
Teleporting in an X Window System Environment

Tristan Richardson,∗ Frazer Bennett,∗ Glenford Mapp,∗ and Andy Hopper∗†

∗ Olivetti Research Laboratory
Old Addenbrooke’s Site
24a Trumpington Street

Cambridge
CB2 1QA

United Kingdom

† University of Cambridge
Computer Laboratory

Pembroke Street
Cambridge
CB2 3QG

United Kingdom

November 1993

Abstract

Teleporting is the ability to redirect a windowing environment to different computer
displays. This paper describes the implementation of a teleporting system developed
at Olivetti Research Laboratory (ORL). We outline two particular features of the
system that make it powerful. First, it operates with existing applications, which
will run without any modification. Second, it incorporates sophisticated techniques
of personnel and equipment location which make it simple to use. Teleporting may
represent a development in attempts to achieve a ubiquitous, personalised computing
environment for all.

1 Introduction

In the near future, communication networks will make it possible to access computing
services from almost anywhere in the world. In addition, the number of computers readily
available within an office is increasing. We would like to allow individuals to make use of
such networked computing facilities as they move from place to place, whilst retaining the
familiarity of their own computing environment.

A windowing environment offers a coherent means of interacting with a computer via a
screen, keyboard and mouse. Typically, a user would run any number of applications
within such a windowing environment. Traditionally, these applications have been bound
to one display, offering output at and accepting input from only one fixed point within the
building (i.e. the display on which they were started). To make use of the abundance of
computing facilities within the office, we would like a means of causing the application’s
output to disappear from one display and re-materialise on another, as we move around
the building.

Moving the windowing environment around in this way is described as teleporting. In
this paper we examine some issues that surround teleporting, and describe a teleporting
system for an X Window System1 environment. We demonstrate that a means of locating

1The X Window System is a trademark of the Massachusetts Institute of Technology

1



people and equipment within an office becomes an important part of a workable teleporting
system.

To begin, we summarise a few basics of the X Window System. Section three examines
previous work which has been done on teleporting and related issues. Section four presents
the teleporting system that has been developed at ORL. In Section five we describe the
location facilities available at ORL and their interaction with the teleporting system. In
conclusion, section six summarises our experiences in the use of teleporting, and outlines
some pointers to further research in this area.

2 The X Window System

This section briefly describes the X Window System [Scheifler92], and in particular those
aspects which affect its use as a platform for teleporting.

2.1 Basic architecture

X is a network-transparent window system using a client / server model. A display
(consisting of a keyboard, mouse and one or more screens) is controlled by an X server,
and applications are clients of this server.

X clients communicate with the server using the X protocol over a reliable byte-stream such
as that provided by TCP/IP [Postel81.1] [Postel81.2]. A computer may have a number of
displays, each with its own X server. The servers will accept connections from X clients
on their own well-known TCP port.

Usually, when an X server starts up, a login window is presented. A user begins an
X session by logging in and starting X clients. The X server offers a root window on
which the windows of the clients may be arranged. A normal X session consists of many
clients, including one special client - the window manager. The window manager takes
responsibility for arranging the windows of other clients on the root window and provides
a mechanism for manipulating these windows.

X servers control what appears on the screen of a display by means of a directly writeable
portion of video memory called a framebuffer. The number of bits used to represent the
value of each pixel is called the depth of the framebuffer. Monochrome displays use a
1 bit deep framebuffer, while full colour displays offer a framebuffer up to 32 bits deep.
A colormap is used to determine the colour and intensity corresponding to each possible
pixel value. Some servers have a single, fixed colormap, while others allow writable col-
ormaps where the appearance of a given pixel value can be changed without writing to
the framebuffer.

2.2 The X protocol

The X protocol consists of several types of messages sent between client and server. A
connection between a client and an X server is established with a connection setup packet
sent by the client, followed by a reply from the server. Once connected, the client sends
requests to the server, to which the server may send a reply. The server also sends the
client events (for example when a key is pressed) and error packets, when appropriate.

