
Python in Education: Raising a Generation of Native Speakers

Frank Stajano
AT&T Laboratories Cambridge

24a Trumpington Street, Cambridge CB2 1QA, UK
http://www.uk.research.att.com/˜fms/

and
University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK
http://www.cl.cam.ac.uk/˜fms27/

Abstract

Primarily because of its young age, Python is still a lan-
guage that people only discover after having digested a
few others: while many of its users love it enthusias-
tically, almost nobody is a native speaker of it, in the
sense of having been exposed to it before any other.

As computer literacy evolves from desirable to nec-
essary for people from all backgrounds, computer pro-
fessionals and academics are responsible for taking a
long-term view on how best to educate the next few gen-
erations of computer users. Form shapes contents, so the
influence of a clean yet expressive first language in es-
tablishing good mental models and programming habits
should not be underestimated.

This paper discusses how Python, with its high
level of abstraction and judicious balance of simplic-
ity, conciseness and versatility, is an excellent choice to
introduce the fundamental ideas of the art of program-
ming.

1 Introduction

In many programming contexts scripting languages are
steadily gaining popularity as the most effective way of
getting the job done. From rapid application develop-
ment to system administration and from web automa-
tion to scientific computing, many experienced develop-
ers embrace scripting enthusiastically once they discover
how much time and frustration they save compared to
solving the same problem with a lower-level system lan-
guage. A lucid analysis of this shift is offered by Ouster-
hout [7] who remarks that “computers become faster and
cheaper in comparison to programmers” and hence that
reduced execution speed is a fair price to pay in return
for increased productivity and expressive power.

What only a minority seem to realise, though,

is that a cleanly designed scripting language such as
Python is also eminently suitable for introducing a virgin
mind to the art of programming. Some will consider this
suggestion as highly dangerous, on the grounds that new
programmers should be introduced from the start to such
fundamental principles as type and variable declaration:
for them, to start a fresh mind on a scripting language
might cause long-term brain damage of the sort that can
be observed on those, such as yours truly, who started
with BASIC in the Seventies or Eighties when home
computers first came out. This paper aims to dispel
such fears and to highlight, on the contrary, the virtues
of Python as an effective language for introductory pro-
gramming courses.

I stand behind this thesis with passion and dedica-
tion, but unfortunately without yet having had a chance
to validate it by teaching a course or writing a text-
book; this makes this paper an opinion piece rather than
a scientific report substantiated by experimental data. I
was however delighted to discover, after having written
most of my first draft, a now well-known visionary plan
aiming in the same direction (and beyond!), originated
by none less than Guido van Rossum himself [13]. In
recognition of these two circumstances I shall keep this
paper brief—a strategy that most readers will undoubt-
edly appreciate.

2 Form shapes contents

From the point of view of the Python evangelist (which
cannot be totally ignored given the conference at which
this paper is being presented) the suggestion of rais-
ing programmers on Python might appear like a bril-
liant proactive marketing strategy: instead of the ob-
solete method of converting programmers by showing
them how much better Python copes with their specific
problems, one gets in their brain ahead of the competi-

Appears inProceedings of8th International Python Conference,
24–27 January 2000, Washington, D.C.

http://www.uk.research.att.com/~fms/
http://www.cl.cam.ac.uk/~fms27/


tion, before they even stand a chance to become polluted
by the infidels.

Regretfully, the evangelists will have to face disap-
pointment, since the main motivation for this proposal is
not to recruit new followers to the Faith. Python here is
a means, not an end, and indeed for those who will go
on to become professional programmers it will only be
a stepping stone towards other languages.

Many beginners’ courses are, for obvious reasons,
market driven, in the sense that they introduce the stu-
dents to programming using the language that the stu-
dents wish to be able to proudly display on theircurricu-
lum vitæ: this typically means Java in the luckier cases,
or Visual Basic otherwise1. Without intending to discuss
the issue of which language would actually be most ben-
eficial to those students’ future career, we wish however
to investigate which language is most suitable for their
introduction to programming. It must be emphasised
that the two issues are largely orthogonal: anyone tak-
ing up programming as a professional occupation will by
necessity have to learn a number of different languages
over the years, so there is no fundamental need to use
for the initial training the same commercially accepted
language that the student expects (rightly or wrongly) to
be using once employed, as long as that other language
is also taught in due course.

