
Model Checking for Sentient Computing: An Axiomatic
Approach

Eleftheria Katsiri
Laboratory For Communication Engineering

University of Cambridge
William Gates Building

15 JJ Thompson Avenue
Cambridge

CB3 0FD, UK

ek236@cam.ac.uk

Alan Mycroft
Computer Laboratory

University of Cambridge
William Gates Building

15 JJ Thompson Avenue
Cambridge

CB3 0FD, UK

am@cl.cam.ac.uk

ABSTRACT
Sentient Computing allows applications to best interact with
their physical environment, by becoming aware of their sur-
roundings. Awareness is achieved by means of a sensor in-
frastructure that helps maintain a model that represents the
current state of the dynamically changing world. This model
can be seen as a concrete interpretation of the physical envi-
ronment and conceptually stands between the physical world
and the abstract view of applications. A number of factors
such as the non-homogeneity of physical space and the pre-
cision of the sensor technology may introduce errors and
inconsistencies between the physical world and the model.
On the other hand, the abstract view of the application do-
main needs to be correct and compatible with the concrete
model, especially in the case of distributed, heterogeneous
environments where applications need to interact seamlessly
with several different concrete models.

The contribution of the work described in this paper is
that it looks at the above problem as a constraint-satisfaction
problem to which it applies classical, logical satisfiability,
in order to produce a model-based solution. Our system
is similar to a classical model-checker ; it checks the satis-
fiability of the application requirements against the world
model, as well as the consistency of the world model with
the properties of the actual physical environment. Because
it is model-based, it is appropriate for distributed, heteroge-
nous environments. Our system forms part of SCAFOS,
a generic, distributed middleware framework for context-
awareness, implemented in the first author’s PhD disser-
tation. An implementation that uses the theorem prover
system SPASS, is also discussed in this paper.

1. INTRODUCTION
Model checking [4] was proposed by Clarke as a method

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

for formally verifying finite-state concurrent systems, where
specifications about the system are expressed as temporal
logic formulas. Efficient symbolic algorithms are used to
traverse the model defined by the system and check if the
specification holds or not.

Sentient Computing [8] is a programming paradigm, in
which applications are made more aware of their physical
environment by means of a sensor infrastructure. Sensors
help maintain a model of the physical environment, referred
to as a Sentient environment. The authors’ previous work
[11, 12] proposes a model for inferring high-level, abstract
knowledge from low-level, concrete knowledge, that is di-
rectly derived from sensors by means of frequent updates
through the SensorUpdate() interface (Figure 1). Abstract
state is deduced from concrete state by means of a definition
in temporal first-order logic (TFOL). The Abstract Event
Definition Language (AESL), defined in [11], is used in or-
der for an application to subscribe to changes in the truth
values of high-level abstract state predicates, referred to as
abstract events. A higher-order service, called an Abstract
Event Detection Service, publishes its interface. This service
takes an AESL definition as an argument, and in return pub-
lishes an interface to an abstract event detector that notifies
transitions between the values true and false of the formula.
For example, an application that is interested in locating the
closest, empty meeting room to Brian, who is a system ad-
ministrator needs to subscribe to the Abstract Event Detec-
tion Service providing a TFOL formula that defines the ab-
stract state predicate H ClosestEmptyLocation(Brian, Sys-
tem Administrator, rid, Meeting Room.)1 The system keeps
abstract state consistent with concrete state at all times.

However, this dual abstract mapping, i.e., from the physi-
cal environment to the concrete model and from the concrete
model to the application layer, can be affected by a number
of factors, in terms of correctness, completeness and consis-
tency of both the model and the application specifications.
The most important of these factors are summarised below:

• Non-homogeneous space and the natural laws of physics.
The application specifications may contain logical fal-
lacies that are caused by ignoring the physical con-
straints that are introduced by the spatial topology,
i.e., a person can not be in more than one location

1Nomenclature taken from [12]

UserUpdate()

Asserted

Facts

Facts

Deduced

deduction
Rules

SensorUpdate()

sensor

AssertRule()

PublishDeducedFact()

DeduceFact()

AssertFact()

UserUpdate()

SensorUpdate()

PublishEvent()

AssertAESLDefinition()

AssertAESLDefinition()

Figure 1: The deductive knowledge base and its API

simultaneously and he cannot move through walls.

