
Pedestrian Localisation for Indoor Environments

Oliver Woodman
Computer Laboratory

University of Cambridge
ojw28@cam.ac.uk

Robert Harle
Computer Laboratory

University of Cambridge
rkh23@cam.ac.uk

ABSTRACT

Location information is an important source of context for
ubiquitous computing systems. This paper looks at how a
foot-mounted inertial unit, a detailed building model, and
a particle filter can be combined to provide absolute posi-
tioning, despite the presence of drift in the inertial unit and
without knowledge of the user’s initial location. We show
how to handle multiple floors and stairways, how to handle
symmetry in the environment, and how to initialise the local-
isation algorithm using WiFi signal strength to reduce initial
complexity.

We evaluate the entire system experimentally, using an inde-
pendent tracking system for ground truth. Our results show
that we can track a user throughout a 8725 m2 building span-
ning three floors to within 0.5 m 75% of the time, and to
within 0.73 m 95% of the time.

ACM Classification Keywords

D.2.8 Mathematics of Computing: Probability and Statis-
tics—probabilistic algorithms

General Terms

Algorithms, measurement, experimentation

Author Keywords

Inertial tracking, particle filters, localisation

INTRODUCTION

Some of the first ubiquitous computing systems to come out
of research laboratories made use of location information
to provide useful clues as to the context a person or device
was situated within. Today, GPS provides localisation out-
doors, but precise indoor tracking of people remains an open
research problem. We have seen indoor location systems
based on infra-red, ultrasound, narrowband radio, WiFi sig-
nal strength, UWB, vision, and many others [11]. However,
few can be easily deployed over large buildings whilst still
providing accurate localisation.

c© ACM, (2008). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in UbiComp’08
UbiComp’08, September 21-24, 2008, Seoul, Korea.

To minimise deployment and infrastructure costs, we wish
to develop a wearable location system that can position itself
absolutely within a complex structure. The immediate paral-
lel is with robotics, where mobile devices typically use iner-
tial sensors, laser range-finders and computer vision to pro-
vide accurate localisation without the requirement of fixed
infrastructure. Applying the same systems to people is, how-
ever, fraught with difficulties; laser range-finders and cam-
eras are impractical, we lose the ability to control the sub-
ject to maximise our chances of precise localisation, and the
techniques are usually developed with a single floor in mind
(and certainly no stairs!). One type of sensor which does
seem applicable to people tracking is inertial measurement
units (IMUs). Recent advances in micro-electro-mechanical
systems (MEMS) technologies have made such units smaller
and cheaper, however also more prone to error. Accurate
people tracking in a general environment using small and
wearable inertial sensors has yet to be reliably shown, al-
though previous attempts have been made [8, 9].

In this paper we demonstrate how to locate and track a per-
son in a building for which we have an accurate model, us-
ing an off-the-shelf wearable inertial system and a particle
filter to tackle the traditional drift problems associated with
inertial tracking. With this setup, we find that we are able
to track a person throughout a 8725 m2 building to within
0.73 m 95% of the time, all without the user providing any
explicit initialisation information. Since the system requires
very little fixed infrastructure, the monetary cost is propor-
tional to the number of users, rather than to the coverage area
as is the case for traditional indoor location systems. We
propose that such a system could be used to enable the de-
ployment of location-aware applications in large buildings,
where the installation of a high accuracy absolute location
system is either too expensive or impractical.

The structure of this paper is as follows. We first review rel-
evant literature and how a foot-mounted IMU might be used
to provide a sequence of relative locations. We then dis-
cuss a computational model for the representation of build-
ings, and how such models are input to our particle filter,
along with the relative locations, to derive absolute posi-
tions. We discuss how to gather initialisation information
autonomously, and describe a WiFi-based scheme to reduce
the computational overheads involved at the start of the lo-
calisation process. Finally, we evaluate our system exper-
imentally, by quantitatively comparing it with an indepen-
dent, high-accuracy tracking system installed in the build-
ing.

RELATED WORK

Localisation is a problem often encountered in mobile robots,
where sensor-based localisation has been recognised as a key
problem [7]. In the robot localisation problem a robot is
placed at an unknown location in a known environment. By
sensing the environment the robot must determine its abso-
lute location. Robots used in localisation research typically
sense their environment using a laser range-finder, which
measures the distance to the nearest obstruction in the di-
rection in which it is pointed.