On the contrary, just like the knowledge of more
than one natural language makes an author more pro-
ficient and more aware of certain expressive nuances
and subtleties that might otherwise go unnoticed, so
the knowledge of several programming languages, with
their different approaches to the task of expressing an
algorithmic computation, broadens the mental horizon
of the programmer and highlights alternative and some-
times more appropriate ways of solving the problem at
hand.

Form shapes contents: being able to express a cer-
tain operation easily may make the difference between
finding and not finding a solution. As Hofstadter [3] ap-
propriately notes in the context of what used to be called
artificial intelligence, the choice of one programming
language over another is akin to an invitation to solve
a certain class of problems:

The “space” of all possible programs is so
huge that no one can have a sense of what is
possible. Each higher-level language is nat-
urally suited for exploring certain regions of
“program space”; thus the programmer, by us-
ing that language, is channelled into those ar-
eas of program space. He is notforcedby the
language into writing programs of any partic-

1Other languages such as C++ may constitute even more desirable
CV items, but are typically outside the scope of abeginners’course.

ular type, but the language makes iteasyfor
him to do certain kinds of things. Proximity to
the concept, and a gentle shove, are often all
that is needed for a major discovery—and that
is the reason for the drive towards languages
of ever higher levels.

Programming in different languages is like
composing pieces in different keys, particu-
larly if you work at the keyboard. If you
have learned or written pieces in many keys,
each key will have its own special emotional
aura. Also, certain kinds of figurations “lie in
the hand” in one key but are awkward in an-
other. So you are channelled by your choice
of key. In some ways, even enharmonic keys,
such as C-sharp and D-flat, are quite distinct
in feeling. This shows how a notational sys-
tem can play a significant role in shaping the
final product.

It is thus appropriate to choose, for an introductory
programming course, a language which makes it easy to
express the important ideas without getting lost in irrel-
evant detail. As a cultural imprinting, the student needs
to learn the fundamental concepts of program construc-
tion and the basic skills of specifying, expressing and
debugging an algorithm. At this initial stage it helps
if the notational system supports just that, without get-
ting in the way with too much syntax or low-level detail.
Python’s clear conciseness is what is needed to visualise
the algorithm in 15 lines as opposed to two pages of scaf-
folding, brackets and ancillary declarations. One is not
forced first to write a concise pseudocode version and
then some real code to implement it: with Python, the
pseudocode is in fact also real code, and already exe-
cutable.

A word of warning. Kernighan and Pike [4] appro-
priately insist on style and clarity as the foremost qual-
ities of a good program—and it is somewhat refresh-
ing to see the C demigods inviting readers to caution
when handling the more cryptic and less safe features
of the language for which they were partly responsible.
Python tutorials, on the other extreme, all too often put
the emphasis on fun, not on style, perhaps in the over-
enthusiastic hope that the cleverly designed layout and
syntax of the language will make the source readable for
free. While Python’s structure may give it a head start on
clarity compared to C, it would be wise to bank on this
advantage by emphasizing to students the value of read-
ability and good style, which require a conscious effort
in Python like in any other language, including English.

2



3 The target audience

We have spoken so far of introductory courses meant
for future programmers, i.e. people that would naturally
continue to intermediate and advanced courses, where
they would learn new skills and new languages as ap-
propriate. But the more novel and provocative aspect of
this proposal to use Python in education sees this only as
the marginal case. Future programmers are people who
chooseto use computers. The really relevant case—the
one towards which the community of computer profes-
sionals and academics has the greatest responsibility—is
that of the vast majority of people who will beforced(by
us) to use computers and will probably never attend an
intermediate or advanced programming course: histori-
ans, surgeons, lawyers, musicians and so on. At present,
they may not receive any programming training at all.
The idea put forward here is that they all deserve to get
such training, in moderate quantity, at around secondary
school age, and that Python would be a good language to
teach them. The Van Rossum proposal [13] is even more
radical, advocating that programming should be taught
at elementary school level as a basic skill, on a par with
natural language and arithmetic.

Establishing the most appropriate age at which to
introduce programming in the curriculum is left open for
debate; here we shall only remark that the implementa-
tion details may depend on other factors than just the in-
trinsic merits of the new subject. As Wilkes says about
historical studies [14]:

It is always easy to make a strong case for
including new topics in a syllabus. The prob-
lem is to decide what to leave out to make
room for the new material and, for this reason,
discussions of syllabus reform always resolve
themselves into discussions of what to cut out,
not what to put in.

But, apart from the age question, the crucial mes-
sage is that all children, and not just the technically
minded, would benefit from learning the principles of
programming, as opposed to just being taught how to
drive prebuilt applications as users.

