
Activity Based Sector Synchronisation: Efficient
Transfer of Disk-State For WAN Live Migration

Sherif Akoush, Ripduman Sohan, Bogdan Roman, Andrew Rice and Andy Hopper
University of Cambridge Computer Laboratory
firstname.lastname@cl.cam.ac.uk

Abstract—Live migration of virtual machines is now common-
place but the issue of synchronising storage remains an obstacle
to wide-area migration between datacentres. We discuss the range
of possible designs for synchronising disk images and argue
that we have to be adaptive at the sector level to efficiently
transfer disk-state to the destination. We show, using a number
of production workloads, that delaying the transmission of “hot”
sectors can achieve considerable bandwidth reduction over a
naı̈ve eager strategy. We introduce the Activity Based Sector
Synchronisation (ABSS) algorithm and show by trace-driven
simulations that ABSS is able to deliver a useful trade-off with a
data transmission overhead between 0.3% and 2.4% of a gigabit
link whilst incurring in the majority of cases a migration latency
of less than 1.1 s.

I. INTRODUCTION

Virtualisation technology brings key advantages to data-
centre operators [1] such as service consolidation, increased
hardware utilisation, stronger application isolation and sim-
plified resource allocation. This efficient management of the
computing infrastructure result in significant cost reductions
for corporate environments.

Live migration [2] is a fundamental feature of modern
virtualisation platforms which enables the seamless movement
of running virtual machines (VMs) between hosts, decoupling
them from physical hardware. It is commonly used to relocate
VMs in one datacentre to load balance resources, compact
clusters in periods of low demand and perform server main-
tenance without violating service level agreements (SLAs).

The current generation of live migration architectures are
designed around the premise that migrations only occur be-
tween hosts colocated in the same datacentre. Consequently,
these architectures assume that the underlying disk images are
universally accessible by all hosts using a low-latency high-
throughput network. Consequently, migrations are reduced to
the transfer of CPU and memory-state.

However, four orthogonal trends in enterprise virtualisation
environments indicate that inter-datacentre migrations will be
desirable in the near future. (i) Scaling: As the size of virtual-
isation installations grow to multiple physical locations, load
balancing and cluster consolidation may require migrations
across datacentres. (ii) Increasing resilience: Organisations
guarantee reliability of critical services by mirroring important
VMs across geographically distant nodes. (iii) Load balancing:
Cloud computing allows organisations to dynamically allocate

resources according to demand. (iv) Standardisation1: Cloud
platforms should soon make it standard to migrate VMs
between different cloud services. These trends may not be
complementary but they all require the application of wide-
area network (WAN) scale migrations of VMs.

Inter-datacentre migration would naturally require that disk
images are locally accessible for VMs to continue running
without performance degradation. Therefore, we need a mech-
anism to synchronise disk images at locations where the VM
could be relocated. However, efficiently synchronising disk
images is challenging especially over the high-latency low-
bandwidth WAN links that typically interconnect datacentres.

The large size of VM disk images means that it is impracti-
cal to synchronise the replica at the point of migration due to
the big required to transfer all modified sectors. Conversely,
copying sectors as soon as they are modified by the VM is
ineffectual and inefficient if they are shortly re-modified (as
bandwidth is wasted in this case).

This paper introduces Activity Based Sector Synchronisation
(ABSS), a technique for the efficient and timely synchronisa-
tion of running VM disk images over WAN. The design of
the algorithm is based on observations from recent production
server workloads. ABSS achieves efficiency by transferring
written sectors only when they are unlikely to be modified
in the near future thereby conserving bandwidth. On the
other hand, ABSS quickly identifies these sectors thereby
minimising its latency overhead at the point of migration.
ABSS can reduce the amount of data transferred considerably
while incurring in the majority of cases a small migration
overhead less than 1.1 s on gigabit links.

The rest of the paper is organised as follows. Section II
outlines the challenge of achieving disk synchronisation in
detail. Section III characterises how workloads write to disk
by analysing real-world production server traces. Based on this
study, we define the parameters that are important to design
an efficient storage synchronisation algorithm. Section IV
presents ABSS and how it can be used to transfer disk-state to
the remote host using per-sector statistics. Section V evaluates
ABSS against other algorithms with respect to the amount of
data transferred and the migration latency incurred. Section VI
shows the implementation issues of ABSS. Finally we discuss
related work, future directions and then conclude.

1http://opencloudconsortium.org/

TABLE I
AMAZON EC2 STANDARD INSTANCES

Instance Type Property
Memory (GB) Disk (GB)

Small 1.7 160
Large 7.5 850
Extra Large 15 1,690

Fig. 1. Cumulative Percentage of Unique Sectors Modified with Respect to
Time.

II. THE CHALLENGE OF DISK-STATE SYNCHRONISATION

Current live migration architectures assume that VM disk
images are stored on shared network storage devices and
are universally accessible by all hosts. This is a reasonable
assumption as these hosts are located in the same datacentre.

However, universal storage accessibility does not scale
across datacentres separated by large geographic distances
and connected over high-latency low-bandwidth links. In this
scenario, accessing remote disk images is slow and resource
intensive due to the requirement that every operation be
transmitted across the network.

For VMs to continue functioning with acceptable perfor-
mance after an inter-datacentre migration, it is necessary
that a synchronised copy of the VM disk image is locally
accessible at the destination. However, the large size of VM
disk images means that synchronisation may be a protracted
process. Table I lists the memory and disk sizes for Amazon
EC22 standard instance types at the time of writing. Assuming
a simple single-pass synchronisation that iterates through the
entire address space, it would require 1–2 orders of magnitude
longer to transfer disk-state compared to memory.