Solutions to the robot localisation problem have been imple-
mented using both grid [4] and particle-based [7] Bayesian
filters. Both are able to track the multimodal distributions
that often arise during localisation due to symmetry in the
environment. Particle filters are preferred because they re-
quire significantly less computation and have a smaller mem-
ory footprint than comparable grid-based filters [7].

There are several differences between robot and pedestrian
localisation as presented in this paper. Firstly, the robots
used in existing literature have been unable to climb stairs.
As a result, a 2-dimensional map of the environment has
been sufficient. Secondly, the movement of a robot can be
actively controlled. This is clearly not possible in a pedes-
trian localisation system. Thirdly, robot localisation is typ-
ically solved knowing both the relative movement of the
robot and measurements obtained from a laser range finder.
In contrast, we use only relative movement information (in
the form of step events) to solve the pedestrian localisation
problem.

Aside from their use in robot localisation, particle filters
have also been applied in absolute location systems. Most
notable are The Location Stack [10, 12] and Placelab [13],
which use particle filters to update the location of a user
based on measurements received from a variety of different
sensor systems. This work differs to our approach because
they deal with absolute measurements and do not use the
environment to constrain the user’s movement. In contrast
we use relative location information and environmental con-
straints to locate and track a user.

TRACKING USING A FOOT MOUNTED IMU

An IMU contains three orthogonal rate-gyroscopes and ac-
celerometers, which report angular velocity and acceleration
respectively. In principle, it is possible to track the orienta-
tion of the IMU by integrating the angular velocity signals.
This can then be used to resolve the acceleration samples
into the global frame of reference, from which acceleration
due to gravity is subtracted. The remaining acceleration can
then be integrated twice to track the position of the IMU rel-
ative to a known starting point and heading [18].

Unfortunately the error, or ‘drift’ in the calculated position
grows rapidly with time. The main cause of drift is small er-
rors perturbing the gyroscope signals, which cause growing
tilt errors in the tracked orientation. A small tilt error causes
a component of acceleration due to gravity to be projected
onto the globally horizontal axes. This residual is double in-

Figure 1. A foot mounted IMU trace (dashed red line) obtained by
descending a flight of stairs, and the corresponding step events (solid

black lines separated by dots) reported by the inertial navigation com-

ponent. Grid size = 1m
2.

tegrated, causing an error in position which grows cubically
in time in the short term [8]. The drift incurred by a high end
MEMS IMU will typically exceed 100 metres after 1 minute
of operation [19].

For foot-mounted IMUs the cubic-in-time drift problem can
be reduced by detecting when the foot is in the stationary
stance phase (i.e. in contact with the ground) during each
gait cycle. Zero velocity updates (ZVUs) can be applied dur-
ing this phase, in which the known direction of acceleration
due to gravity is used to correct tilt errors which have accu-
mulated during the previous step. The application of such
constraints replaces the cubic-in-time error growth with an
error accumulation that is linear in the number of steps [8].
The detection of stationary stance phases and the applica-
tion of ZVUs is documented extensively in the literature [8,
3, 15, 9] and hence is not discussed further here.

In this paper we consider the inertial navigation component
to be a black box. This component performs inertial navi-
gation (with ZVUs), and segments the integrated trace into
step events corresponding to strides taken by the pedestrian,
as shown in Figure 1. The ith step event is reported as a tuple

ui = (l, δz, δθ) (1)

in which l is the horizontal step length, δz is the change in
height over the step, and δθ is the change in heading between
the previous and current steps. The pedestrian localisation
problem is then to use these (noisy) step events to determine
and track the absolute position of the user in a known envi-
ronment, as shown in Figure 2. Note that the initial position
and orientation of the user are unknown.

Figure 2. The pedestrian localisation problem: To determine the abso-

lute location of a pedestrian given a path of step events describing their
relative movement, and a map of the environment.

2.5D BUILDING REPRESENTATION

There are many obstacles that limit the possible movement
of a pedestrian within a building. In particular walls are im-
passable obstacles.

In order to enforce such constraints it is necessary to have a
computer-readable plan of the building. Since it is reason-
able to assume that a pedestrian’s foot is constrained to lie
on the floor during the stance phase of the gait cycle, a 2.5-
dimensional description of the building (in which each ob-
ject has a vertical position but no depth) is sufficient. Hence
we define a map to be a collection of planar floor polygons.
Each floor polygon corresponds to a surface in the building
on which a pedestrian’s foot may be grounded. Each edge of
a floor polygon is either an impassable wall or a connection
to the edge of another polygon. Connected edges must coex-
ist in the (x,y) plane, however they may be separated in the
vertical direction to allow the representation of stairs. It is
possible to represent even complex rooms using this format,
such as the lecture theatre shown in Figure 3.

