀ y. ∃ z. (∀ x. P(x,y) ←→ x = z) ←→ y = w)›

by blast

55

Non-equational version, from Manthey and Bry, CADE-9 (Springer, 1988).
fast DISCOVERS who killed Agatha.
schematic-goal

‹lives(agatha) ∧ lives(butler) ∧ lives(charles) ∧
(killed(agatha,agatha) ∨ killed(butler ,agatha) ∨ killed(charles,agatha)) ∧
(∀ x y. killed(x,y) −→ hates(x,y) ∧ ¬ richer(x,y)) ∧
(∀ x. hates(agatha,x) −→ ¬ hates(charles,x)) ∧
(hates(agatha,agatha) ∧ hates(agatha,charles)) ∧
(∀ x. lives(x) ∧ ¬ richer(x,agatha) −→ hates(butler ,x)) ∧
(∀ x. hates(agatha,x) −→ hates(butler ,x)) ∧
(∀ x. ¬ hates(x,agatha) ∨ ¬ hates(x,butler) ∨ ¬ hates(x,charles)) −→
killed(?who,agatha)›

by fast — MUCH faster than blast

56
lemma ‹(∀ x. (∃ y. P(y) ∧ x = f (y)) −→ P(x)) ←→ (∀ x. P(x) −→ P(f (x)))›

by blast

57
lemma

‹P(f (a,b), f (b,c)) ∧ P(f (b,c), f (a,c)) ∧

34

(∀ x y z. P(x,y) ∧ P(y,z) −→ P(x,z)) −→ P(f (a,b), f (a,c))›
by blast

58 NOT PROVED AUTOMATICALLY
lemma ‹(∀ x y. f (x) = g(y)) −→ (∀ x y. f (f (x)) = f (g(y)))›

by (slow elim: subst-context)

59
lemma ‹(∀ x. P(x) ←→ ¬ P(f (x))) −→ (∃ x. P(x) ∧ ¬ P(f (x)))›

by blast

60
lemma ‹∀ x. P(x,f (x)) ←→ (∃ y. (∀ z. P(z,y) −→ P(z,f (x))) ∧ P(x,y))›

by blast

62 as corrected in JAR 18 (1997), page 135
lemma

‹(∀ x. p(a) ∧ (p(x) −→ p(f (x))) −→ p(f (f (x)))) ←→
(∀ x. (¬ p(a) ∨ p(x) ∨ p(f (f (x)))) ∧
(¬ p(a) ∨ ¬ p(f (x)) ∨ p(f (f (x)))))›

by blast

From Davis, Obvious Logical Inferences, IJCAI-81, 530-531 fast indeed copes!
lemma

‹(∀ x. F(x) ∧ ¬ G(x) −→ (∃ y. H (x,y) ∧ J (y))) ∧
(∃ x. K (x) ∧ F(x) ∧ (∀ y. H (x,y) −→ K (y))) ∧
(∀ x. K (x) −→ ¬ G(x)) −→ (∃ x. K (x) ∧ J (x))›

by fast

From Rudnicki, Obvious Inferences, JAR 3 (1987), 383-393. It does seem
obvious!
lemma

‹(∀ x. F(x) ∧ ¬ G(x) −→ (∃ y. H (x,y) ∧ J (y))) ∧
(∃ x. K (x) ∧ F(x) ∧ (∀ y. H (x,y) −→ K (y))) ∧
(∀ x. K (x) −→ ¬ G(x)) −→ (∃ x. K (x) −→ ¬ G(x))›

by fast

Halting problem: Formulation of Li Dafa (AAR Newsletter 27, Oct 1994.)
author U. Egly.
lemma

‹((∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z)))) −→
(∃w. C (w) ∧ (∀ y. C (y) −→ (∀ z. D(w,y,z)))))
∧
(∀w. C (w) ∧ (∀ u. C (u) −→ (∀ v. D(w,u,v))) −→

(∀ y z.
(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))))

35

∧
(∀w. C (w) ∧
(∀ y z .