2



A client creates and manipulates abstract objects within the X server called resources.
Windows, cursors, fonts, colormaps, graphics contexts and pixmaps are all examples of
resources. The server maintains state about the client in the form of the current values of
the attributes associated with these resources.

Although all X servers use the same protocol, their functional characteristics may be
significantly different. Such differences include framebuffer size and depth, the fonts avail-
able, and the physical characteristics of screens and keyboards. These differences do not
affect simple clients, but more complex ones may adjust their behaviour to suit the exact
characteristics of the server to which they are connected.

2.3 Security

Under normal circumstances, a display and its X server are used by one individual who
may run clients from a variety of host computers (hosts), each connecting to this server.
It is not desirable, in general, to have clients of other users connected to the same server.
With a connection to a server, a client has the ability to kill off other clients, as well as
snoop on other clients’ input and output. It is clearly important to have control over who
has access to the server in this way. There are two common authorisation methods which
are used to control connection to a server by clients.

In the first method, the X server keeps a list of hosts from which it will allow connection.
If a host appears in this list then any user can run clients on that host which will be able
to connect to the server. This scheme has obvious disadvantages - access control is on a
per-host rather than a per-user basis.

The second system introduces per-user authorisation by requiring each client to present
to the X server a capability known as a magic cookie upon connection. Only clients which
present the correct value of this cookie will be allowed to connect. When a user begins an
X session, a copy of the cookie is stored in his/her home directory. From here it can then
be accessed as necessary by any of the user’s X clients. If the home directory is accessible
across many hosts, then the user will be able to run clients on any of these hosts, and
they will all have authorisation to connect to the server. In addition, as long as the file
system is secure, other users will not be able to read the cookie, and their clients will not
have access to the server. When the user ends the X session, a new cookie for the server
is created, and the old one becomes obsolete.

3 Related Work

There are two approaches which can be taken towards providing a mobile windowing envi-
ronment. The first involves developing new applications which upon request can redirect
their input and output between different displays and thus are aware of their own mobility.
This would typically be achieved with the aid of a programmer’s toolkit which implements
the mechanics of the redirection.

The second approach is to take existing applications which know nothing of mobility
and somehow redirect their input and output without their knowledge. In X this can
be achieved by introducing a level of indirection between the client and server (usually
called a proxy server). The proxy server is responsible for redirecting the client’s input

3



and output between different real X servers.

3.1 The toolkit approach

The first approach is that taken by the Cedar XTk toolkit [Jacobi92] and Trestle [Manasse93].
Applications written using these toolkits can be told to move their windows from one dis-
play to another.

The advantage of this approach is that, since the application is responsible for redirecting
its output, it can make intelligent decisions about what to show on different displays. For
example, when the application is redirected to a smaller screen, non-essential parts of its
output may be removed and only shown when explicitly requested by the user.

The major disadvantage of this approach is that there is no method of coping with existing
applications which are not written using the toolkit. Another problem is that this approach
lends itself best to redirecting applications individually. Redirecting a whole windowing
environment such as an X session, with several clients including a window manager, may
be more difficult to achieve.

3.2 The proxy approach

The second approach requires that a proxy server be inserted between the clients and the
X server. To a client, the proxy server looks exactly like a real X server. To the real X
server the proxy server appears to be a normal client (or several clients). Upon request,
the proxy server is able to change its connection from one real X server to another, whilst
maintaining the connection to its clients. The activities of the proxy server are transparent
to both server and client.

The advantages of this approach are that it works for existing applications without any
modification, and that it lends itself naturally to redirecting a windowing environment as
a whole, including the window manager.

The disadvantage is that there is a potential conflict caused by the difference in size,
framebuffer depth, input devices, etc. of particular displays. It may be difficult for a
proxy server to provide a client with a consistent view of the kind of server it is connected
to when the underlying server may change without the client’s knowledge.