The use of a 2.5D format avoids the additional complex-
ity that would be required to construct and use a fully 3-
dimensional map.

PARTICLE FILTERS

Bayesian filters probabilistically estimate the state of a dy-
namic system based on noisy measurements. A Bayesian
filter represents its belief about a system at time t as a prob-
ability distribution over the state space

Bel(st) = p(st|z1, ..., zt) (2)

where st is a state and z1, ..., zt are noisy measurements
made up to (and including) time t.

Under the Markov assumption Bel(st) can be calculated by

Figure 3. The 2.5D representation of a lecture theatre. The edges sepa-
rating adjacent rows of seating are considered as walls (solid blue lines),

whereas the edges between stairs in the aisle are connections (dashed

green lines). Grid size = 1m
2.

updating Bel(st−1), allowing a Bayesian filter to track the
state of a dynamic system through time. To do this the belief
is first propagated according to a motion model; a probabil-
ity distribution which defines the possible transitions from
one state to the next. The propagated belief is then corrected
using measurements of the system. Each measurement has
a corresponding measurement model; a probability distribu-
tion defining the likelihood of observing the measurement
given that the system is in a particular state at the same point
in time.

To update the belief it is first propagated forward according
to a motion model p(st|st−1, ct) to obtain the prior:

Bel−(st) =

∫
p(st|st−1, ct)Bel(st−1) dst−1. (3)

where ct is control information describing the transition from
the previous to the current state (for pedestrian localisation
step events can be used). The updated posterior is calculated
from the prior as

Bel(st) = αtp(zt|st)Bel−(st) (4)

where p(zt|st) is the measurement model corresponding to
the measurement zt, and αt is a normalisation factor.

Particle filters approximate the posterior distribution as a set
of weighted samples (‘particles’)

St = 〈si
t, w

i
t〉 i = 1, ..., n (5)

where si
t is the state and wi

t is the weight of the ith particle.
A particle filter update consists of generating the set St from

the previous posterior St−1. Each new particle 〈sj
t , w

j
t 〉 is

generated as follows [5]:

1. Re-sampling: Sample a state si
t−1 from the prior S−t ac-

cording to the distribution defined by the weights wi
t−1.

2. Propagation: Sample s
j
t from the motion model distribu-

tion p(st|si
t−1, ut), where si

t−1 is from the re-sampling
step.

3. Correction: Sample wj
t from the measurement model

distribution p(zt|s
j
t), where zt is the measurement re-

ceived at time t.

This procedure is repeated n times, where n is the number
of particles in the new posterior. The value of n can be fixed
or varied at each step according to an adaptive resampling
scheme.

In our localisation framework each particle has a state st at
time t

st = (xt, yt, θt, polyt) (6)

where (xt, yt) is the horizontal position, θt is the heading
and polyt is the floor polygon to which the particle is cur-
rently constrained. Since the particle is defined to lie on the
surface of polyt, it is not necessary to explicitly store the
vertical position of the particle in the state vector.

We now outline in detail the propagation, correction and re-
sampling steps used by our localisation filter.

Particle propagation

The propagation step generates the state st of a new particle
by sampling from the motion model distribution p(st|st−1, ct),
where st−1 is a previous state selected during resampling
and ct = ut is the step event for the interval (t− 1,t).

First, we perturb the step according to an uncertainty model,
which describes uncertainty that has built up over the step
due to noise perturbing the IMU measurements. We use a
simplified model in which it is assumed that both the length
and the change in heading of the step are perturbed by Gaus-
sian random variables, drawn fromN0,σl

and N0,σθ
respec-

tively. The deviations were chosen empirically to be σl =
0.15 m and σθ = 0.6◦ . The perturbed step parameters are

l′ = l + X (7)

δθ′ = δθ + Y (8)

where X and Y are drawn fromN0,σl
andN0,σθ

respectively.