• Semantic sufficiency of the model. The application is
not aware of the correctness or the granularity of the
model of the physical world which depends directly on
the capabilities of the underlying location system. For
example, a model that is updated by Active Badge
[21] location sightings, only knows about rooms. Such
a model cannot reason with any application require-
ments that involve positions, or regions smaller than
rooms. For example, such a model cannot determine
which PC in the room, the user is closer to, and there-
fore this application requirement would be unsatisfi-
able by the specific model. However, a model that
depends on the Active BAT [7] for location informa-
tion, knows the exact position a user is in and can
deduce much more abstract state in order to satisfy
the application requirements.

• Correctness of abstract application specification. The
application specification may be incorrect in which
case it will not be satisfiable by the model even if the
model is semantically adequate. Errors can occur from
violating logical constraints such as the ones that are
derived from the functional operation of location pred-
icates. For example, the situation where the C expert
is typing at his keyboard while at the same time the
systems administrator is having a coffee is impossible
if the system administrator and the C expert are the
same person. Feedback is returned to the application
in such a case.

We propose a verification technique similar in concept to
model checking that checks abstract knowledge definitions
(AESL definitions) for correctness and semantic compati-
bility with the models of the sensor-driven domains. Cor-
rectness is established against a set of spatio-temporal con-
straints and against a set of logical constraints that make
sure that logical fallacies are excluded. The Sentient model
is also checked for correctness by checking each sensor up-
date against a set of spatio-temporal specifications. When-

ever a specification is found unsatisfiable, appropriate feed-
back can be given to the application that can be used for
the selection of a more appropriate model, or an adaptation
in the application’s behavior.

2. FACTORS THAT AFFECT MODELING
The main factors that make the concrete model incom-

plete or inconsistent with the physical environment is the
combination of the behavior of the sensor technology that in-
struments physical space and the non-homogeneity of phys-
ical space itself. The main sensor technology used for phys-
ical space modeling is location technology. Location tech-
nologies vary in precision, and an imprecise or an incorrect
reading will introduce an error in the concrete model. Be-
cause space can differ so much from one cm to another, such
an error can lead to an illegal model state. For example, a
user can be seen floating in the air, or walking inside a wall.

Similarly, the application abstract view can be incomplete
or inconsistent compared to the concrete model. Inconsis-
tencies here can be introduced via incorrect application spec-
ifications e.g., an application specification may describe an
abstract state where the application is interested in paging
the first available C++ expert, while the system adminis-
trator is unavailable. This particular abstract state cannot
be reached, as long as the system administrator is the only
C++ expert.

Another constraint derives from the situation in which
an application interacts with more than one concrete model
at different levels of knowledge precision. For example, the
above application specification would be unsatisfiable for a
model that only knows which room a user is in and therefore
cannot determine whether one is using a PC or not. The pro-
posed system prevents the above problems by checking the
concrete model against a set of specifications that prevent
the modeling of illegal states.

3. SPECIFICATIONS
Specifications are described in terms of FOL axioms, and

can be classified in three sets. Spatial and logical specs,
Model specs and Application specs. Spatial and logical specs
are used to check the consistency of the model against the
physical environment. They represent physical constraints
that apply to all Sentient environments (see Section 2). Model
specs are used to determine whether the abstract specifica-
tions are compatible with the concrete model or whether the
model is semantically sufficient for the application specifica-
tion. Application specs 2 are provided by the applications
in the form of axioms and aim to bind concrete state predi-
cates to a high-level, abstract state predicate, referred to in
this paper as the goal theorem. Goal theorems are checked
for satisfiability against application specs, model specs and
spatial and logical specs. Moreover, each sensor update is
checked for satisfiability against spatial and logical specs.