A number of projects in the area of Computer Supported Cooperative Work (CSCW)
have involved proxy servers. These proxy servers provide a means of directing a client’s
output to several X servers simultaneously, thus allowing windows to be shared be-
tween displays. Examples of window-sharing proxy servers are shX [Altenhofen90] and
XTV [Abdel-Wahab91]. A C++ library for constructing proxy servers is described in
[Menges93].

3.3 Discussion

If one were designing a windowing system from scratch which allowed applications to move
between displays, undoubtedly the redirection mechanism would use an approach which
allowed the application to be aware of such redirection.

However, given that there is already a large base of existing X applications, and given the

4



natural way in which a proxy server encapsulates a whole windowing environment, the
proxy approach was chosen. Writing a toolkit together with enough applications to make
the system genuinely useful was not considered practical. A proxy server that allowed
unmodified X clients to be used in a teleporting environment represented a more suitable
approach.

The proxy servers mentioned above have a number of deficiences which make them un-
suitable for teleporting. Although these proxy servers can manage connections to several
X servers simultaneously, they do not treat these servers equally. There is always a master
server, the characteristics of which the proxy server adopts. When a client connected to
the proxy server requests information about the proxy server’s characteristics, the infor-
mation provided reflects the characteristics of the master server. This scheme makes the
job of the proxy server fairly simple, but prevents the proxy server from ever removing its
connection to the master server.

In the design of a teleporting proxy server, such an arrangement is unsuitable. We do not
want a teleporting proxy server to be bound to any real X server, but rather it should be
able to move its connections freely from one server to another, or remove them altogether.
To achieve this, a teleporting proxy server must store its own set of display and state
information, providing a generalised, consistent view to its clients.

Another problem with the existing proxy servers examined is that none had considered
how to cope with a window manager and its interaction with other clients. The window
manager presents problems because it is given privileges to influence the windows of other
clients. In the light of these considerations it was decided to write a teleporting proxy
server from scratch.

4 The Teleporting System

The teleporting proxy server developed at ORL provides the mechanism for moving a
windowing environment between displays. We discuss the architecture for the system as
well as describe some of the problems that have been tackled in its implementation.

Our implementation of teleporting is specific to the X Window System, exploiting the
client/server model that X adopts. The notion of teleporting within other windowing
systems (for example Microsoft Windows 2 ) or between different windowing systems is a
perfectly plausible one, although the mechanics of such systems are beyond the scope of
this paper.

4.1 System architecture

An outline of the structure of the teleporting system is shown in Figure 1. At the centre
is the teleporting proxy server, tpproxy. Tpproxy accepts connections from X clients,
appearing to these to be just like a real X server. The proxy server has a root window,
just like a real X server, and the clients of the proxy server may be arranged on this
window. The proxy server can make its root window appear on the root window of a
real X server. Teleporting occurs when the proxy server moves its root window from the
display of one X server to that of another.

2Windows is a registered trademark of The Microsoft Corporation.

5



Controlling

Interface

Magic cookie

for proxy server

X Protocol

tpproxy

X Server

X Protocol

server)
(proxy X

X Client X Client X Client

Magic cookies

for all real

X servers

Figure 1: Teleport System Structure

The proxy server’s root window may occupy the entire root window of the real X server.
Alternatively, if there is already an X session in progress on the real X server, it is possible
for the proxy server’s root window to occupy just a portion of the real X server’s display.
This makes it possible for more than one proxy server to be connected to the same X
server at any time. This is much like the virtual screen program of [Lin92].

The proxy server is controlled by a simple textual interface through which it is possible
to instruct it to move its root window from one X server to another. This is done by
instructing the proxy server to teleport to a named server, or teleport nowhere, when the
root window of the proxy server disappears altogether. However, this interface is still fairly
awkward since it requires users to know the names of servers when they wish to teleport,
as well as offer some means of authenticating themselves.