Spreading the knowledge about programming has
at least two advantages: the first is to somewhat demys-
tify computers and give those future users the intellec-
tual tools to understand, at least qualitatively, what goes
on under the hood. Instead of I-don’t-want-to-know-
about-it-ly2 blaming all malfunctions on voodoo or Mur-
phy, they will have some insight into possible causes for
the problem and might be able to devise, if not a fix,

2<0.5 wink> to Tim Peters who, with characteristic wit,
introduced such insidiously contagious linguistic acrobatics in
comp.lang.python years ago.

a safer or less resource-hungry way of doing what they
want.

The second advantage is to give back to ordi-
nary people the power to solve simple problems. In
the days of the Apple II and of its even less powerful
home-oriented followers from Commodore, Sinclair and
Acorn, the distinction between using a computer and
programming one was blurred. The BASIC interpreter
in ROM was more than just a programming language: it
was also an operating system (insofar as there was one)
and a glue language to plumb things together. Despite
the then-popular claim that “a computer can do any-
thing”, those machines did very little; but at least their
users were in control and there was no barrier to writ-
ing short programs to do simple things. Over the subse-
quent 20 years, home computers have become unbeliev-
ably more powerful (as well as better suited to actually
performing useful tasks, such as organising one’s col-
lection of comics), but BASIC in ROM has gone. In
fact, from the mid-Eighties, most home computers have
been shipping without a programming environment at
all. And even BASIC, for all its many perversions, was
not as bad as what unofficially replaced it as the native
programming tool of the average machine, namely the
MS-DOS batch “language”. . .

It is easy, with hindsight, to recognise that this need
for elementary programmability is perfectly solved by
scripting languages. Only a tiny fraction of computer
users will be professional programmers, but all users de-
serve to be taught how to write useful five-line scripts to
automate simple repetitive tasks3.

4 Is Python a good first language?

As a separate issue from the desirability of introduc-
ing schoolchildren to programming, let’s come back to
Python in particular, and to its suitability as a first lan-
guage.

One might think, especially in the light of what we
just said, that two types of students ought to be distin-
guished, namely the future professional programmer and
the future non-technical user, since the requisites for the
respective ideal first languages might be quite different.

In the first case, one might wish to emphasise good
programming habits that favour program correctness and
maintainability, while in the second case one might lean
more towards giving the students some directly usable
practical skills, especially if this is expected to be their
first and last programming tutorial.

3This brings to mind the magic power of Expect [5], which allows
your script to drive character-based applications as if it were an inter-
active user; but unfortunately the tool’s usefulness is reduced by the
modern prevalence of graphical interfaces. Besides, Expect is far too
complicated for a non-techie.

3



For some, the requirements for the first case will
mark Python as unsuitable. Faculty member Peter
Robinson [10], in presenting the criteria for the choice
of language to be taught initially to the computer sci-
ence undergraduates at the University of Cambridge,
lists “mathematical basis”, “strong typing” and “func-
tional emphasis” as the three main objectives, accom-
panied by “a friendly environment for experimenting”,
which translates as “an interpreted language”. This be-
cause the students “need to start with a sound founda-
tion for programming that can establish the principles
which will subsequently be applied in many different
languages”.

The value of being able to see a program as a for-
mal description of an abstract algorithm, and to analyse
algorithms mathematically, is emphasised. From these
requirements Robinson justifies Cambridge’s choice of
ML which, as an interesting side effect, puts all students
on an equal footing: even those with previous program-
ming experience have never heard of the language be-
fore and are typically accustomed to imperative rather
than functional programming.

Python cannot score as well as ML against these
criteria, especially for what concerns the mathematical
purity: although it includes functional constructs and
supports functions as first class objects, Python lacks
ML’s sophisticated type inference mechanisms and is
certainly not a “pure” functional language—or a pure
anything else for that matter. In fact, the following com-
ment on C++ by Stroustrup [11] applies equally well to
Python, whose computational model fruitfully borrows
from various inspiring sources.

Too often, “hybrid” is used in a prejudicial
manner. If I must apply a descriptive label, I
use the phrase “multi-paradigm language” to
describe C++.