(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))) −→

(∃ v. C (v) ∧
(∀ y. ((C (y) ∧ Q(w,y,y)) ∧ OO(w,g) −→ ¬ P(v,y)) ∧

((C (y) ∧ Q(w,y,y)) ∧ OO(w,b) −→ P(v,y) ∧ OO(v,b)))))
−→ ¬ (∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z))))›

by (blast 12)
— Needed because the search for depths below 12 is very slow.

Halting problem II: credited to M. Bruschi by Li Dafa in JAR 18(1), p. 105.
lemma

‹((∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z)))) −→
(∃w. C (w) ∧ (∀ y. C (y) −→ (∀ z. D(w,y,z)))))
∧
(∀w. C (w) ∧ (∀ u. C (u) −→ (∀ v. D(w,u,v))) −→

(∀ y z.
(C (y) ∧ P(y,z) −→ Q(w,y,z) ∧ OO(w,g)) ∧
(C (y) ∧ ¬ P(y,z) −→ Q(w,y,z) ∧ OO(w,b))))

∧
((∃w. C (w) ∧ (∀ y. (C (y) ∧ P(y,y) −→ Q(w,y,y) ∧ OO(w,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ Q(w,y,y) ∧ OO(w,b))))
−→
(∃ v. C (v) ∧ (∀ y. (C (y) ∧ P(y,y) −→ P(v,y) ∧ OO(v,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(v,y) ∧ OO(v,b)))))
−→
((∃ v. C (v) ∧ (∀ y. (C (y) ∧ P(y,y) −→ P(v,y) ∧ OO(v,g)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(v,y) ∧ OO(v,b))))
−→
(∃ u. C (u) ∧ (∀ y. (C (y) ∧ P(y,y) −→ ¬ P(u,y)) ∧

(C (y) ∧ ¬ P(y,y) −→ P(u,y) ∧ OO(u,b)))))
−→ ¬ (∃ x. A(x) ∧ (∀ y. C (y) −→ (∀ z. D(x,y,z))))›

by blast

Challenge found on info-hol.
lemma ‹∀ x. ∃ v w. ∀ y z. P(x) ∧ Q(y) −→ (P(v) ∨ R(w)) ∧ (R(z) −→ Q(v))›

by blast

Attributed to Lewis Carroll by S. G. Pulman. The first or last assumption
can be deleted.
lemma

‹(∀ x. honest(x) ∧ industrious(x) −→ healthy(x)) ∧
¬ (∃ x. grocer(x) ∧ healthy(x)) ∧
(∀ x. industrious(x) ∧ grocer(x) −→ honest(x)) ∧
(∀ x. cyclist(x) −→ industrious(x)) ∧
(∀ x. ¬ healthy(x) ∧ cyclist(x) −→ ¬ honest(x))
−→ (∀ x. grocer(x) −→ ¬ cyclist(x))›

36

by blast

end

12 First-Order Logic: propositional examples (clas-
sical version)

theory Propositional-Cla
imports FOL
begin

commutative laws of ∧ and ∨
lemma ‹P ∧ Q −→ Q ∧ P›

by (tactic IntPr .fast-tac context 1)