4.2 Security

Authorisation for connection by a client to the proxy server is achieved using the magic
cookie authorisation technique described earlier. The proxy server has an associated magic
cookie, which it places in the user’s home directory from where X clients will have access
to it. On presenting this cookie to the proxy server, they will be allowed to connect to
it. The proxy server also supports the host list authorisation mechanism but this is not
normally used.

Authorisation of the proxy server by the real X server is more subtle. Within an adminis-
trative domain it is desirable for the proxy server to be able to connect to any real server,

6



whether someone already has an active X session on that server or not. There are two
solutions to this problem. Either we remove the need for authorisation altogether, or we
run the proxy server in some privileged mode which allows it access to all the servers.

The first solution can be implemented using the host list authorisation scheme. Proxy
servers are run on a limited set of hosts and all X servers have this set of hosts in their
host access list. This has the consequence that any user on one of these hosts may run X
clients which will have access to any of the servers. Another disadvantage is that this host
list must be manually maintained. If we wish to add a new host on which proxy servers
can be run, this host must be separately entered into the host list for every server.

The second solution is clearly more desirable. The technique we have implemented is based
on magic cookies and attempts to compromise security as little as possible. Each X server
is configured so that its magic cookie is placed into a well-known file, shared across the
network. This file is accessible only by proxy servers, enabling them to have connection
authorisation to any of the X servers at ORL. Other than the proxy server, no client has
access to this set of magic cookies. This solution is effective within our administrative
domain.

However, this is clearly not an appropriate authorisation technique for implementing tele-
porting on a global scale, as it would require a globally accessible file in which to store
magic cookies. A different authorisation structure must be contemplated to solve this
problem. At ORL, we have experimented with an X server which offers global login, allow-
ing, by means of an appropriate password, a proxy server from any remote site to connect
to it.

4.3 Proxy server design

During normal operation, the proxy server acts as a bidirectional filter, receiving requests
from a client and translating them, before passing them to the real X server. In the reverse
direction, it takes replies, events and error packets from the server, similarly translating
them and passing them on to the client (see Figure 2 - only a single client is shown for
simplicity). In addition, the proxy server records all changes to the state inside the server
relevant to its clients. This is done by keeping track of all the resources that these clients
have created, and any modifications that they have made to them.

When told to teleport to a new display, the proxy server must perform a number of
additional tasks, as shown in Figure 3. It replaces the connection to the current X server,
if there is one, by a connection to the new server. Initially, the new server knows nothing
of the resources which the proxy server’s clients may have created. The proxy server has to
generate requests in order to bring the new server to a state where each client’s resources
have been created and exhibit the correct attributes. Once this has been done, the proxy
server can return to simply filtering requests and replies.

There is a complex web of possible interdependencies between the resources that clients
may create. It is important for the proxy server to re-create these resources and set their
attributes in the correct order. Most of these issues were addressed in XTV in the context
of allowing late-comers to join a window-sharing conference [Chung91]. However, the
problem was simpler for XTV, as it is for all window-sharing proxy servers, because of the
use of a master server which the proxy server uses as its store of some attributes of the
clients’ resources.

7



X Server

Request

Handler

Handler

Reply / event

Translation

Reply / event

Request

Translation

Proxy
server
state

X Client

Proxy Server

X Client

X Client

Figure 2: Proxy server in filter mode

X Server

Request
Generation

Request
Translation

Proxy
server
state

X Client

Proxy Server

X Client

X Client

Figure 3: Proxy server in teleporting mode

8



4.4 The teleport session

The teleport session consists of the proxy server, tpproxy, and its clients. When connected
to a real X server, the proxy server’s root window appears encapsulated as one normal
window on the screen of the real X server. Within this window the user can interact with
clients just like a standard X session. Note that other clients of the real X server to which
the proxy server is connected will be shown as normal.

It is possible to instruct the proxy server to move the output of its clients to an X server
that no-one is currently using. In this case the only existing window on the X server’s
display will be the login window. The proxy server removes this window, taking over the
whole of the screen, and appears just like a normal X session. When the proxy server’s
output is sent away, the login window will reappear. The ability to take over an unused
display proves very important when using location-controlled teleporting.