The reason why an educator, notwithstanding
Robinson’s valid points, might still choose Python over
ML for a first course to computer science undergrad-
uates is probably one of simplicity. While functional
concepts can still be presented and explored in Python
where appropriate, the core of the course can proceed
using a notation that, while less rigorous and more de-
tached from the mathematical foundations of comput-
ing, is nevertheless going to be much closer to the usual
pseudocode used in language-neutral textbooks. The
outstanding introductory volume by Goldschlager and
Lister [1], which Robinson himself elsewhere lists as
required cover-to-cover reading for the computer sci-
ence undergraduates even before they turn up at Cam-
bridge [9], presents its algorithms in a format and pro-
gramming style that is going to look rather more familiar
to a native Python speaker than to a native ML speaker.

Besides, one should not entirely dismiss the pos-
sibility that the choice of ML, while technically and
pedagogically sound, might have an element of Cam-
bridge elitism in it, as hinted at in the following ex-
tract from Haemer’s witty and enjoyable chronicle of the
1994 VHLL symposium [2].

While [speaker Andrew Koenig] isn’t put
off by some of ML’s unusual properties, Andy
admits that it is the twenty-first programming
language he’s learned. I didn’t have the im-
pression that he was the norm. Neither, I think,
did he.

Early on, he warned us that “ML makes far
fewer concessions to practicality than you’re
used to, but the payback is occasional breath-
taking elegance.” True enough, but it wasn’t
long before John Ousterhout asked whether it
would be unfair to characterise ML as a lan-
guage for people with excess IQ points. Some-
one in the audience volunteered that ML is
a standard undergraduate programming lan-
guage at Cambridge, without saying whether
that meant “yes” or “no.”

Python’s principal advantage as an introductory
language is its high abstraction level, which is appropri-
ate to introduce the fundamental concepts of algorithms
without getting distracted by irrelevant details such as
machine level micro-optimisations and memory alloca-
tion issues. Naturally, the future computer scientists will
have to be introduced to such details at some stage—but
this can happen later, in the context of explaining them
how Python’s own building blocks were made.

Anyone with an interest in the didactics of pro-
gramming should not miss the excellent article by
Stroustrup [12] on learning Standard C++. Since C++
is so large, it must necessarily be conquered in stages;
and, Stroustrup argues, an all too frequent mistake is to
take the C subset as the first such stage.

In my considered opinion, that’s not a
good [choice]. The C-first approach leads to
an early focus on low-level details. It also ob-
scures programming style and design issues
by forc[ing] the student to face many techni-
cal difficulties to express anything interesting.

What he instead suggests is an approach that,
among other things, “presents code relying on relatively
high-level libraries before going into the lower-level de-
tails (necessary to build those libraries)”, “presents com-
mon and useful techniques and features before details”,
and “focus[es] on concepts and techniques (rather than

4



language features)”. To use Python to introduce pro-
gramming is consistent, in spirit, with the above guide-
lines. Of course, since Stroustrup discusses studying
C++, he implicitly targets students who have already
committed to taking programming seriously; but the
same guidelines define a sensible strategy even for our
“type 2” students, i.e. those for whom the fundamen-
tals of programming are a useful piece of21st century
culture but not the foundations of a career.

Someone might even argue that the ultimate goals
for a first course to “type 1” and “type 2” students are
not that different after all. In both cases we want to cul-
turally imprint the students with a good methodology
and an archetypal idea of how a complex construction
such as a piece of software should be built in order to be
manageable—indeed this may be what that makes the
course more generally useful, even to the “type 2” stu-
dents who will never write a program longer than ten
lines. Moreover, again in both cases, we want to retain
the students’ interest by letting them practice with real
problems (such as file manipulation and Internet pro-
gramming) rather than just abstract data structures; and
Python’s standard library is just what we need here.

At a structural level, the absence of a direct lan-
guage ancestor saves Python from perversions dictated
only by the need for compatibility. The language is fairly
clean, in the sense of being based on the regular combi-
nation of a few powerful orthogonal constructs.

At a syntactic level the minimalistic punctuation,
while conceptually irrelevant, is actually a significant
advantage during the learning phase. Meyer, in the sec-
ond edition of his masterpiece [6], confesses his dis-
appointment at discovering that students learning Eif-
fel considered the absence of statement-delimiting semi-
colons as the best feature of the language:

Some of the Discardists were very force-
ful, in particular a university professor who
said that the main reason his students loved the
notation is that they do not need semicolons
— a comment which any future language de-
signer, with or without grandiose plans, should
find instructive or at least sobering.

It is in fact only fair to remark that, if the block
structure of language-neutral pseudocode can be ex-
pressed clearly and unambiguously by nothing more
than a legible page layout, there are few good excuses to
justify an abundance of brackets, semicolons and begin-
end markers in the real code just to simplify the com-
piler. Making indentation count as block structure also
has the beneficial side effect of forcing everyone to in-
dent their source code correctly, under penalty of it not
working.