The new heading and position are then calculated from the
previous state and the perturbed step parameters:

θt = θt−1 + δθ′ (9)

xt = xt−1 + l′ · cos θt (10)

yt = yt−1 + l′ · sin θt (11)

It is also necessary to determine the floor polygon polyt to
which the propgated particle is constrained. We initially as-
sume that the floor polygon in which the particle resides is
unchanged by the update:

polyt = polyt−1 (12)

In order for the particle to have exited this floor polygon,
the step vector must intersect one of its edges in the (x, y)

plane. Let A = (xt−1, yt−1) and B = (xt, yt) be the start
and end points of the step vector in the (x, y) plane. We find

the first intersection between
−−→
AB and the edges of polyt in

the (x,y) plane, using it to update polyt according to one of
three cases:

1. No intersection point is found. The particle must still be
constrained to the same polygon.

2. The first intersection C is with a wall. In this case the
particle’s weight should be set to equal 0 in the correction
step, enforcing the constraint that walls are impassable.

3. The first intersection C is with an edge connecting to an-
other polygon (given by GetDstPoly(C)). In this case
we update the current polygon

polyt = GetDstPoly(C) (13)

Since a single step may span multiple connections, the in-
tersection test is repeated between the remainder of the

step vector (
−−→
CB) and the updated polygon. This process

continues recursively until one of the first two cases ap-
plies.

Particle correction

The correction step sets the weight wt of a propagated parti-
cle. We use this step to enforce wall constraints. If a wall is
intersected during the propagation step used to generate the
state of the particle, then it is assigned a weight

wt = 0 (14)

If a wall is not intersected, the particle is assigned a weight
based on the difference between the height change δz of the
current step and the difference in height between the start
and end floor polygons. The height change according to the
map is given by

δzpoly = Height(polyt)−Height(polyt−1) (15)

We assign the particle a weight

wt = N0,σh
(|δz − δzpoly|) (16)

where σh was chosen empirically as 0.1 m. Here we are
using the change in height reported in the current step as a
measurement in the Bayesian framework. Particles whose
change in height over the step closely matches the change
in height reported in the step event are assigned stronger
weights. This allows localisation to occur quickly when the
user climbs or descends stairs. Particles which are not lo-
cated on stairs will have a height change δzpoly = 0 accord-
ing to the map. This will not be close to the height change re-
ported in the step event, causing the particles to be assigned
small weights relative to particles that are located on stairs.
This will make them less likely to be resampled, resulting in
rapid convergence of Bel(s) to stair regions.

The combined propagation and correction algorithm is shown
in Algorithm 1.

Algorithm 1 Update - Applies the propagation and correc-
tion algorithms to generate a particle at time t from a sam-
pled state at time (t− 1).

1: procedure UPDATE(
st−1 = (xt−1, yt−1, θt−1, polyt−1) ,
ut = (l, δz, δθ))

// Model step noise
2: δθ′ ← δθ + X
3: l′ ← l + Y

// Calculate the new xy-position
4: θt ← θt−1 + δθ′

5: xt ← xt−1 + l′ · cos θt

6: yt ← yt−1 + l′ · sin θt

// Initialisation for the intersection algorithm
7: polyt ← polyt−1

8: A← (xt−1, yt−1)
9: B ← (xt, yt)

10: done← false
11: kill← false

// Determine the new constraining polygon
12: while ¬done do
13: C ← Intersect(

−−→
AB, polyt)

14: if C = null then
15: done← true
16: else if Type(C) = Wall then
17: // Note the wall intersection

18: kill← true

19: done← true
20: else if Type(C) = Connection then
21: polyt ← GetDstPoly(C)
22: A← C

23: end if
24: end while

// Correction step
25: if kill then
26: wt ← 0
27: else
28: δzpoly ← Height(polyt)−Height(polyt−1)
29: wt ← N0,σh

(|δz − δzpoly|)
30: end if

// Return the updated particle
31: return 〈(xt, yt, θt, polyt), wt〉
32: end procedure

Re-sampling

The number of particles needed to represent Bel(s) to a
given level of accuracy depends on the complexity of the dis-
tribution, which can vary drastically over time. As a result it
can be highly inefficient to use a fixed number of particles.
This is particularly true for localisation problems, where the
number of particles required to track an object after conver-
gence is typically only a small fraction of the number re-
quired to adequately describe the distribution in the early
stages of localisation [5].

Several schemes have been proposed for dynamically adapt-
ing the number of particles used to represent the distribution,

such as likelihood-based adaptation [7], Kullback-Leibler
divergence (KLD) sampling [5] and variants [17]. We use
KLD-sampling in our framework since likelihood-based adap-
tation is not well suited for problems where Bel(s) can be a
multimodal distribution, as is often the case during indoor
localisation due to symmetry in the environment [5].