The time taken to bring up the teleport session on a new server depends on a number of
factors - how many clients there are, the network load, and the speed of the real X server.
We have found that it takes only a couple of seconds for an environment with five or ten
clients to be re-directed to a new server. Note that this is substantially faster than logging
in and starting up the clients from scratch.

4.5 Variation between X servers

Many of the differing characteristics of X servers are not hidden from their clients. This
causes a problem for a proxy server which must hide these differences from its clients.
It must present its clients with a consistent set of characteristics at all times, whilst
mapping these onto the differing characteristics of the real servers. For window-sharing
proxy servers, the characteristics presented to the client are usually those of the master
server. If a client makes use of characteristics which are incompatible with those of any
server other than the master server (for example using a writable colormap), it will not
be possible for the window-sharing proxy server to distribute the client’s output to that
server correctly.

In the case of a teleporting proxy server, there is no master server. Tpproxy has to
invent and present a consistent set of characteristics to all clients. These characteristics
must be chosen to be as general as possible so as to allow them to be mapped onto the
characteristics of a wide range of real X servers. We discuss below the way in which some
specific problems in this area have been tackled.

4.5.1 Framebuffer depth and format

The differences in framebuffer depth between different servers must be tolerated by the
teleporting proxy server. The proxy server appears to its clients to have a framebuffer with
32 bits per pixel (the maximum allowed by the X protocol). The proxy server translates
this framebuffer depth to and from the various depths required by real X servers. This
works well on most colour servers. In the case of a monochrome server, where only
black and white are available, applications which make use of several colours may appear
unsatisfactorily. This problem can usually be avoided by configuring the applications to
make sure that important contrasting colours will map to black and white.

9



Some clients send and receive image data to be loaded to and from the framebuffer directly.
Such data must be translated by the proxy server between the format it has declared to
the client and the particular format required by the real server. This translation process
operates on each pixel individually so it can be somewhat time-consuming. Some clients
which manipulate images directly can be noticeably slower under a proxy server.

Another problem can be caused by clients which use logical functions such as exclusive-or
on pixel values. This is often done to cause particular pixels to change colour temporarily.
Such operations may not translate correctly through the proxy server, and unpredictable
colours may result. In the worst case, the resulting colour would render the object indis-
tinguishable from its background.

4.5.2 Screen size

The proxy server tells all clients that the screen has a fixed size (in pixels) which can be
specified on startup. When teleported to an X server whose screen size is smaller than
this (or when the user shrinks the proxy server’s root window), the window shown on the
screen appears as a viewport offering a partial view onto the proxy server’s root window.
It is possible to move this viewport over the proxy server’s root window using the mouse.
This feature is similar to the facility provided by virtual desk-top window managers such
as tvtwm.

Often the user may want certain windows such as an icon manager and a clock to always
be visible through this viewport. This effect is achieved by marking such windows as sticky
windows. As the viewport is panned over the proxy server’s root window, these windows
remain in fixed positions on the viewport. If the viewport is resized, sticky windows remain
at the same position relative to the corner of the viewport nearest to them.

5 Location-Controlled Teleporting

The mechanisms we have outlined for controlling a teleporting proxy server are sufficient to
make such a system useful, but, as previously mentioned, awkward to use. Integration of
teleporting with the Active Badge Location System3 [Want92.1] [Want92.2] [Harter94] has
introduced a level of automation to this procedure, making teleporting a trivial activity -
far easier, indeed, than using X servers in a conventional manner.

In this section we discuss this integration and profile some of the ways in which teleporting
has benefited from it.

5.1 The Active Badge system

The Active Badge system provides a means of locating individuals within a building by
determining the location of their Active Badges. This small device worn by personnel
transmits a unique infra-red signal every 10 seconds. Each office is equipped with one
or more networked sensors which detect these transmissions. The location of a badge
(and hence its wearer) can thus be determined on the basis of information provided by

3Active Badge is a registered trademark of Ing. C. Olivetti & C., S.p.A.