3.0.1 Overall Specification
The satisfiability of the overall specification is modeled

by the predicate SpecSuccess, which is defined as equivalent
to the conjunction of the predicates that signal the satisfi-
ability of the application model and spatial specifications,

2Application specs are equivalent to AESL definitions.

respectively:

AppSuccess ∧ ¬ModelFailure ∧ SpatialSuccess

⇒ SpecSuccess

4. FIRST-ORDER LOGIC DESCRIPTION OF
A SENTIENT MODEL

Using the definitions and nomenclature proposed in [12]
and extending the temporal notions of [9], we define a state-
based model for distributed sensor-driven systems. We as-
sume that a system consists of several physical domains such
as an office domain. Each domain contains a set of physical
objects such as mobile users and equipment. Modeled phys-
ical locations include regions, ranged over rid, and positions
(x,y,z). Each user (uid) is associated with a role and each
region is associated with a regional attribute (rattr) that
describes relevant contextual information such as its func-
tionality or ownership, e.g., kitchen, Alan’s office etc. This
allows the expression of semantic abstractions such as the
closest system administrator who is not busy. Objects, lo-
cations, roles and regional attributes have states which are
either concrete or abstract. Concrete state predicates repre-
sent state that is directly derived from the sensors and in this
paper are always prefixed with ’L ’ (Low-level). Example
of concrete state predicates are those that represent a user’s
position in terms of his co-ordinates, rooms in a building
and nested locations such as floors. These are modeled [12]
with the first-order logic predicates:3

L UserAtPosition(uid, role, (x, y, z), timestamp)

L AtomicLocation(rid, rattr, polygon)

L NestedLocation(rid, rattr, rid-list)

For example,

L UserAtPosition(John,Phd , (13 .4 , 5 .7 , 1 .7), 13 :56)

L AtomicLocation(Room7 ,Meeting-room,Polygon37)

L NestedLocation(Floor4 , [Room2 ,Room9])

A set of function predicates, as in Prolog, represent func-
tions where the first argument represents the value of the
function. The distance between a user’s position and a fixed
point in the polygon that defines a region is represented
through the predicate Distance(v , role, rid , rattr , uid).

Abstract state predicates represent high-level state that is
derived from concrete state by means of TFOL on proper-
ties of interest. A user’s high-level location in terms of the
region that contains him, a user’s presence or absence and
the fact that one or more people are co-located are examples
of such predicates. Initially, when the system is started up,
only concrete state predicates exist. Abstract state pred-
icates in this paper are always prefixed with ’H ’ (High-
level), H UserAtLocation(u, role, rid , rattr , t).

A timestamp denotes the moment when a current abstract
predicate instance becomes active. Previous instances are
stored as historical predicates and are associated with an
additional timestamp that denotes the moment when the
predicate instance became inactive. Timestamps allow for

3As a convention, predicate attributes are in lower case and
their values have the initial character capitalised, e.g., poly-
gon is a variable whereas Polygon27 denotes the value of
the attribute polygon in a given coordinate system.

temporal abstractions such as now, today and temporal op-
erations such as sequence, iteration, equality and inequality
with temporal intervals, over current and historical data.

4.1 Spatial and Logical Specifications
Spatial and Logical Specifications aim to represent con-

straints that derive from the characteristics of physical space
(see Section 2). Both application-provided theorems and
new facts produced by the sensor infrastructure are checked
against this set of specifications. The following axioms rep-
resent such specifications:

Axiom 1. Each user can be in only one position at a
time.

(x1 = x2) ∧ (y1 = y2) ∧ (z1 = z2)

∨¬L UserAtPosition(uid , role1 , x1 , y1 , z1)

∨¬L UserAtPosition(uid , role2 , x2 , y2 , z2)

The above axiom prevents the application from making a
specification that implicitly requires the same user to be
in two different positions at the same time, usually under a
different role, e.g., a user who is both a system administrator
and a C++ expert. We can also say that L UserAtPosition
is a function in the domain of the concrete model. A direct
consequence of the above axiom is the following:

Axiom 2. If an object is contained in more than one re-
gion, these are nested.