Therefore, the design of the disk image synchronisation
algorithm significantly influences the amount of data required
to be transferred and the VM migration time. The simplest
possible algorithm is one that, at the point of migration,
transfers sectors that are either missing or outdated at the
destination host (on-migration synchronisation). While this
design is optimal with respect to the amount of data transferred
(as only the last update of a given sector is sent), the time
required to execute a migration is proportional to the number

2http://aws.amazon.com/ec2/

of sectors that have been modified and hence require to be
transferred to the destination. As explained previously, the
nature of datacentre interconnects can render this approach
too slow for production deployment. Our analysis of five
workloads (details of which are available in Section III)
indicates that on-migration synchronisation would suffer a
significant latency overhead. This is exemplified in Figure 1
showing that there is an increasing set of modified sectors
directly proportional to VM runtime for all workloads.

In order to mitigate the large latency associated with on-
migration synchronisation, we advocate the need to synchro-
nise disk images before migration is scheduled. In other words,
we propose to transfer disk-state changes in a way that is de-
coupled from the migration process with the expectation that
when the actual migration is needed, we will not have a huge
backlog of unsynchronised sectors. Consequently, we reduce
the migration latency overhead.

In this scenario, synchronisation can be achieved by trans-
ferring every sector as soon as it is modified (on-modification
synchronisation). The source and destination images are al-
ways up-to-date eliminating the potentially large migration
time associated with on-migration synchronisation. However,
on-modification synchronisation’s data transfer requirement is
directly proportional to the number of write operations. This
relationship is disadvantageous in circumstances where the
financial cost of the link is correlated with its usage, as in the
case with standard interconnects’ pricing models. Moreover,
the energy consumption of the network is directly related to the
number of packets sent [3]. Coupled with the current emphasis
on reducing the energy footprint and carbon emissions of
networks, on-modification synchronisation is not ideal.

In this paper, we propose an algorithm that provides a good
trade-off between the bandwidth required to synchronise disk-
state and the latency incurred when migration is triggered. We
base the design of our algorithm on the characteristics of how
workloads modify disk sectors. The next section analyses five
applications to obtain this information.

III. CHARACTERISING WRITE ACTIVITY

In this section, we analyse block-level traces of five work-
loads to understand how typically applications modify disk.

Table II and Table III provide a synopsis of the studied
workloads and the mnemonic identifiers used in this paper.
We select five workloads to do our analysis while we choose
another five for the evaluation of our algorithm. Hence, we
hope that our results apply to a wider set of applications.

Four workloads (LiveMaps, DisplayAds, SourceCtrl and
MSN) were selected from public logs recently made available
by Microsoft on the SNIA trace repository.3 Information about
these workloads is available in the papers [4], [5] that describe
them. These papers only provide high level read and write
activity patterns but we extract more detail about the write
behaviour for the purpose of our study. A fifth workload

3http://iotta.snia.org/

TABLE II
SET OF WORKLOADS FOR ANALYSIS

Workload Description Year DurationMnemomic
MSN MSN storage metadata 2008 6 hours
LiveMaps Map imagery repository 2008 24 hours
DisplayAds Caching tier for Ads 2008 24 hours
SourceCtrl Source control 2007 7 days
MapReduce Map-reduce tasks 2010 4 hours

TABLE III
SET OF WORKLOADS FOR EVALUATION

Workload Description Year DurationMnemomic
MSNBE MSN user files repository 2008 6 hours
Payload Ads selection 2008 24 hours
Proxy Firewall/web proxy 2007 7 days
RadiusAuth Corporate remote access 2007 18 hours
RadiusBE Radius SQL back-end 2007 18 hours

TABLE IV
WRITE RATE FOR ALL WORKLOADS

Metric Workload
(MB/sec) LiveMaps MSN DisplayAds SourceCtrl MapReduce
Avg. 6.61 0.66 0.01 0.05 0.70
Std. Dev. 8.71 0.99 0.23 0.33 1.65
99%-ile 36.01 4.21 0.12 0.28 6.95
Max. 169.55 22.48 17.96 23.36 28.34

TABLE V
WRITE OPERATIONS FOR ALL WORKLOADS

Workload Operation Type
Initial Write Overwrite

MSN 31.64% 68.36%
LiveMaps 99.39% 0.61%
DisplayAds 12.34% 87.66%
SourceCtrl 15.92% 84.08%
MapReduce 48.64% 51.36%

(MapReduce) was generated in-house and augments the Mi-
crosoft set by providing traces of write activity generated by
MapReduce [6] tasks (running on Hadoop4) that are processing
basic HTML documents [7]. The experimental setup for this
workload is available in prior work [8].

These workloads were picked for their diversity as they
represent a wide range of write activity patterns. For example,
LiveMaps has a high write rate, one order of magnitude
more than DisplayAds. Additionally, MSN presents a more
homogenous disk activity than the others. SourceCtrl is a
seven week log that highlights features that are not seen
in the other relatively shorter traces. Finally, MapReduce is
considered a useful workload as there is currently widespread
interest in using this computation paradigm for large-scale
data processing and analysis [9], [10] in various fields such as
web search, data mining and machine learning. Moreover, the
MapReduce workload provide a different operating and file
system than the ones used in the Microsoft workloads.

We studied the five workloads in order to determine the
temporal characteristics of write operations. Noteworthy re-
sults are summarised below.

A. Write rate is low

Table IV details the write rate (the amount of data written
per second) observed in the traces. The average write rate
across all workloads is 1.61 MB/s, which is relatively low
compared to gigabit links. The small standard deviation (less
than 2 MB/s) for all (except LiveMaps) further provides
support that write rates are consistently low. Similarly, the
99%-ile for four out of five workloads is less than 7MB/s.
Finally, the maximum value is less than 30 MB/s except for
LiveMaps. However, LiveMaps exceeds this rate only for a
combined two seconds span. Assuming gigabit interconnects,
this result suggests that synchronisation across datacentres is
feasible.