lemma ‹P ∨ Q −→ Q ∨ P›
by fast

associative laws of ∧ and ∨
lemma ‹(P ∧ Q) ∧ R −→ P ∧ (Q ∧ R)›

by fast

lemma ‹(P ∨ Q) ∨ R −→ P ∨ (Q ∨ R)›
by fast

distributive laws of ∧ and ∨
lemma ‹(P ∧ Q) ∨ R −→ (P ∨ R) ∧ (Q ∨ R)›

by fast

lemma ‹(P ∨ R) ∧ (Q ∨ R) −→ (P ∧ Q) ∨ R›
by fast

lemma ‹(P ∨ Q) ∧ R −→ (P ∧ R) ∨ (Q ∧ R)›
by fast

lemma ‹(P ∧ R) ∨ (Q ∧ R) −→ (P ∨ Q) ∧ R›
by fast

Laws involving implication
lemma ‹(P −→ R) ∧ (Q −→ R) ←→ (P ∨ Q −→ R)›

by fast

lemma ‹(P ∧ Q −→ R) ←→ (P −→ (Q −→ R))›
by fast

37

lemma ‹((P −→ R) −→ R) −→ ((Q −→ R) −→ R) −→ (P ∧ Q −→ R) −→ R›
by fast

lemma ‹¬ (P −→ R) −→ ¬ (Q −→ R) −→ ¬ (P ∧ Q −→ R)›
by fast

lemma ‹(P −→ Q ∧ R) ←→ (P −→ Q) ∧ (P −→ R)›
by fast

Propositions-as-types
lemma ‹P −→ (Q −→ P)›

by fast

— The combinator S
lemma ‹(P −→ Q −→ R) −→ (P −→ Q) −→ (P −→ R)›

by fast

— Converse is classical
lemma ‹(P −→ Q) ∨ (P −→ R) −→ (P −→ Q ∨ R)›

by fast

lemma ‹(P −→ Q) −→ (¬ Q −→ ¬ P)›
by fast

Schwichtenberg’s examples (via T. Nipkow)
lemma stab-imp: ‹(((Q −→ R) −→ R) −→ Q) −→ (((P −→ Q) −→ R) −→ R)
−→ P −→ Q›

by fast

lemma stab-to-peirce:
‹(((P −→ R) −→ R) −→ P) −→ (((Q −→ R) −→ R) −→ Q)
−→ ((P −→ Q) −→ P) −→ P›

by fast

lemma peirce-imp1 :
‹(((Q −→ R) −→ Q) −→ Q)
−→ (((P −→ Q) −→ R) −→ P −→ Q) −→ P −→ Q›

by fast

lemma peirce-imp2 : ‹(((P −→ R) −→ P) −→ P) −→ ((P −→ Q −→ R) −→ P)
−→ P›

by fast

lemma mints: ‹((((P −→ Q) −→ P) −→ P) −→ Q) −→ Q›
by fast

lemma mints-solovev: ‹(P −→ (Q −→ R) −→ Q) −→ ((P −→ Q) −→ R) −→ R›

38

by fast

lemma tatsuta:
‹(((P7 −→ P1) −→ P10) −→ P4 −→ P5)
−→ (((P8 −→ P2) −→ P9) −→ P3 −→ P10)
−→ (P1 −→ P8) −→ P6 −→ P7
−→ (((P3 −→ P2) −→ P9) −→ P4)
−→ (P1 −→ P3) −→ (((P6 −→ P1) −→ P2) −→ P9) −→ P5 ›
by fast

lemma tatsuta1 :
‹(((P8 −→ P2) −→ P9) −→ P3 −→ P10)
−→ (((P3 −→ P2) −→ P9) −→ P4)
−→ (((P6 −→ P1) −→ P2) −→ P9)
−→ (((P7 −→ P1) −→ P10) −→ P4 −→ P5)
−→ (P1 −→ P3) −→ (P1 −→ P8) −→ P6 −→ P7 −→ P5 ›
by fast

end

13 First-Order Logic: quantifier examples (classi-
cal version)

theory Quantifiers-Cla
imports FOL
begin

lemma ‹(∀ x y. P(x,y)) −→ (∀ y x . P(x,y))›
by fast

lemma ‹(∃ x y. P(x,y)) −→ (∃ y x . P(x,y))›
by fast

Converse is false.
lemma ‹(∀ x. P(x)) ∨ (∀ x. Q(x)) −→ (∀ x. P(x) ∨ Q(x))›

by fast

lemma ‹(∀ x. P −→ Q(x)) ←→ (P −→ (∀ x. Q(x)))›
by fast

lemma ‹(∀ x. P(x) −→ Q) ←→ ((∃ x. P(x)) −→ Q)›
by fast

Some harder ones.
lemma ‹(∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›

by fast

39

— Converse is false.
lemma ‹(∃ x. P(x) ∧ Q(x)) −→ (∃ x. P(x)) ∧ (∃ x. Q(x))›

by fast

Basic test of quantifier reasoning.
lemma ‹(∃ y. ∀ x. Q(x,y)) −→ (∀ x. ∃ y. Q(x,y))›