L NestedLocation(rid2 , rattr2 , site-list2)

∧InList(rid1 , site-list2)

∨L NestedLocation(rid1 , rattr1 , site-list1)

∧InList(rid2 , site-list1)

∨¬H UserInLocation(uid , role1 , rid1 , rattr1)

∨¬H UserInLocation(uid , role2 , rid2 , rattr2)

The above axioms denotes that if a user is known by the
system to be inside two different regions then the regions
are nested 4.

Axiom 3. A user cannot be located inside a compact sur-
face such as a wall.

IsOpaque(x1, y1, z1)

⇒6 ∃L UserAtPosition(uid , role, x1 , y1 , z1)

This axiom can be used to discover an erroneous location
system sighting. The predicate SpatialSuccess is used in
order to denote that all axioms in this category are satisfied.

4.2 Model Specifications
Model specifications are used in order to determine whether

the concrete model is precise enough for the application
specification. Model specifications are provided both by the
application and the sensor-driven model side. The applica-
tion provides an atomic formula:

RequiredPrecision(p, q)

4Here it is assumed that no regions are overlapping.

The pair p, q is a confidence level 5 that characterises the
precision of the location modeling. The term p takes values
from the set {reg , coord} and denotes the type of the lo-
cation technology (region-based or coordinate-based) , and
q ∈ [1 · · · 10] represents the accuracy of the coordinate sys-
tem 6. The higher the accuracy, the higher q. The concrete
model provides the atomic formula:

ProvidedPrecision(p, q)

The pair p, q is also a confidence level for location modeling
precision. Similar predicates can be invented for other types
of information.

Axiom 4. The knowledge precision required by the appli-
cation should be no greater than the knowledge precision of-
fered by the underlying model.

RequiredPrecision(reg , 0) ∧ ProvidedPrecision(reg , 0)

⇒ ¬ModelFailure(reg , 0)

RequiredPrecision(reg , 0) ∧ ProvidedPrecision(coord , q)

⇒ ¬ModelFailure(reg , coord)

RequiredPrecision(coord , q1) ∧ ProvidedPrecision(coord , q2)

∧ > (q1, q2)

⇒ ModelFailure(q1 , q2)

RequiredPrecision(coord , q1) ∧ ProvidedPrecision(coord , q2)

∧ > (y, x)

⇒ ¬ModelFailure(q1 , q2) (1)

Initially the predicate ModelFailure is set to true. Each
axiom which is satisfied sets it to false. If ModelFailure
equals false, the model specifications are satisfied.

4.3 Abstract Knowledge Definitions
(AESL Definitions)

Assume an application which needs to determine the clos-
est empty meeting room to the CTO of a company so that
it can initiate a tele-conference. It is, therefore, interested
in knowing when the predicate
ClosestEmptyLocation(uid ,CTO , rid ,Meeting Room) is true,
as well as the value of rid . Because such a predicate does
not exist in the system, the application needs to bind this to
a set of facts that the system knows about in a logical way.

The AESL definitions can be seen below (for reasons of
simplicity we assume that the predicate ClosestLocation is
calculated by the system using the predicate Distance). Writ-
ing for brevity UL for H UserInLocation, EL for
H EmptyLocation, CL forH ClosestLocation, CEL for
H ClosestEmptyLocation and D for Distance:

RequiredPrecision(reg, 0)

6 ∃uid UL(uid, role, rid, rattr) ⇒ EL(rid, rattr)

D(v1, uid, role, rid2, rattr2) > D(v2, uid, role, rid1, rattr1)

⇒ CL(uid, role, rid1, rattr1)

CL(uid, rid, role, rattr) ∧ EL(rid, rattr)

⇒ CEL(uid, rid, role, rattr) (2)

5Here, it is assumed either coordinate or containment gran-
ularity for the location system, and a confidence level for
the precision of the coordinate system in 95% of the mea-
surements (see section 5.2).
6If p=’reg’ then q=0 by default.