B. Sector writes are unbalanced

Figure 2 shows the cumulative percentage of the number
of updates to the same sector for all five workloads. At least

4http://hadoop.apache.org/

90% of sectors are written four times or less (in LiveMaps
specifically, 99% of sectors are modified just once). Hence,
we assume that most sectors are changed only a few times.

However, the remaining 10% of sectors suffer more than
50% (with the exception of LiveMaps) of the total write
operations as illustrated in Table V. It follows logically that
overwrites happen on a small set of sectors. This long tail
behaviour may notably increase the amount of data transferred
in on-modification synchronisation algorithm due to the re-
quirement that remodified sectors have to be resent.

C. Overwrite operations are clustered
We have noticed that sectors are generally modified in

clusters (groups) of writes. In other words, a given sector
repeatedly enters a period of high activity (when it is being
modified frequently) followed by a period of low activity.
This observation is intuitively related to the way applications
typically behave. Consider the case of a web server that
has daily, weekly and even seasonally varying patterns; this
periodic load directly influences all sub-systems including stor-
age. At periods of high request rates (that modify persistent-
state information), the corresponding files backed up by some
sectors are modified repeatedly. When the load goes down (e.g.
during night time), these sectors are no longer being updated.

To substantiate this behaviour, we ran a gradient-based
cluster detection algorithm on all sectors that are modified
at least twice for all five workloads. Figure 3 illustrate the
weighted (more weight to sectors that are frequently modified)
percentage of how many write operations fall within a given
time boundary. Obviously as we increase the time boundary,
we observe more operations grouped together. Results show
that more than 90% of writes happen within ten minutes
intervals for the majority of workloads. Consequently, we
assume that writes to a given sector happen generally in
clusters (groups). Additionally, we observe that write clusters
are spaced on a sector; i.e. for a window of 4,000 s, more than
95% of the writes are grouped together.

Finally, we argue that the behaviour of the write activity
for a given sector may change with time. Applications have
varying patterns, which directly influence the usage of the
storage sub-system. Generally, we expect that overwrites are

Fig. 2. Cumulative Percentage of the Number of Writes to a Specific Sector Fig. 3. Writes that Are Clustered in Time for Different Boundaries

clustered, spaced and their distribution might change over
time.

D. Sectors are written in 4KB blocks

We analysed the temporal and spatial locality across sectors
by counting the number and address of additional sectors
modified on every write event over time intervals ranging from
10 ms to 1 s. Our results indicate that write operations are at
least 8 sectors long (an expected result as most filesystems de-
fault to a 4KB logical block size for the purpose of efficiently
aligning memory pages and disk blocks).

E. Conclusion

The results of this section advocate the need to design a
dynamic synchronisation algorithm that works at the sector
level and takes write patterns into account. We describe it in
the next section.

IV. ACTIVITY BASED SECTOR SYNCHRONISATION

A. Drawbacks of Trivial Synchronisation Algorithms

Our analysis in the previous section showed that a simple
algorithm based on the transfer of sectors as soon as they are
modified, will lead to unnecessary data transfer and inefficient
use of the link. Table V illustrates that overwrite operations
account for more than 50% in almost all workload. From this
perspective, on-modification is not optimal.

Another trivial approach is periodic synchronisation that
only transfers modified sectors at repeated intervals (e.g.
every ten minutes). This design reduces the amount of data
transferred as it only sends the most recent copy of modified
sectors since the last synchronisation event. Hence, overwrites
to the same sector are “absorbed” during one period.

The effectiveness of this design is dependent on the static
period between synchronisation events. Using a small period
keeps the two disk images almost synchronised; but bandwidth
is wasted in cases where overwrites are frequent. On the other
hand, having a large period needlessly increases the amount
of data that needs to be transferred at migration and leads
to undesirable bursty link usage. Moreover because periodic
synchronisation treats all sectors equally, (i) it will wastefully
retransmit sectors that are frequently updated and (ii) it will

unnecessarily delay sectors that are written once. Therefore it
is more efficient to be adaptive at the sector level.

B. Overview of ABSS

We now outline Activity Based Sector Synchronisation
(ABSS), a statistically based synchronisation algorithm de-
signed to minimise both the amount of data transferred and
the VM migration time. The principles of ABSS are based on
observations drawn from the workload analysis presented in
Section III. While it may appear that an algorithm based on
the study of just five workloads will have limited applicability,
we believe that the diversity in our chosen set renders the
algorithm suitable to a wider range of production applications.

ABSS is based on three principles: (i) maintaining statistics
and performing synchronisation at the sector level, (ii) using
previously observed sector modification times to predict when
it is likely to be updated, and (iii) only synchronising sectors
that are unlikely to be modified in the near future.

In effect, the algorithm uses previously observed write
intervals (the time difference between two consecutive writes
to the same sector) to create an adaptive statistical model that
determines when a localised cluster of writes ends and only
then it synchronises the sector. In doing so, ABSS minimises
the data transfer requirement by avoiding synchronisation
during a period of high write activity. Similarly, the algorithm
reduces the VM migration latency by transferring the sector
as soon as it enters a period of inactivity. Figure 4 illustrates a
typical behaviour of ABSS on a given sector. The remainder
of this section outlines the technical details of the algorithm.

C. Identifying Write Cluster Boundaries

Write cluster boundary identification is a fundamental func-
tion of ABSS. Accurate prediction of these boundaries (i.e.
periods of inactivity in which the sector is unlikely to be
changed) enables timely and efficient synchronisation of mod-
ified sectors. The ABSS algorithm is based on the assumption
that overwrite events happen in clusters (groups) as discussed
previously in Section III-C.