Sometimes even historical accidents are useful.
Python’s explicitself argument to the methods of a
class instance, which seasoned OO programmers may
view as an inelegant artifact of the minimalistic imple-
mentation, helps less experienced programmers under-
stand who is calling what on what else, and how object
oriented programming actually works. When I was once
asked to explain subtle distinctions between class and
instance methods, it was helpful to be able to point out
that the class method wouldn’t have worked in that ex-
ample because, lackingself , it couldn’t find the object
to which the operation applied. The same explanation
would have been more nebulous in “more advanced” OO
languages.

5 It can’t all be good!

It is reasonable to expect that, under at leastsomeas-
pects, Python will be unsuitable as a first language,
since it was not originally designed for this specific pur-
pose. Van Rossum [13] openly admits this possibil-
ity and declares himself ready to modify the language
where appropriate. He quotes case sensitivity of iden-
tifiers and truncation of integer division as features that
actual teaching experience proved to be confusing. But
there may in fact be more substantial sources of prob-
lems.

First and foremost, the whole conceptual model of
reference counted objects may at times produce side ef-
fects that, for people who haven’t been introduced to the
delights of pointers and explicit memory management,
are justifiable only through black magic. The canonical
example is in the Python FAQ [8], entry 4.50: the follow-
ing apparently innocuous attempt at a two-dimensional
matrix will generate a mischievous structure in which
poking an element in one row makes it appear in all the
others too:

A = [[None] *2 ] *3

A less fundamental point, but nonetheless one that
never fails to puzzle newcomers, is the distinction be-
tween lists and tuples (“So why can’t you get away with
just lists?”), and the related business of mutable vs. im-
mutable.

Finally, for a language to be used to teach program-
ming concepts, not being able to specify types in, say,
the signature of a function is probably a drawback.

These aspects of Python’s behaviour are so deeply
rooted in its current structure that it is hard to imagine
them being removed in a future revision of the language
even if actual practice were to show that they effectively
cause serious problems to the young students. It will be
extremely interesting to see how the problem is tackled if

5



it effectively arises. Breaking compatibility is allowed:
the challenge is to devise a new construct that still fits
in naturally and elegantly—in other words, one that still
has the Python nature.

6 Conclusions

Python has done very well as a general purpose script-
ing language. As with some of its direct competitors, its
high level data structures and high level primitive oper-
ations allow most typical data manipulation tasks to be
expressed in tens rather than hundreds of lines of code.
Unlike other scripting languages, however, its clean de-
sign and its good support for modularity and objects
have allowed developers to fruitfully keep on scripting
way past the canonical now-move-to-a-system-language
limit of a thousand lines or so. Indeed it is thanks to
this circumstance that, in a self-sustaining virtuous cir-
cle, many of the excellent contributions in the language’s
rich standard library have come to life.

But, despite this success in the rapid application
development arena, Python is still under-utilised. The
same cocktail of well chosen language trade-offs that
gave Python the edge in the hands of experienced de-
velopers also makes Python a great resource for the im-
portant task of teaching programming. Newcomers—
for whom the first language is a system to organise their
new thoughts about algorithms as much as it is a tool for
building programs that work—find in Python a clean no-
tation that invites expression at the appropriate level for
their experience; they may familiarise with general pro-
gramming concepts in an environment built out of the
regular composition of a few powerful constructs, rather
than out of the irregular accumulation of cute hacks,
compatibility kludges and special cases. As an added
bonus, they get a language that enables them to per-
form useful practical work on their own data (Python’s
versatility with text manipulation and Internet protocols
comes immediately to mind) rather than being confined
to toy worlds populated by lists, trees and integers. Fi-
nally, they get a language that will take them a while
to outgrow—as demonstrated by the multitude of pro-
fessional developers who, even as non-native speakers,
have now adopted Python for a substantial portion of
their work.

Some of the best names of Pythonland have already
committed to a substantial concerted effort that will vali-
date the above claims and make Python, with the invalu-
able feedback loop of actual school experience, an even
better first language. Now that theComputer Program-
ming for Everybodyproject rationale [13] is out, there is
in fact much less need than before for a paper such as
this one. At this stage, the contribution of this piece is

primarily to offer some extra food for discussion, from a
slightly different point of view and in a small and easily
digested format.