The idea of KLD-sampling is to generate a number of par-
ticles at each step such that the approximation error intro-
duced by using a sample-based representation of Bel(x) re-
mains below a specified threshold ǫ. KLD-sampling assumes
that the sample-based representation of the propagated be-
lief can be used as an estimate for the posterior [6], and that
the true posterior can be represented by a discrete piecewise
constant distribution consisting of a set of multidimensional
bins. Since the propagation step in our framework uses con-
trol information (in the form of step events), the propagated
belief is a reasonable estimate of the posterior. The second
assumption requires that we specify a bin size, which was
chosen empirically to be 1 m3 in position and 10◦ in head-
ing.

INITIALISATION AND LOCALISATION

To test our framework a hip-mounted ultra mobile PC (UMPC)
was used to log data obtained from a foot-mounted Xsens
Mtx IMU. The logs were then postprocessed on a desktop
machine. In the future we envisage that the system will con-
sist of only a foot-mounted component, containing the IMU,
battery, and WiFi capability to offload the data for real-time
processing.

Figure 4 shows an example application of our framework in
our lab, a three storey building with a floor area of 8725 m2

(93915 sqft). Figure 4(a) depicts the route taken by the pedes-
trian and the steps generated by the inertial navigation com-
ponent. Note that the trace has been manually aligned with
the map to have the correct initial location and orientation,
both of which are unknown to the localisation algorithm.

Figure 4(b) shows the initial collection of particles, drawn
from the prior Bel(s0). Since the initial location of the pedes-
trian is unknown, we use a uniform distribution over the en-
tire floor surface. The initial heading is also unknown, hence
the particle headings are distributed uniformily in all direc-
tions. Figure 4(c) shows the particles after the pedestrian has
taken five steps. Figures 4(d) and 4(e) show the distribution
just before and just after the pedestrian starts to descend a
flight of stairs. Note how the pedestrian is quickly localised
to stair regions due to the use of height change measurements
in the correction step of the particle filter.

The example presented illustrates two problems commonly
faced during localisation tasks: symmetry of the environ-
ment and scalability.

Environmental symmetry

Symmetry in the environment can delay or prevent conver-
gence to a single cluster of particles. Rotational and transla-
tional symmetry cause multimodal distributions to arise dur-
ing the localisation process. Such distributions consist of a

(a) (b)

(c) (d)

(e) (f)

Figure 4. An example of localisation in a three storey building. (a) The route taken by the pedestrian (dashed red line) and a manually aligned overlay

of the steps generated by the inertial navigation component (solid black line); (b) The prior distribution of particles; (c-f) The particle distribution at

four points during localisation. Particles for which w = 0 are coloured black. An arrow indicates the actual position of the pedestrian in each figure.
Grid size 10m

2. Diagrams are exploded 10x in the z-axis.

Figure 5. A multimodal distribution caused by symmetry in the envi-

ronment. Each arrow indicates the path taken by a cluster to reach its
current position. Grid size 10m

2.

set of distinct particle clusters, each of which represents a
possible location. For example, the distribution in Figure
4(d) consists of multiple clusters which have arisen due to
both translational and rotational symmetry. Figure 5 shows
the multimodal distribution on the first floor in more detail.

Translational symmetry is a particular problem for build-
ings in which each floor has a similar layout. In such an
environment translational symmetry in the vertical direction
makes it difficult to localise the pedestrian to a single floor,
as demonstrated in Figures 4(d) and 4(e).

Scalability

The time required to incorporate a new step event into the
belief is O(nlog2(n)), where n is the number of particles
sampled from the prior. This is due to a binary search al-
gorithm used in the re-sampling step. Since the number of
particles required to represent the uniform prior Bel(s0) is
proportional to the floor area (A) of the building, it is clear
that for a large enough building it will not be possible to
perform localisation in real time. Our lab is an example of
such a building, with a floor area of 8725 m2. Using KLD-
sampling to draw particles from the uniform prior results in
an average of 4530000 particles. Our current implementa-
tion (written in Java and run on a 2.6 GHz Linux machine)
is only able to resample, propagate and correct 274000 par-
ticles during the average step duration1 of 1.1 seconds.