The basic operation of the ABSS cluster boundary iden-
tification algorithm is simple: provided a set of previously
observed modification timestamp events for a given sector,

Fig. 4. Schematic Diagram of ABSS Behaviour on a Given Sector

ABSS calculates the theoretical temporal upper bound limit
for any future write events that are predicted to happen during
the current activity period. Should an event not be observed
before the upper time limit is reached, it is highly likely that
this sector has entered a low activity period and hence it is
synchronised. Alternatively should a write be observed, it is
incorporated into a recalculation of the upper bound.

We use a Chebyshev-type inequality (introduced by Saw et
al. [11]) to identify write cluster boundaries based on main-
taining the sample mean and variance of the write inter-
vals. Formally, given n ≥ 2 weakly exchangeable5 samples
X1, X2, X3, · · · , Xn from some unknown distribution, the
sample mean X =

∑n
1 Xj/n, the sample variance S2 =∑n

1 (Xj − X)2/(n − 1), Q2 = (n + 1)S2/n, λ ≥ 1 and v
the largest integer less than (n+ 1)(n− 1 + λ2)/(nλ2) then:

P{|X −X| ≤ λQ} > 1− v/(n+ 1) (1)

which provides a prediction interval for the next observation.
In our case, by maintaining the sample mean (X) and sample
variance (S2) of the time difference between observed con-
secutive writes we can estimate the temporal upper bound (as
measured from the timestamp of the last write operation) for
events occurring in this distribution using (1), where the right
hand side expresses the required confidence interval (c).

To achieve a specific c (say 90%), we have to tune λ in (1)
for each sample size n. Intuitively for small n, λ is relatively
large in order to capture the uncertainty regarding the estimates
of the current sample. As we see more data points, λ starts to
decrease; and as n goes to infinity, the limit tends towards the
standard Chebyshev bound 1− 1/λ2 [11].

A cluster boundary is considered identified if there is no
subsequent write operation until the upper time bound from
the last operation is reached. As soon as a boundary has
passed, the sector is synchronised. Varying the confidence
interval parameter c enables a trade-off between bandwidth
and latency; smaller values reduce migration latency at the
cost of potentially higher data transfer requirement while

5The weak exchangeability condition holds in our case [11].

larger values increase migration latency but can minimise data
transfer requirement.

By design ABSS incorporates every write interval of the
current activity into the model as the mean and variance
over these observed events are recalculated. Having said that,
a single outlier event has little impact but a change in the
distribution is eventually captured.

D. Synchronising Single-Write Sectors

As the analysis in Section III-B showed, the vast majority of
sectors are modified just once. Building a write cluster model
for these sectors is a futile task as it only serves to increase the
migration latency. To account for this behaviour, ABSS reverts
to on-modification synchronisation for all sectors for which it
does not possess prior information; i.e. the first time a sector
is written, it is synchronised immediately. While this design
choice will result in some wasted data transfer for sectors that
are subsequently written, we believe it offers a good trade-
off between the data transfer requirement and the migration
latency overhead.

E. Synchronising Periodically Updated Sectors

Periodically updated sectors that are modified at regular in-
tervals also require special treatment. As their cluster boundary
are continually extended on every write operation, the upper
boundary will never be reached and so these sectors will never
be synchronised. While sectors with such write distributions
are likely to be few and far between, nevertheless ABSS is
required to handle them.

The ABSS logic for synchronising periodically updated
sectors is based on the observation that the likelihood a
synchronised sector is up to date, is proportional to the sector
write intervals. Thus, transferring sectors with large write
intervals is likely to reduce the VM migration time without
significantly increasing the synchronisation data transfer re-
quirement.

ABSS therefore synchronises all sectors that have remained
unmodified for a set period of time, regardless of whether
their upper time bound has been reached. We have noticed in
Section III-C that more that 95% of the writes are grouped

Algorithm 1 Sector Statistics Modelling
1: procedure UPDSECTSTATS(secNum,trackedSectors)
2: curTime ← writeEvent.getTime() . Time of the write event
3: if secNum /∈ trackedSectors then
4: s ← Sector() . Create new sector data structure
5: s.secNum ← secNum
6: s.curWrCnt ← 0
7: s.curMean ← 0.0
8: s.curStDev ← 0.0
9: s. curVar ← 0.0 . Private variable for variance

10: s.lastWrTime ← 0
11: s.newlyTrackedSector ← True . Flag new sector
12: trackedSectors ← trackedSectors ∪ {s}
13: end if
14: s ← {s | s ∈ trackedSectors ∧ s.secNum = secNum}
15: s.curWrCnt ← s.curWrCnt + 1
16: if s.curWrCnt > 1 then
17: wrDelta ← curTime − s.lastWrTime
18: mDelta ← wrDelta − curMean
19: curMean ← s.curMean
20: s.curMean ← curMean + mDelta / (s.curWrCnt − 1)
21: s. curVar ← s. curVar + mDelta × (wrDelta − s.curMean)
22: s.curStDev ← SQRT(s. curVar / (s.curWrCnt − 1))
23: end if
24: s.lastWrTime ← curTime
25: end procedure

together for a time window of 4,000 s (≈ one hour). Conse-
quently, setting the unmodified threshold to this arbitrary value
is likely to optimise the data transfer requirement. However,
we acknowledge that it may be advantageous to consider this
threshold a workload-specific tunable parameter.

While we have illustrated the problem of an always extend-
ing cluster boundary using the specific example of periodically
updated sectors, it is important to note that this issue can
manifest itself on any sector where its modification pattern
results in subsequent writes occurring before the upper time
bound is reached. In this case, the unmodified threshold
performs the same function as well.