by fast

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by fast

The following should fail, as they are false!
lemma ‹(∀ x. ∃ y. Q(x,y)) −→ (∃ y. ∀ x. Q(x,y))›

apply fast?
oops

lemma ‹(∃ x. Q(x)) −→ (∀ x. Q(x))›
apply fast?
oops

schematic-goal ‹P(?a) −→ (∀ x. P(x))›
apply fast?
oops

schematic-goal ‹(P(?a) −→ (∀ x. Q(x))) −→ (∀ x. P(x) −→ Q(x))›
apply fast?
oops

Back to things that are provable . . .
lemma ‹(∀ x. P(x) −→ Q(x)) ∧ (∃ x. P(x)) −→ (∃ x. Q(x))›

by fast

An example of why exI should be delayed as long as possible.
lemma ‹(P −→ (∃ x. Q(x))) ∧ P −→ (∃ x. Q(x))›

by fast

schematic-goal ‹(∀ x. P(x) −→ Q(f (x))) ∧ (∀ x. Q(x) −→ R(g(x))) ∧ P(d) −→
R(?a)›

by fast

lemma ‹(∀ x. Q(x)) −→ (∃ x. Q(x))›
by fast

Some slow ones

Principia Mathematica *11.53
lemma ‹(∀ x y. P(x) −→ Q(y)) ←→ ((∃ x. P(x)) −→ (∀ y. Q(y)))›

by fast

40

lemma ‹(∃ x y. P(x) ∧ Q(x,y)) ←→ (∃ x. P(x) ∧ (∃ y. Q(x,y)))›
by fast

lemma ‹(∃ y. ∀ x. P(x) −→ Q(x,y)) −→ (∀ x. P(x) −→ (∃ y. Q(x,y)))›
by fast

end

theory Miniscope
imports FOL
begin

lemmas ccontr = FalseE [THEN classical]

13.1 Negation Normal Form
13.1.1 de Morgan laws
lemma demorgans1 :

‹¬ (P ∧ Q) ←→ ¬ P ∨ ¬ Q›
‹¬ (P ∨ Q) ←→ ¬ P ∧ ¬ Q›
‹¬ ¬ P ←→ P›
by blast+

lemma demorgans2 :
‹
∧

P. ¬ (∀ x. P(x)) ←→ (∃ x. ¬ P(x))›
‹
∧

P. ¬ (∃ x. P(x)) ←→ (∀ x. ¬ P(x))›
by blast+

lemmas demorgans = demorgans1 demorgans2

lemma nnf-simps:
‹(P −→ Q) ←→ (¬ P ∨ Q)›
‹¬ (P −→ Q) ←→ (P ∧ ¬ Q)›
‹(P ←→ Q) ←→ (¬ P ∨ Q) ∧ (¬ Q ∨ P)›
‹¬ (P ←→ Q) ←→ (P ∨ Q) ∧ (¬ P ∨ ¬ Q)›
by blast+

13.1.2 Pushing in the existential quantifiers
lemma ex-simps:

‹(∃ x. P) ←→ P›
‹
∧

P Q. (∃ x. P(x) ∧ Q) ←→ (∃ x. P(x)) ∧ Q›
‹
∧

P Q. (∃ x. P ∧ Q(x)) ←→ P ∧ (∃ x. Q(x))›

41

‹
∧

P Q. (∃ x. P(x) ∨ Q(x)) ←→ (∃ x. P(x)) ∨ (∃ x. Q(x))›
‹
∧

P Q. (∃ x. P(x) ∨ Q) ←→ (∃ x. P(x)) ∨ Q›
‹
∧

P Q. (∃ x. P ∨ Q(x)) ←→ P ∨ (∃ x. Q(x))›
by blast+

13.1.3 Pushing in the universal quantifiers
lemma all-simps:

‹(∀ x. P) ←→ P›
‹
∧

P Q. (∀ x. P(x) ∧ Q(x)) ←→ (∀ x. P(x)) ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) ∧ Q) ←→ (∀ x. P(x)) ∧ Q›
‹
∧