10



TAG

tpwatchABTeleport
Service tpproxy

SYSTEM

ACTIVE BADGE
TELEPORT SYSTEM

X Clients

Active Badge
Sensor

ACTIVE
BADGE

X Server

INFRA-RED ZONE

Figure 4: Location-controlled teleporting

these sensors. The badge also has two small push-buttons which when pressed cause it
to transmit immediately. The buttons on the badge can be used to convey simple input
information to the system.

A simpler version of the Active Badge with a longer battery life has been developed for
tagging equipment. The Equipment Tag has been widely deployed at ORL including being
used to tag all of the X displays in the building. When an Active Badge is detected in an
office, it is possible to deduce which X displays are also in that office.

The Active Badge System can be used, then, to provide a sophisticated location service to
the teleporting system. The buttons on the badge act as a simple interface to the proxy
server, and a dynamically changing database of equipment provides information about
the location of the X displays within the building. The interaction between the proxy
server and the Active Badge system is outlined in Figure 4. We discuss below some of the
components of this system.

5.2 The abteleport service

The Active Badge system offers abteleport as a service to the teleporting system. This
service provides the necessary information to make it possible to control a proxy server
using an Active Badge. It does this by providing the proxy server with notification when
a user presses a button on his/her badge, as well as when they change location. The
indication of when a user changes location is provided to make it possible for the user’s
teleport session to disappear when the user leaves the room. The information provided by

11



abteleport includes a list of X displays which are at the user’s current location.

5.3 Tpwatch

Tpwatch is the process which controls tpproxy. It does this by interpreting the Active
Badge sightings received from abteleport, using the textual interface to tpproxy to switch
the teleport session between different displays.

Pressing the badge’s middle button initiates a selection procedure in which the user can
choose an X display within the room on which to teleport. With successive presses of the
middle button, X displays in the room will beep and the border of their screens will flash
one after the other. Upon reaching the desired X server, pressing the badge’s side button
will confirm the selection, and teleporting will take place. The proxy server will remove
its output from the display with another press of the middle button, or if the badge is seen
outside of the room. It is clearly possible to impose further heuristics on the choice of
display and the method and order of selection based on user preference and the suitability
of each display.

6 Conclusion

We conclude with a summary of our experiences with the teleporting system at ORL, and
focus some of the ways that this notion of a portable computing environment may impact
future issues in mobility.

6.1 Experiences

A complete teleporting system has been in everyday use at ORL since September 1993.
For some, it has completely replaced the standard computer working environment, and
for others it represents an invaluable complementary tool.

Immediate acceptance came about because of the way that the proxy server eliminated
the traditional login and setup procedure as well as offering the convenience of a truly
mobile desk-top. Nearly all X applications run satisfactorily in a teleport session. Loss
of performance is only apparent in certain clients which manipulate image data directly,
and even then the loss is usually quite acceptable. The only other fundamental problem
is with applications using features which are unavailable on a particular real server - such
as a writable colormap.

Aspects of collaborative work have benefited from the system. It is now much easier to
share computing resources and ideas when one’s desk-top may be called to appear on any
X display in the building.

6.2 Further Work

We expect to improve our teleporting system in several ways. First, we will tackle some of
the subtleties of more complex clients. It should be be possible to cope with clients which
use features like a writable colormap so that they function correctly on real servers which
have such a feature but also behave sensibly on a real server which does not. It should also

12



be possible to improve the performance of clients which manipulate image data directly,
at least on real servers which themselves have writable colormaps.

Second, we are considering how applications which run through the proxy server can be
made aware of where they are being displayed, in a similar way to the toolkits described
earlier. This will hopefully combine the best of both worlds, allowing existing applications
to teleport without modification, but allowing new, more complex applications to take
advantage of knowing where they are being displayed.