F. The ABSS Algorithms

ABSS can be implemented as a set of complementary algo-
rithms, one for modelling sector statistics and the other for de-
termining sector state. Algorithm 1 provides a pseudocode im-
plementation for the modelling algorithm, written to promote
clarity over efficiency. As illustrated, the algorithm receives
two input parameters: secNum and trackedSectors,
which identify the sector number and the set of tracked sectors
respectively. If the provided sector is not being tracked it
is initialised, added to the set of tracked sectors (lines 4–
12) and its modification details are updated. The mean and
variance calculations (lines 16–22) are done on the fly using
the Welford method [12].

The sector state determination algorithm (Algorithm 2)
receives two additional parameters: unmodTimeThreshold
determines the time threshold after which a sector is synchro-
nised regardless of the upper time bound (Section IV-E) and
c provides the required confidence interval (Section IV-C).

Algorithm 2 signals three important states to synchronise
sectors: (i) The first time the sector is written in agreement

Algorithm 2 Sector State Determination
1: function DETSECTSTATE(secNum,trackedSectors,

unmodTimeThreshold,c)
2: s ← {s | s ∈ trackedSectors ∧ s.secNum = secNum}
3: curTime ← getCurrentTime()
4: if s.newlyTrackedSector then

return EVENT SECTOR FIRST WRITE
5: end if
6: if curTime − s.lastWrTime > unmodTimeThreshold then

RESETSECTORSTATS(s)
return EVENT SECTOR UNMOD MAXTTHRESH

7: end if
8: if s.curWrCnt > 1 then
9: λ ← lambdas[s.curWrCnt − 1,c] . Get λ according to the number of

data points in the sample and the confidence interval
10: Q ← ((s.curWrCnt)/s.curWrCnt − 1)1/2× s.curStDev
11: threshold ← λ × Q
12: if curTime − s.lastWrTime> s.curMean + threshold then

return EVENT UPPER TIME BOUNDARY EXCEEDED
13: end if
14: end if

return NO EVENT

15: end function

with the single-write case (lines 4–5); (ii) a sector is unmod-
ified for a set amount of time regardless of its upper bound
(lines 6–7); (iii) finally, if no overwrite event has occurred
until the upper time bound is reached (lines 12–13). These
design choices have been illustrated previously.

Additionally, the Chebyshev-type bound is computed ac-
cording to the required confidence interval, the sample mean,
the sample variance and the number of overwrites in the
current activity (lines 9–11). Effectively we pre-compute the
different values of λ using the right hand side of (1) and store
them in a lookup table that is accessed in O(1) at runtime.

V. EVALUATION

This section evaluates ABSS to characterise its effectiveness
in optimising both the amount of data transferred and VM
migration time. We compare ABSS against the best-of-breed
algorithms (on-migration, on-modification and periodic syn-
chronisation). The evaluation is carried out using simulations
on a different set of server traces than those used in the
analysis, to counter any confirmation bias that may have arisen
regarding the design choices of ABSS. These workloads were
also selected from public logs made available by Microsoft
on the SNIA trace repository. However, they comprise a
completely different set of applications as outlined in Table III.
In all simulations, we assume the link speed is 1Gbps.

The evaluation focuses on three main points: (i) Comparing
ABSS’s data transfer and VM migration time metrics to on-
modification and periodic synchronisation, (ii) outlining the
effect of ABSS’s tunable parameters on its performance, and
(iii) analysing the behaviour of ABSS on write-once and
overwrite dominant workloads (extreme cases).

Our preliminary evaluation showed that on-migration syn-
chronisation provided the worst results for the migration
latency overhead as, in some cases, more than 250GB of disk

TABLE VI
PERFORMANCE OF PERIODIC SYNCHRONISATION (PERIOD = 4,000 S)
RELATIVE TO ABSS (C=90% AND UNMODTIMETHRESHOLD=4,000 S)

Workload Bandwidth Latency
MSNBE -8.8% 94.8%
Proxy 19.4% 83.6%
Payload -3.8% 761.1%
RaduisAuth -8.4% 899.9%
RaduisBE -5.9% 824.8%

TABLE VII
MIGRATION LATENCY OVERHEAD FOR ABSS ASSUMING 1GBPS LINK

Workload Avg. Avg. Std. Dev.
(4KB Sector) (ms) (ms)

MSNBE 844,519.3 25,772.7 10,713.4
Proxy 15,153.3 462.4 50.0
Payload 35,434.9 1,081.4 323.3
RaduisAuth 4,920.0 150.1 116.0
RaduisBE 18,610.7 567.9 352.9

sectors are required to be transferred at the point of migration.
For this purpose, we eliminated it from further analysis.

A. Comparison with Other Algorithms

1) The Data Transfer: We examine the amount of data
that is required to be transferred by ABSS for the purpose
of maintaining disk synchronisation and compare it with on-
modification and periodic synchronisation. In order to be
considered viable, at an equivalent point of migration, ABSS
should have transferred less data than either of the other two
algorithms. To do so, we compare the average amount of
data sent per second for on-modification, periodic (utilising
periodic values of 32, 64 and 128 s), and ABSS (using
90% and 4,000 s for the required confidence interval and the
unmodified time threshold respectively).

Figure 5 provides the results for this comparison normalised
to the worst performing algorithm (on-modification synchro-
nisation). ABSS has an average lower data transfer overhead
in all cases, transmitting between 9% and 35% less data
than the second best algorithm. In Proxy particularly, ABSS
transmits 35% less data than the next best algorithm and
96% less than on-modification synchronisation. The excellent
results seen in Proxy are due to the property that the workload
has a very predictable update pattern. A web proxy typically
refreshes local caches for the frequently accessed sites with a
set periodicity, which is directly affecting the way sectors are
being modified. ABSS can easily capture this behaviour, which
effectively bounds when a sector is likely to get overwritten
and decides correctly whether to keep or sent it. However,
for workloads composed of mainly single writes (e.g. Ra-
diusAuth), the results are less pronounced. Nevertheless, on
average ABSS transmits 20% less data than the next best
algorithm and 37% less than on-modification synchronisation.