Actually, within the gastronomic metaphor, the
most appropriate image is perhaps that of an appetiser:
this little piece doesn’t give the reader any meaty sub-
stantiated facts—nor anycheesylanguage comparison
tables, for that matter—but if a potential educator (or
publisher, or author. . . ) finds it sufficiently enticing to
want to find out more and maybe bite a bigger chunk
of the action, this appetiser will have served its humble
purpose.

7 Acknowledgements

It was a pleasure to discuss some of these ideas over
lunch with Frank Willison at IPC7 in 1998, as we clearly
both believed in Python’s great potential as a teaching
language.

I am also grateful to the anonymous referees (par-
ticularly the one thanks to whom I bought the delightful
The Practice of Programming[4]) for their pertinent and
encouraging comments.

References

[1] Les Goldschlager, Andrew Lister and Timothy R.
Lister. Computer Science: A Modern Introduction.
Prentice Hall, Englewood Cliffs, Mar 1988. ISBN
0-13-165945-6.

[2] Jeff Haemer. “Very High Level Languages Sym-
posium Report”. ;login:, 20(1):5–10, Feb 1995.
ISSN 1044-6397. (The symposium, organised by
Usenix, was held in Santa Fe, New Mexico, from
1994-10-26 to 1994-10-28.).

[3] Douglas R. Hofstadter.Gödel, Escher, Bach: An
Eternal Golden Braid. Basic Books, New York,
1979. ISBN 0-465-02685-0.

[4] Brian W. Kernighan and Rob Pike.The Practice
of Programming. Addison-Wesley, 1999. ISBN
0-201-61586-X.

[5] Don Libes.Exploring Expect. O’Reilly and Asso-
ciates, 1995. ISBN 1-56592-090-2.

[6] Bertrand Meyer. Object-oriented Software Con-
struction,2nd ed. Prentice Hall, 1997. ISBN 0-
13-629155-4.

[7] John K. Ousterhout. “Scripting: Higher Level
Programming for the21st Century”. IEEE Com-
puter, 31(3):23–30, Mar 1998. ISSN 0018-9162.

6



http://www.scriptics.com/people/
john.ousterhout/scripting.html .

[8] Python Software Activity. http://www.
python.org/doc/FAQ.html .

[9] Peter Robinson. “Preparing to study Computer Sci-
ence at Cambridge”.http://www.cl.cam.
ac.uk/Teaching/Preparation.html .

[10] Peter Robinson. “From ML to C via Modula-
3 an approach to teaching programming”, Dec
1994. http://www.cl.cam.ac.uk/˜pr/
mlm3/mlm3.html .

[11] Bjarne Stroustrup. “Why C++ is not just an
Object-Oriented Programming Language”.OOPS
Messenger, 6(4):1–13, Oct 1995. ISSN 1055-
6400. http://www.research.att.com/
˜bs/oopsla.pdf .

[12] Bjarne Stroustrup. “Learning Standard C++
as a New Language”. The C/C++ Users
Journal, May 1999. ISSN 1075-2838.
http://www.research.att.com/˜bs/
new_learning.pdf .

[13] Guido van Rossum. “Computer Programming for
Everybody (Revised Proposal): A Scouting Expe-
dition for the Programmers of Tomorrow”. CNRI
Proposal 90120-1a, Corporation for National Re-
search Initiatives, Jul 1999. http://www.
python.org/doc/essays/cp4e.html .

[14] Maurice V. Wilkes. “Historical Studies In Science
And Technology And The Uses To Which They
Can Be Put”.Notes and Records of the Royal So-
ciety of London, 53(1):3–10, Jan 1999.

7

http://www.scriptics.com/people/john.ousterhout/scripting.html
http://www.scriptics.com/people/john.ousterhout/scripting.html
http://www.python.org/doc/FAQ.html
http://www.python.org/doc/FAQ.html
http://www.cl.cam.ac.uk/Teaching/Preparation.html
http://www.cl.cam.ac.uk/Teaching/Preparation.html
http://www.cl.cam.ac.uk/~pr/mlm3/mlm3.html
http://www.cl.cam.ac.uk/~pr/mlm3/mlm3.html
http://www.research.att.com/~bs/oopsla.pdf
http://www.research.att.com/~bs/oopsla.pdf
http://www.research.att.com/~bs/new_learning.pdf
http://www.research.att.com/~bs/new_learning.pdf
http://www.python.org/doc/essays/cp4e.html
http://www.python.org/doc/essays/cp4e.html

	Introduction
	Form shapes contents
	The target audience
	Is Python a good first language?
	It can't all be good!
	Conclusions
	Acknowledgements