The goal theorem is the theorem that needs to be checked for
satisfiability. Satisfiability of the goal theorem implies the
satisfiability of the application specification, i.e., the pred-
icate AppSuccess, which is initially true, remains true. In
this case,

∃rid(CEL(uid ,CTO ,rid,Meeting Room))

⇒ AppSuccess (3)

5. PROOF BY RESOLUTION
AND SATISFIABILITY

The contribution of this work is based on using the con-
cept of satisfiability as the foundation for evaluating the con-
formance of application specifications and sensor updates to
the Sentient model.

A satisfiability problem in conjunctive normal form (CNF)
consists of the conjunction of a number of clauses where a
clause is a disjunction of a number of variables or their nega-
tions. Given a set of clauses C1, C2, · · ·Cm on the variables
x1, x2, · · · , xn, the satisfiability problem is to determine if
the formula

C1 ∧ C2 ∧ · · · ∧ Cm

is satisfiable, that is if there is an assignment of values to
the variables so that the above formula evaluates to true.
Clearly, this requires that each Cj evaluates to true.

Automatic theorem provers aim to find a proof for a the-
orem given a set of axioms that are known to be true. A
common method for finding a proof is by resolution. Accord-
ing to proof by resolution, the set of axioms and the goal
theorem are transformed to conjunctive normal form (CNF),
and resolution is applied to the resulting set of clauses. Ex-
istence of proof is equivalent to the satisfiability of the set
of clauses.

5.1 The Theorem Prover SPASS
SPASS [22] is a first-order logic theorem prover with sup-

port for equality, and it was used in a prototype implemen-
tation of a satisfiability service whose API is shown in Fig-
ure 2. SPASS also features a Web interface (Web SPASS)
[20], as well as integrated support for transforming FOL
formulas into a small number of conjunctive normal form
(CNF) clauses [15] before testing for unsatisfiability.

5.2 Example
Let us assume that the above application specification

needs to be tested against a model which knows of locations
in terms of coordinates, with accuracy of 3 cm, in 95% of the
cases, such as the Active BAT. This can be encoded with the
predicate ProvidedPrecision(coord , 9). When tested with
SPASS, the goal theorem is found to be correct.

SPASS V 2.0
SPASS beiseite: Proof found.
Problem: /tmp/webspass-webform_2003-09-09_00:40:50_2975l.txt
SPASS derived 2 clauses, backtracked 0 clauses

and kept 57 clauses.
SPASS allocated 528 KBytes.
SPASS spent 0:00:00.33 on the problem.

0:00:00.04 for the input.
0:00:00.09 for the FLOTTER CNF translation.
0:00:00.02 for inferences.
0:00:00.00 for the backtracking.
0:00:00.04 for the reduction.

The LoadSentientModel() interface is used for loading SAL
facts that denote the specific implementation of each do-

sensor

AddFOLFormula()

AddFOLFormula()

LoadSentientModel()

LoadSentientModel()

model

Figure 2: The Satisfiability Service and its API.

main, in terms of the topology, the number of users and
the specific requirements of the instrumentation technology.
The AddFOLFormula interface checks the satisfiability of a
logical formula that represents an application definition, as
described in this paper. Such application definitions corre-
spond to AESL definitions discussed in [11]. Through the
same interface, a SAL fact is asserted, derived from a sensor
and it is checked for consistency with the FOL model.

6. RELATED WORK
A number of advanced sensing technologies were devel-

oped in the last few years in order to provide context-awareness.
The Xerox Palo Alto Research Center’s Ubiquitous Research
program is one of the seminal projects in context-aware
computing [18]. This project introduced the PARCTAB,
a personal digital assistant (PDA) that communicates via
infrared (IR) data-packets - including its position within a
building - to a network of IR transceivers. The Active Badge
system [21] was the first indoor badge sensing system; it was
developed at Olivetti Research Laboratory. It consists of a
cellular proximity system that uses infrared technology. A
central server collects the data from fixed infrared sensors in
the building, aggregates it, and provides an application pro-
grammable interface for using the data. The Active BAT [7]
is a next-generation location system that uses an ultrasound
time-of-flight trilateration7 technique to provide more accu-
rate physical positioning than the Active Badge. Users and
objects carry Active BAT tags. The system can locate BATs
to within 3 cm of their true position for 95 percent of the
measurements. It can also compute orientation information.
Other location technologies include the Global Positioning
System (GPS), Cricket [16], which is also based on ultra-