In order to perform real-time localisation in large buildings,
it is necessary to obtain a better (i.e. more constrained) prior.
By constraining the prior we reduce the number of particles
required during the early stages of localisation, and also re-
duce the ambiguity that can arise due to symmetry in the

1Note that this time actually corresponds to two steps taken by the
user, because step events are only generated for one of the user’s
feet.

environment. There are many ways in which the initial loca-
tion and heading of a user can be constrained. We considered
three options:

• A magnetometer can be used to obtain an initial heading
for the pedestrian. If the initial heading were known to
within 10◦ then the number of particles required to rep-
resent the prior would be reduced by a factor of 36 for a
given floor area (although remaining O(A) complexity).
An initial heading estimate can also resolve ambiguity due
to rotational symmetry in the environment.

Magnetometers work well in the absence of local mag-
netic disturbances. They can also be used in environments
where there are local disturbances in the magnetic field,
since it is possible to detect and adapt to the presence of
such disturbances [16]. The Xsens IMU used for our trials
contains a 3-axis magnetometer. However, strong mag-
netic components in the floor panels of our building ren-
der it useless when in close proximity (< 30 cm) to the
floor, even when using Xsens’ proprietary filter to adapt
to local magnetic disturbances. An alternative would be
to use a magnetometer mounted higher up the body, such
as on the hip.

• An altimeter can be used to determine a range of floors,
or floor (depending on accuracy) on which the pedestrian
is located. This would make the number of particles re-
quired proportional to the largest area of a single floor.
The use of an altimeter would also solve ambiguity due to
vertical translational symmetry in the environment.

• Wireless LANs are deployed in many large buildings. Us-
ing the observed signal strength from WiFi access points
at known positions, it is possible to estimate the position
of a user in the environment. There have been many at-
tempts to build location systems using WiFi access points
[20, 14, 2]. The accuracy of such systems is limited by the
fact that radio propagation depends heavily on the envi-
ronment, which can change over time. For example, clos-
ing a door between an access point and the user can dra-
matically alter the received signal strength. It is however
possible to obtain a rough estimate of the user’s location.
For example the RADAR system locates the user to within
5 m for 75% of the time [2].

WiFi access points can be used to constrain the prior to a
region of the building, solving the scalability problem. By
constraining the initial location we also reduce the chance
of ambiguities arising due to symmetry in the environ-
ment, since multiple candidate locations which can arise
due to symmetry are usually well separated in space.

WIFI FOR APPROXIMATE LOCALISATION

WiFi-based location systems typically determine the posi-
tion of the user via received signal strength indication (RSSI)
measurements of multiple access points. Our system obtains
this information by querying the WiFi hardware embedded
within the hip-mounted UMPC used to log the IMU data.
Each query returns a list of visible WiFi access points and
corresponding RSSI measurements. We collect the measure-

ments using the Placelab2 framework.

State-of-the-art WiFi location systems use RSSI measure-
ments to attempt to estimate the co-ordinate locations of de-
vices, with the best results coming from complex probabilis-
tic approaches. Here, however, we wish merely to constrain
our prior, and thus have much less stringent requirements.
Our goal is to determine a (comparatively gross) region of
space within which we can be confident the user is located
(more ‘portion of building’ than ‘portion of room’). Our key
requirement is that the user is actually located within the re-
gion determined by our WiFi system. To this end, we avoid
attempting to compute accurate point locations; we find that
the resultant algorithm is both less demanding computation-
ally and more resilient to radio noise (since only gross re-
gions are ever sought). Our algorithm has two phases; an of-
fline phase during which a coarse radio map is constructed,
and an online phase which returns a region of space within
which the user is located.

Offline phase

Before starting our offline phase, we divide the 2.5D map
into irregular cells, with each cell uniquely mapped to one
room. Each cell is then subdivided until all cells have no
edge length greater than 8 m. For each cell ci we manually
build a set Vi of visible access points. At least 20 queries are
made within each cell, with the user standing in a variety of
different orientations and positions and the doors both open
and closed. Every access point sighted by one or more of the
queries inside ci is added to Vi.

For each access point apj we build the set of cells Aj from
which it was visible

Aj = {ci | apj ∈ Vi}. (17)

We then define the visible region of the access point to be
the union of these cells, given by

Rj =
⋃

ci∈Aj

ci (18)

Figure 6 shows the visible region obtained by this approach
for a single access point in our building.