P Q. (∀ x. P ∧ Q(x)) ←→ P ∧ (∀ x. Q(x))›
‹
∧

P Q. (∀ x. P(x) ∨ Q) ←→ (∀ x. P(x)) ∨ Q›
‹
∧

P Q. (∀ x. P ∨ Q(x)) ←→ P ∨ (∀ x. Q(x))›
by blast+

lemmas mini-simps = demorgans nnf-simps ex-simps all-simps

ML ‹
val mini-ss = simpset-of (context |> Simplifier .add-simps @{thms mini-simps});
fun mini-tac ctxt =

resolve-tac ctxt @{thms ccontr} THEN ′ asm-full-simp-tac (put-simpset mini-ss
ctxt);
›

end

14 First-Order Logic: the ’if’ example
theory If
imports FOL
begin

definition if :: ‹[o,o,o]=>o›
where ‹if (P,Q,R) ≡ P ∧ Q ∨ ¬ P ∧ R›

lemma ifI : ‹[[P =⇒ Q; ¬ P =⇒ R]] =⇒ if (P,Q,R)›
unfolding if-def by blast

lemma ifE : ‹[[if (P,Q,R); [[P; Q]] =⇒ S ; [[¬ P; R]] =⇒ S]] =⇒ S›
unfolding if-def by blast

lemma if-commute: ‹if (P, if (Q,A,B), if (Q,C ,D))←→ if (Q, if (P,A,C), if (P,B,D))›
apply (rule iffI)
apply (erule ifE)
apply (erule ifE)
apply (rule ifI)
apply (rule ifI)
oops

42

Trying again from the beginning in order to use blast
declare ifI [intro!]
declare ifE [elim!]

lemma if-commute: ‹if (P, if (Q,A,B), if (Q,C ,D))←→ if (Q, if (P,A,C), if (P,B,D))›
by blast

lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,A,B))›
by blast

Trying again from the beginning in order to prove from the definitions
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,A,B))›

unfolding if-def by blast

An invalid formula. High-level rules permit a simpler diagnosis.
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,B,A))›

apply auto
— The next step will fail unless subgoals remain

apply (tactic all-tac)
oops

Trying again from the beginning in order to prove from the definitions.
lemma ‹if (if (P,Q,R), A, B) ←→ if (P, if (Q,A,B), if (R,B,A))›

unfolding if-def
apply auto

— The next step will fail unless subgoals remain
apply (tactic all-tac)
oops

end

43

	Natural numbers
	Examples for the manual ``Introduction to Isabelle''
	Some simple backward proofs
	Demonstration of 42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 fast
	Derivation of conjunction elimination rule

	Derived rules involving definitions

	Theory of the natural numbers: Peano's axioms, primitive recursion
	Proofs about the natural numbers

	Theory of the natural numbers: Peano's axioms, primitive recursion
	Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover
	Examples with quantifiers

	First-Order Logic: PROLOG examples
	Intuitionistic First-Order Logic
	Lemmas for the propositional double-negation translation
	de Bruijn formulae
	Intuitionistic FOL: propositional problems based on Pelletier.
	11. Proved in each direction (incorrectly, says Pelletier!!)

	Examples with quantifiers
	The converse is classical in the following implications …
	The following are not constructively valid!
	Hard examples with quantifiers

	First-Order Logic: propositional examples (intuitionistic version)
	First-Order Logic: quantifier examples (intuitionistic version)
	Classical Predicate Calculus Problems
	If and only if
	Pelletier's examples
	Classical Logic: examples with quantifiers
	Problems requiring quantifier duplication
	Hard examples with quantifiers
	Problems (mainly) involving equality or functions

	First-Order Logic: propositional examples (classical version)
	First-Order Logic: quantifier examples (classical version)
	Negation Normal Form
	de Morgan laws
	Pushing in the existential quantifiers
	Pushing in the universal quantifiers

	First-Order Logic: the 'if' example