7Trilateration is a method of surveying analogous to trian-
gulation, in which each triangle is determined by the mea-
surement of all three sides.

sound, RADAR [1], which is based on IEEE 802.11 Wave-
LAN wireless networking technology and TRIP [13] (Target
Recognition using Image Processing), a vision-based sensor
system that uses a combination of 2-D circular barcode tags
or ringcodes and inexpensive CCD cameras in order to iden-
tify and locate tagged objects in the camera’s field of view.
Last, Ultra Wideband (UWB) [6] is a radio technology that
can also be used for very high-resolution radars and preci-
sion (sub-centimeter) location and tracking systems.

However, this rapid evolution of location technologies and
systems, did not go hand-in-hand with comparable devel-
opment in organising, interpreting and using the produced
data. There is currently only a handful of sensor-driven
data-management platforms. CoolTown[3], the Context-
Toolkit [5], SPIRIT [7], LIME[14] and QoSDREAM [17], are
among the most significant such systems. Although these
systems have made important contributions in this field,
none of these systems have investigated the issue of correct-
ness and satisfiability. SCAFOS [10], is a next-generation,
model-based, middleware platform implemented in the first
author’s PhD dissertation. SCAFOS enables uses to infer
high-level knowledge from low-level sensor-driven concrete
knowledge. The work described in this paper is part of
SCAFOS.

Last, complementary to this work is the work of Scott et
al [19], who use mobile ambients [2] to model user mobility
and to design appropriate spatial policies.

7. CONCLUSIONS AND FURTHER WORK
The work presented here is a model-based satisfiability

checking tool, for context-awareness in sensor-driven sys-
tems such as Sentient Computing. Because of its model-
based nature and its expressive, TFOL based language sup-
port, our tool constitutes a generic solution for distributed,
heterogeneous context-aware environments. Our tool is part
of SCAFOS [10], a framework for extracting high-level in-
ferences from ubiquitous systems, developed in the first au-
thor’s thesis [10]. TFOL specifications of high-level knowl-
edge predicates and their transitions from true to false and
vice-versa, (AESL Definitions) are checked by the Satisfi-
ability Service for correctness and semantic compatibility
with Sentient models was presented in this paper. Three
types of correctness specifications have been discussed: spa-
tial and logical specifications, model specifications and ap-
plication specifications. The Satisfiability Service is based
on the a novel application of a theorem proving system, such
as SPASS, and programming logic has been developed that
ensures that all specifications are satisfied for the overall
application specification to hold.

Further work in this area could provide a model for mo-
bility that limits the data that can be collected for a user
as he moves. Furthermore, it will be very interesting to in-
vestigate the utility of ontologies in heterogeneous settings,
such as the ones described here.

8. ACKNOWLEDGEMENTS
The authors would like to thank Mike Gordon and Andy

Hopper for discussion and guidance. Eleftheria Katsiri would
like to thank the University of Cambridge and Clare College
for partially funding this work.

9. REFERENCES

[1] P. Bahl and V.N. Padmanabhan. RADAR: An
In-Building RF-Based User Location and Tracking
System. In Proceedings of IEEE INFOCOM 2000 (2),
pages 775–784, Tel-Aviv, Israel, Mar. 2000. IEEE
Computer Society Press.

[2] L. Cardelli and A. Gordon. Mobile Ambients. In
FoSSaCS ’98: Proceedings of the 1st International
Conference on Foundations of Software Science and
Computation Structures, pages 140–155, Lisbon,
Portugal, Mar.–Apr. 1998. Springer-Verlag.

[3] D. Caswell and P. Debaty. Creating Web
Representations for Places. In HUC ’00: Proceedings
of the 2nd International Symposium on Handheld and
Ubiquitous Computing, pages 114–126, Bristol, UK,
Sep. 2000. Springer-Verlag.