Online phase

At the start of a localisation we query the UMPC’s WiFi
hardware to obtain a list of visible access points and their
corresponding RSSI measurements. We assume that any ac-
cess point with an RSSI measurement greater than−75 dBm
would have been visible in at least one of the queries made
during the offline phase within the user’s cell. We use this
information to derive a constrained prior as follows.

If the visible access points with RSSI measurements greater
than−75 dBm are {ap1, ..., apj}, then the constrained prior

Belwifi(s0) is defined to be the uniform prior over the region

Rprior = R1 ∩ ... ∩Rj (19)

2http://www.placelab.org

Figure 6. The visible region obtained by the offline phase for a WiFi
access point. The arrow indicates the actual position of the access point.

Figure 7. The constrained prior obtained using WiFi access points. The

arrow indicates the actual position of the user.

For the example localisation shown in Figure 4 there were 4
access points visible at the initial location with RSSI mea-
surements greater than −75 dBm. The prior obtained us-
ing the WiFi algorithm is shown in Figure 7. Using KLD-
sampling to generate the prior results in an average of 136000
particles, less than 1/30th of the number required to repre-
sent the unconstrained prior over the whole building.

Figure 8. The path of positions (black line) extracted from the particle

filter during tracking. The shaded region is the area of the building in
which the Bat system is deployed.

TRACKING EVALUATION

When the particles have converged to form a single cluster,
the problem solved by the filter is one of tracking rather than
localisation. The cluster of particles tracks the position of
the user, updating at the end of each stance phase when a new
step event is reported by the inertial navigation component.
The number of particles used to represent the user’s position
during tracking in our building is on average 170 and at most
500. Hence tracking is far less computationally demanding
than localisation, and it is possible to track hundreds of users
simultaneously on a single desktop machine.

During tracking we determine the position (X, Y) of the
user by calculating the weighted average of the particles in
the cluster

Xt =

∑n

i=1 wi
t · x

i
t∑n

i=1 wi
t

(20)

Yt =

∑n

i=1 wi
t · y

i
t∑n

i=1 wi
t

(21)

where n is the number of particles in the cloud. To evaluate
the tracking accuracy of our framework we compared it to
the Bat system, an ultrasonic location system which is in-
stalled in one wing on the second floor of our building, as
shown by the shaded region in Figure 8. To calculate the
position of a Bat the system applies a multi-lateration algo-
rithm to times of flight obtained for a pulse emitted by the
Bat and received by multiple receivers installed at known lo-
cations in the ceiling. The calculated positions are accurate
to within 3 cm 95% of the time [1].

To compare the two systems, a Bat was attached to the foot
mounted IMU. The position of the Bat was queried during

Figure 9. A single walkthrough of the area covered by the Bat system,

showing the path of positions (black line) extracted from the particle

filter. Each Bat position is shown as a (red) dot, connected by a (red)

line to the corresponding particle filter position. Grid size = 1m
2.

each stance phase detected by the inertial navigation com-
ponent. When a position was returned during this phase it
was matched to the corresponding position obtained from
the cluster of particles for comparison.

In total six walkthroughs of the area in which the Bat system
is deployed were made, as parts of a 16 minute continuous
trace. Between each walkthrough the user walked a signifi-
cant distance through other areas of the building, including
different floors. Figure 8 shows the path of positions ob-
tained from the particle filter after convergence to a single
cluster of particles. Figure 9 shows a single walkthrough
which occurs approximately 5 minutes into the trace.

In total 169 positions from the Bat system were matched
to stance phases detected by the inertial navigation compo-
nent. Since particle filters are probabilistic, the calculated
positions vary slightly with each run. We ran the filter a to-
tal of 5 times, resulting in 845 pairs of matching positions.
Since the filter constrains particles to lie on floor surfaces we
compared the positions in the (x, y) plane only. Figure 10
shows the cumulative distribution of the Euclidian distances
between corresponding Bat and particle filter positions. If
we take the Bat positions as ground truth, the particle filter
tracks the user with an accuracy of 0.50 m 75% of the time,
and 0.73 m 95% of the time.

CONCLUSIONS AND FUTURE WORK

In this paper we have developed a tracking system that uses
a foot-mounted inertial sensor, a model of a building, and a
particle filter to track the wearer to well within 1 m. In doing
so, we have taken techniques developed for robot localisa-
tion and applied them in a situation where significantly less
data is available; extended them to handle multiple floors
and stairways; and adapted their constraints significantly to
suit pedestrians. We have also presented a novel bootstap-
ping algorithm, which uses WiFi signal strength to constrain
the initial location.