Third, we hope to develop a mechanism for expanding the notion of teleporting to other
computing devices. This might involve making it possible to teleport between different
window systems, for example between X and Windows NT. 4

We recognise two key issues in making full use of the wealth and variety of computing
facilities available - authentication and configuration. An authentication mechanism pro-
vides a means of authorising the use of available facilities. Our authentication procedure
has become fully automated by the use of the Active Badge. Configuration becomes nec-
essary when we try to make use of differing pieces of computing equipment. Again, our
configuration mechanisms have become automated by the use of equipment tags and the
dynamic equipment database. The configuration process may be personalised with hints
about a user’s work patterns and preferences.

When the authorisation issue has been addressed, it will be possible to teleport between
different sites around the world. At ORL a teleworking system has been in operation for
three months, offering an ISDN connection between the office and the home. Through
this connection, it is possible to teleport between work and home as easily as around the
office.

6.3 Summary

Teleporting is simple, adaptable, and powerful. Simple, because it presents no change to
a user’s existing working environment whilst offering enhanced functionality which may
be employed without effort. Adaptable, because it will transparently and intelligently
accommodate the differences that exist between different computers. It is powerful since
these additional features offer us a new paradigm for mobile and nomadic computing.
With the integration of networked computing devices, people can be less dependent upon
portable computing devices within the office environment. They will be able to make use
of appropriate equipment that is already to hand.

7 Acknowledgements

We would like to thank Andy Harter and Damian Gilmurray for providing useful discussion
during the development of the teleporting system. We are also grateful to those members
of ORL who have been willing to experiment with the system.

4Windows NT is a registered trademark of The Microsoft Corporation.

13



References

[Abdel-Wahab91] Hussein M Abdel-Wahab and Mark A Feit. XTV: A Framework for
Sharing X Window Clients in Remote Synchronous Collaboration. Pro-
ceedings of IEEE TriComm 91: Communications for Distributed Ap-
plications & Systems, Chapel Hill, North Carolina, April 1991.

[Altenhofen90] Michael P Altenhofen. Using and Porting shX. Digital Equipment Cor-
poration, CEC Karlsruhe, Germany, November 1990

[Chung91] Goopeel Chung, Kevin Jeffay and Hussein M Abdel-Wahab. Accom-
modating late-comers in a distributed system for synchronous collabo-
ration. Technical report TR91-038, Department of Computer Science,
University of North Carolina at Chapel Hill, October 1991.

[Harter94] Andy Harter and Andy Hopper. A Distributed Location System for the
Active Office. IEEE Network, Special Issue on Distributed Systems for
Telecommunications, January 1994.

[Jacobi92] Christian P Jacobi. Migrating Widgets. Proceedings of the 6th Annual
X Technical Conference, January 1992.

[Lin92] Jin-Kun Lin. Virtual Screen: A Framework for Task Management. Pro-
ceedings of the 6th Annual X Technical Conference, January 1992.

[Manasse93] Mark S Manasse. The Trestle Toolkit. Proceedings of the 7th Annual X
Technical Conference, January 1993.

[Menges93] John Menges. The X Engine Library: A C++ Library for Constructing
X Pseudo-servers. Proceedings of the 7th Annual X Technical Confer-
ence, January 1993.

[Postel81.1] Jon Postel. Transmission Control Protocol. RFC 793, September 1981.

[Postel81.2] Jon Postel. Internet Protocol. RFC 791, 1981.

[Scheifler92] Robert W Scheifler and Jim Gettys. X Window System. Digital Press,
Bedford, Massachussetts, 1992.

[Want92.1] Roy Want, Andy Hopper, Veronica Falcao and Jonathan Gibbons. The
Active Badge Location System. ACM Transactions on Information Sys-
tems, January 1992.

[Want92.2] Roy Want and Andy Hopper. Active Badges and Personal Interac-
tive Computing Objects. IEEE Transactions on Consumer Electronics,
February 1992.

14