The absolute values of the average data transferred per sec-
ond of ABSS are overlayed on Figure 5, which show that our
algorithm has a low badwidth requirement for all workloads.
The highest value is 3167.6 KB/s observed for MSNBE while
we can achieve as low as 41.6 KB/s for Proxy. Assuming
1Gbps interconnects, ABSS uses on average between 0.3%
and 2.4% of the link capacity to synchronise sectors to the
destination. Hence, our algorithm enables the synchronisation
of hundreds or even thousands of VMs simultaneously.

Data transfer variance is considerably lower in ABSS. In
the cases of MSNBE and Payload for example, our algorithm
reduces the throughput variance by more than 31% and
65% respectively compared to the next best algorithm (on-
modification synchronisation). One notable exception is Proxy;
ABSS has minimised its average throughput aggressively in

the expense of higher variance. Generally ABSS is designed to
absorb overwrites, it is expected generally to have a smoother
throughput than the other algorithms.

To further quantify the savings of ABSS, we evaluate it
against a theoretical “best-case” algorithm that only synchro-
nises the last update of write clusters of a given sector.
This algorithm is designed to absorb as much overwrite
operations as possible thus minimising data transfer. Time
between clusters is chosen to be 4,000 s. Figure 5 shows that
ABSS is comparable to the best-case (between 70% and 99%).
We believe that any further improvements on our algorithm
should be workload-specific and involve distribution-related
optimisations. We note as well that the best-case algorithm
might (and in practice will) incur a higher VM migration time.

Additionally, we compare periodic synchronisation having
a value of 4,000 s with ABSS. Table VI shows the bandwidth
and migration latency increase for this large period. While the
bandwidth requirements for both algorithms are similar, the
migration latency for periodic synchronisation is 1–2 order of
magnitude more than ABSS. This further proves that being
adaptive at the sector level is advantageous.

2) The VM Migration Time: In order to characterise VM
migration time, we measure the average number of 4KB
sectors held (not synchronised) by ABSS on a per-second basis
for the entire duration of all traces in the evaluation set. All
sectors held in the queue need to be copied to the remote host
when migration is triggered before the VM can resume; they
represent sectors that are out-of-date at the remote host.

Table VII provides the results of our simulation, including
the time it would take to copy the outstanding sectors over
a 1Gbps link. As shown, four out of five workloads can,
on average, be completely synchronised in less than 1.1 s.
MSNBE incurs the most overhead but can also be migrated
in under 26 s. MSNBE has a larger working set throughout
the duration of the run which is why we observe a longer
latency. Additionally, the variation on the time to transfer the
outstanding sectors are relatively low ranging from ±50 ms
in the best case to under ±11 s in the worst case.

In conclusion, our results show that ABSS achieves synchro-
nisation with reduced bandwidth requirement between 0.3%
and 2.4% of 1Gbps link capacity. Additionally, The migration
overhead of our algorithm is less than 1.1 s in the majority of
workloads, with the worst case being only 26 s.

B. The ABSS Parameters

AS outlined in Section IV, ABSS is influenced by
two tunable parameters: the required confidence interval
that translated to an upper time bound (c) and the time

Fig. 5. Bandwidth is shown for different algorithms that are normalised to
on-modification. Absolute throughput for ABSS is overlayed (red).

Fig. 6. Bandwidth is shown for different values of c. Avg. migration latency
for a gigabit link is overlayed (red). The time threshold is set to 4,000s.

threshold after which a sector is always synchronised
(unmodTimeThreshold). We vary these parameters in our
simulations to characterise their influence.

In particular, we vary the confidence interval at 80%, 90%
and 97%. As the results in Figure 6 indicate, the effects
on data transfer are minimal. The average amount of data
transferred is reduced by only 3% at the cost of increased
migration latency up to 14% (in the case of RadiusAuth). As
the Chebyshev-type bound is already pessimistic by nature, a
higher value only results in holding needlessly the modified
sectors longer in the queue. Consequently, setting c to 90%
is better considering the bandwidth and latency trade-off.

We further analyse the effect of varying the unmodified
time threshold from 500 s to 8,000 s on the amount of data
transferred and the latency overhead. Figure 7 (exemplified
in MSNBE) illustrates that the bandwidth requirement of
ABSS is inversely related to the time threshold while we
incur a proportional increase in the latency overhead. The
red dots in the the figure represents the optimal threshold
for each workload (we omit the whole curves for the sake
of presentation). These results show that setting the threshold
to 4,000 s will work reasonably well.

However, this value is essentially an application-specific
tunable parameter that captures the required trade-off level
between bandwidth and latency. In cases where consistency
is required (e.g. for the purpose of reliability), having a
small time threshold enables ABSS to be more aggressive
in synchronisation but with the expense of higher bandwidth
requirement. On the other hand if we can tolerate weaker
consistency, setting the threshold to a large value would
reduce the amount of data transferred but increase the latency
overhead when migration is triggered.

C. The Case at Two Ends

We now discuss conceptually the limits of ABSS with
respect to two extreme cases of write applications. We show
that our proposed algorithm works well for both scenarios. We
advocate that no other synchronisation algorithm is capable of
achieving good results at both fronts.

The first case concerns workloads that append only to
files on disk. For applications to excel at batch processing,

sequential I/O is more important than random I/O. In these
cases, the file system is log-structured and writes are only
appended to files (e.g. Hadoop Database6).

As modifications are only written to the end of the file,
sectors are effectively not overwritten. In other words, sectors
are just written once. As our algorithm is opportunistic with
respect with the first write to a sector (it assumes that most
sectors are written once), the synchronisation will happen as
soon as any sector is updated. Having said that, the two disk
images will be identical whenever migration is needed with
virtually no latency overhead incurred.