[4] E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications. ACM
Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[5] A. K. Dey and G. D. Abowd. Providing Architectural
Support for Building Context-Aware Applications.
PhD thesis, Georgia Institute of Technology, 2000.

[6] R. Fleming and C. Kushner. Low-Power, Miniature,
Distributed Position Location and Communication
Devices Using Ultra-Wideband, Non-Sinusoidal
Communication Technology. Technical report, Aether
Wire Location, 1995.

[7] A. Harter, A. Hopper, P. Steggles, A. Ward, and
P. Webster. The Anatomy of a Context-Aware
Application. In MobiCom ’99: Proceedings of the 5th
Annual ACM/IEEE International Conference on
Mobile Computing and Networking, pages 59–68,
Seattle, WA, Aug. 1999. ACM Press.

[8] A. Hopper. The Clifford Paterson Lecture: Sentient
Computing. Philosophical Transactions of the Royal
Society of London, 358(1773):2349–2358, August 1999.

[9] D. Ipiña and E. Katsiri. A Rule-Matching Service for
Simpler Develpment of Reactive Applications. IEEE
Distributed Systems Online, 2(7), 2001.

[10] E. Katsiri. Middleware Support for Modelling
Context-Awareness in Sensor-Driven Systems.
Technical Report UCAM-CL-TR-620, University of
Cambridge, 2005.

[11] E. Katsiri, J. Bacon, and A. Mycroft. An Extended
Publish/Subscribe Protocol for Transparent
Submissions to Distributed Abstract State in
Sensor-Driven Systems Using Abstract Events. In
International Workshop on Distributed Event-Based
Systems (DEBS ’04), pages 68–73, Edinburgh,UK,
2004.

[12] E. Katsiri and A. Mycroft. Knowledge-Representation
and Abstract Reasoning for Sentient Computing. In
Proceedings of 1st Workshop on Challenges and Novel
Applications of Automated Reasoning, in conjunction
with CADE-19, pages 73–82, Miami Beach, FL,
Jul.–Aug. 2003.

[13] D. Lopez de Ipiña. TRIP: A Distributed Vision-Based
Sensor System. Technical report, University of
Cambridge, 1999.

[14] A. L. Murphy, G. P. Picco, and G.-C. Roman.
Developing Mobile Computing Applications with

Lime. In ICSE ’00: Proceedings of the 22nd
International Conference on Software Engineering,
pages 766–769, Limerick, Ireland, June 2002. ACM
Press.

[15] A. Nonnengart, G. Rock, and C. Weidenbach. On
Generating Small Clause Normal Forms. In CADE-15:
Proceedings of the 15th International Conference on
Automated Deduction, pages 397–411, Lindau,
Germany, July 1998. Springer-Verlag.

[16] N. B. Priyantha, A. Chakraborty, and
H. Balakrishnan. The Cricket Location-Support
System. In MobiCom ’00: Proceedings of the 6th
Annual International Conference on Mobile
Computing and Networking, pages 32–43, Boston,
MA, Aug. 2000. ACM Press.

[17] QoSDREAM: Quality of Service for Distributed
REconfigurable Adaptive Multimedia.
http://www-lce.eng.cam.ac.uk/qosdream/.

[18] B. N. Schilit, N. Adams, R. Gold, M. Tso, and R.
Want. The PARCTAB Mobile Computing System.
Technical Report CSL-93-20, Xerox PARC, Oct. 1993.

[19] D. Scott, A. Beresford, and A. Mycroft. Spatial
Security Policies for Mobile Agents in a Sentient
Computing Environment. In Proceedings of the IEEE
4th International Workshop for Policies for
Distributed Systems and Networks, pages 147–157,
Lake Como, Italy, June 2003. IEEE Computer Society
Press.

[20] SPASS. An Automated Theorem Prover for
First-Order Logic with Equality.
http://spass.mpi-sb.mpg.de/index.html.

[21] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The
Active Badge Location System. ACM Transaction on
Information Systems, 10(1):91–102, 1992.

[22] C. Weidenbach. The Theory of SPASS version 2.0.
Max-Planck-Institut fur Informatik.