We have quantitatively evaluated our system in greater depth
than has been possible before, and demonstrated that iner-
tial tracking around a building is at least feasible. Such a
system could potentially be used to enable the deployment
of location-aware applications in large buildings, where the
installation of a high accuracy absolute location system is
either too expensive or impractical.

0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Euclidian distance between Bat and Filter positions (m)

C
D

F

Figure 10. The cumulative distribution of the Euclidian distances be-

tween matched Bat and particle filter positions.

Our result of less than 0.73 m error 95% of the time is very
promising, and we hope to improve it in the future in at least
two ways:

• Automated construction of a high resolution radio map.
By querying the visible access points whilst tracking with
the system presented in this paper, it should be possible to
construct and update a high resolution radio map online.
This map could be used to further constrain future priors,
and could potentially allow the system to adapt to changes
in the WiFi infrastructure such as the removal or addition
of access points.

• Fusion with absolute location systems. We intend to
fuse our inertial-based localisation system with absolute
positioning systems, including the Bat system and a WiFi
based location system. This differs from our current use
of WiFi access points, because positions calculated by the
location system would be used throughout tracking rather
than just at the initialisation stage.

Acknowledgements

The authors would like to thank Andy Hopper for his in-
sightful comments. This work has been funded by EPSRC.

REFERENCES

1. M. Addlesee, R. Curwen, S. Hodges, J. Newman,
P. Steggles, A. Ward, and A. Hopper. Implementing a
sentient computing system. Computer, 34(8):50–56,
2001.

2. P. Bahl and V. Padmanabhan. RADAR: An in-building
RF-based user location and tracking system.
INFOCOM, 2000.

3. S. Beauregard. Omnidirectional pedestrian navigation
for first responders. In WPNC, 2007.

4. W. Burgard, D. Fox, D. Hennig, and T. Schmidt.
Position tracking with position probability grids. In
EUROBOT, 1996.

5. D. Fox. KLD-sampling: Adaptive particle filters. In
NIPS 14, 2002.

6. D. Fox. Adapting the sample size in particle filters
through KLD-sampling. IJRR, 22(12):985–1004, 2003.

7. D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte
Carlo localization: Efficient position estimation for
mobile robots. In AAAI, 1999.

8. E. Foxlin. Pedestrian tracking with shoe-mounted
inertial sensors. Computer Graphics and Applications,
IEEE, 25(6):38–46, 2005.

9. S. Godha, G. Lachapelle, and M. E. Cannon. Integrated
GPS/INS system for pedestrian navigation in a signal
degraded environment. In ION GNSS 2006, 2006.

10. J. Hightower. The Location Stack. PhD thesis,
Department of Computer Science & Engineering,
University of Washington, Seattle, WA, 2004.

11. J. Hightower and G. Borriello. Location systems for
ubiquitous computing. Computer, 34(8):57–66, August
2001.

12. J. Hightower and G. Borriello. Particle filters for
location estimation in ubiquitous computing: A case
study. In UbiComp, 2004.

13. A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower,
I. Smith, J. Scott, T. Sohn, J. Howard, J. Hughes,
F. Potter, J. Tabert, P. Powledge, G. Borriello, and
B. Schilit. Place Lab: Device positioning using radio
beacons in the wild. In Pervasive, 2005.

14. M. Ocana, L. M. Bergasa, M. A. Sotelo, J. Nuevo, and
R. Flores. Indoor robot localization system using WiFi
signal measure and minimizing calibration effort. In
ISIE, 2005.

15. L. Ojeda and J. Borenstein. Non-GPS navigation for
emergency responders. In Sharing Solutions for
Emergencies and Hazardous Environments, 2006.

16. D. Roetenberg, H. Luinge, and P. Veltink. Inertial and
magnetic sensing of human movement near
ferromagnetic materials. In ISMAR, 2003.

17. A. Soto. Self adaptive particle filter. In IJCAI, 2005.

18. D. Titterton and J. Weston. Strapdown Inertial
Navigation Technology. The American Institute of
Aeronautics and Astronautics, 2nd edition, 2004.

19. O. Woodman. An introduction to inertial navigation.
Technical Report 696, University of Cambridge, 2007.

20. M. Youssef and A. Agrawala. The Horus WLAN
location determination system. In MobiSys, 2005.