The other end of the spectrum involves workloads that just
write to a few sectors; that is all sectors are continuously
overwritten. In these workloads, we do not have sectors that
are written once. We also have a very few sectors that are
modified. As our algorithm is opportunistic, it will send the
first update to a given sector. However, subsequent updates are
absorbed as the sectors will be considered hot and retained in
the queue. Consequently we do not consume any bandwidth
for synchronisation while the workload writes to disk. Addi-
tionally, the outstanding sectors yet to be transferred do not
result in a large migration latency as we assume that only a
few sectors are updated.

VI. IMPLEMENTATION CONSIDERATIONS

This section outlines some of the major issues of consider-
ation in a production implementation of the ABSS algorithm.

We assume that during the creation of a new VM, its
disk image is replicated to possible remote destinations using
templates and snapshots [13]. This one-off setup process
reduces storage synchronisation to the transfer of modified
disk sectors while the VM is running.

Foremost is the issue of maintaining consistent disk image
replicas across multiple datacentres. While this work has
focused on identifying candidate sectors for synchronisation,
achieving synchronisation requires modified sectors be prop-
agated to all datacentres to which the VM may potentially
be migrated. While technologies such as multicast can help
reducing the data transfer overhead of synchronisation, an

6http://hadoop.apache.org/

Fig. 7. ABSS bandwidth/Latency requirement for different time thresh-
olds normalised to on-modification synchronisation. Red dots represent the
intersection of the two curves.

Fig. 8. Percentage of bandwidth increase of ABSS for different sector sizes
relative to 4KB.

efficient implementation will require the disk synchronisation
algorithm be integrated with the VM scheduling and placement
layer. Similarly, support for intercepting VM write operations
and block contents are necessary for the purposes of modelling
and synchronising sector-state.

Additionally, a production implementation will have to
incorporate constraints such as limited link capacity and con-
tention between VM traffic with disk synchronisation traffic.

Maintaining sector-state may incur a large space overhead.
For example assuming a 4KB sector size and 32-bit floating
point representations, storing just the average and standard
deviation for every sector in a 1TB disk image requires 2GB
of storage (≈ 0.2% overhead). In a production implementation,
this space overhead can be mitigated by sparse recording.
Similarly, the memory overhead of the system can be limited
by using stable storage as a scratch pad.

The space overhead can also be reduced by choosing larger
sector sizes. For example if the sector size is 32KB, the amount
of storage requirement will be 8 times smaller than 4KB as we
need to keep less statistics. Obviously, the state space reduction
is proportional to the size of the sector. However, this is not
expected to happen for free as the bandwidth requirement for
ABSS may suffer. This is mainly due to the fact that we reduce
efficiency by having larger sectors because we send the entire
lot even though only part of it has been modified.

Figure 8 illustrates the bandwidth increase (relative to 4KB)
for different sector sizes up to 1MB. In the case of Payload,
the choice of larger sector size does not influence the aver-
age bandwidth required for synchronisation. For RadiusBE,
RadiusAuth and Proxy, the additional bandwidth increase can
also be tolerated but for smaller sizes only. On the other hand,
MSNBE incur bigger bandwidth overhead as we increase the
sector size. In conclusion, the sector size choice is largely
dependant on the application and its write activity behaviour
but it can reduce considerably the state space.

However, implementations can be intelligent in sending only
the modified portion of a sector. Techniques such as content
based redundancy elimination and sub-sector deltas [14] can
reduce the bandwidth overhead for having bigger sector sizes.

VII. RELATED WORK

There is a relatively little work in the area of synchronising
VM disk images across physical hosts, mainly due to the
assumption that migration will only be carried out in the same
datacentre as explained in Section I. The closest work we could
find was by Deutsche Telekom in which the authors outline
a system that copies disk-state on-migration [15]. ABSS is
different from this design in that it operates while the VM is
running before migration is triggered. Furthermore, it aims
to reduce both the data transfer requirements and the VM
migration time while this related work focuses solely on
providing synchronisation functionality.

XNDB migrates memory-state to the destination host and
then fetches required disk sectors from the source on-
demand [16]. Additionally, the design of this system relegates
disk synchronisation to a background process. While this
architecture reduces the VM migration time, it may lead to
possible service degradation due to the latency overhead of
fetching remote sectors. Furthermore, the source host cannot
be retired until synchronisation is complete.

Ramakrishnan et al. outline an asynchronous storage syn-
chronisation algorithm that copies modified sectors while
the VM is running [17]. When a migration is requested, it
switches to synchronous mode to guarantee strong consistency.
Similarly, CloudNet [14] synchronises disk-state through the
use of Distributed Replicated Block Device (DRBD)7, which
operates by mirroring whole block devices. Both these systems
would benefit from the integration of ABSS.

Seneca [18] is a remote storage mirroring for the purpose
of disaster recovery. It uses asynchronous protocol and write
coalescing to ensure high performance while minimising the
amount of data transferred. Similarly, the REMUS [19] project
provides a high degree of fault tolerance using asynchronous
VM replication. We believe that ABSS could extend these
projects by providing an adaptive algorithm at the sector level.

Finally, distributed file systems with good caching capability

7http://www.drbd.org/

(e.g. Lustre8) have been shown to work effectively for the
purpose of VM migration [20]. For these systems, ABSS
can provide a back-end storage with a replication mechanism
based on sector level statistics. Additionally, our algorithm
enables a dynamic caching policy according to the write
behaviour.

VIII. FUTURE WORK

In our research into Computing for the Future of the
Planet we are creating a novel platform that automatically
relocates workloads to geographically distant sites with surplus
renewable energy that would otherwise be wasted [21], [22].
Our platform utilises live migration for workload relocation
and thus disk synchronisation is a necessary component of
the proposed system. Currently we are implementing ABSS
as part of this bigger architecture.

Furthermore, we are in the process of unifying our previous
work on memory state migration [8] with ABSS to create one
VM migration algorithm that allows operators to transparently
and efficiently move VMs across WAN links without violating
service level agreements.

IX. CONCLUSION

This paper outlined ABSS, a statistical algorithm designed
to synchronise disk images of running VMs across WAN
links at the sector level. ABSS aims to minimise both the
amount of data transferred and the VM migration time. Based
on observations drawn from production workloads, ABSS
operates by creating an adaptive model of the sector write
behaviour. Our statistical modelling is used to predict the upper
time bound for the next write to a sector, only synchronising
it if no update occurs.

ABSS is evaluated against the best-of-breed algorithms in
terms of the amount of data transferred and the VM migration
time. Trace-driven simulations on five production workloads
show that ABSS is able to achieve useful trade-off having
a data transmission overhead between 0.3% and 2.4% of
a 1Gbps link whilst incurring in the majority of cases a
migration latency of less than 1.1 s.

Finally, this paper also provides an analysis of the write ac-
tivity of five modern workloads, providing details (at the sector
level) of the temporal characteristics of disk modification.

X. ACKNOWLEDGMENTS

We are grateful to Andrew W. Moore for his support
throughout this work. We would like also to thank Stelios
Timotheou and Simon Fothergill for their useful feedback.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. ACM Symposium on Operating Systems Principles (SOSP’03),
New York, NY, USA, 2003, pp. 164–177.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation
(NSDI’05), Berkeley, CA, USA, 2005, pp. 273–286.

8www.lustre.org/

[3] R. S. Tucker, R. Parthiban, J. Baliga, K. Hinton, R. W. A. Ayre, and
W. Sorin, “Evolution of WDM Optical IP Networks: A Cost and Energy
Perspective,” J. Lightwave Technol., vol. 27, no. 3, pp. 243–252, Feb.
2009.

[4] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” Trans. Storage,
vol. 4, pp. 10:1–10:23, November 2008.

[5] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Character-
ization of storage workload traces from production windows servers,”
in Proc. IEEE Symposium on Workload Characterization (IISWC’08),
October 2008, pp. 119–128.

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” ACM Commun., vol. 51, no. 1, pp. 107–113, January
2008.

[7] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proc. ACM International Conference on Management of
Data (SIGMOD’09), New York, NY, USA, July 2009, pp. 165–178.

[8] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Predicting
the performance of virtual machine migration,” Proc. IEEE Symposium
on Modeling, Analysis, and Simulation of Computer Systems (MAS-
COTS’10), vol. 0, pp. 37–46, August 2010.

[9] D. A. Patterson, “Technical perspective: the data center is the computer,”
ACM Commun., vol. 51, no. 1, pp. 105–105, January 2008.

[10] U. Höelzle and L. A. Barroso, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and
Claypool Publishers, 2009.

[11] J. G. Saw, M. C. K. Yang, and T. C. Mo, “Chebyshev inequality with
estimated mean and variance,” The American Statistician, vol. 38, no. 2,
pp. pp. 130–132, May 1984.

[12] B. Welford, “Note on a method for calculating corrected sums of squares
and products,” Technometrics, vol. 4, no. 3, pp. pp. 419–420, August
1962.

[13] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam,
and M. Rosenblum, “Optimizing the migration of virtual computers,”
SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 377–390, December 2002.

[14] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe,
“Cloudnet: dynamic pooling of cloud resources by live wan migration
of virtual machines,” in Proc. ACM Conference on Virtual Execution
Environments (VEE’11), New York, NY, USA, March 2011, pp. 121–
132.

[15] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg, “Live wide-
area migration of virtual machines including local persistent state,” in
Proc. ACM Conference on Virtual Execution Environments (VEE’07),
New York, NY, USA, June 2007, pp. 169–179.

[16] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, “A
Live Storage Migration Mechanism over WAN for Relocatable Virtual
Machine Services on Clouds,” in Proc. IEEE/ACM Symposium on
Cluster Computing and the Grid (CCGRID’09), Washington, DC, USA,
2009, pp. 460–465.

[17] K. K. Ramakrishnan, P. Shenoy, and J. Van der Merwe, “Live data center
migration across WANs: a robust cooperative context aware approach,”
in Proc. ACM Workshop on Internet Network Management (INM’07),
New York, NY, USA, August 2007, pp. 262–267.

[18] A. V. Minwen Ji and J. Wilkes, “Seneca: Remote mirroring done
write,” in Proc. USENIX Annual Technical Conference, General Track,
Berkeley, CA, USA, June 2003, pp. 253–268.

[19] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and
A. Warfield, “REMUS: high availability via asynchronous virtual ma-
chine replication,” in Proc. USENIX Symposium on Networked Systems
Design and Implementation (NSDI’08), Berkeley, CA, USA, 2008, pp.
161–174.

[20] A. Ortiz, F. Thiebolt, P. Stolf, G. D. Costa, and A. Sayah, “Virtual
machine migration: A comparative study of storage viewpoints,” in Proc.
Civil-Comp International Conference on Parallel, Distributed, Grid and
Cloud Computing for Engineering (PARENG’11), Stirlingshire, UK,
April 20011.

[21] A. Hopper and A. Rice, “Computing for the future of the planet,”
Philosophical Transactions of the Royal Society, vol. 366, no. 1881,
pp. 3685–3697, 2008.

[22] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and A. Hopper, “Free
lunch: Exploiting renewable energy for computing,” in Proc. USENIX
Workshop on Hot Topics in Operating Systems (HotOS’11), Berkeley,
CA, USA, May 2011.

