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Abstract

In recent years, much work has been done on attempt-
ing to scale multicast data transmission to hundreds or
thousands of receivers. There are, however, many situations
where an application might involve transmission to just ten
or twenty sites. Today’s Grid environments, for example, see
High Energy Physicists carry out multi-gigabyte bulk data
transfers to a handful of destinations.

In this project, we are investigating how TCP-XM, a
modified version of TCP that supports multicast, can be in-
tegrated with Globus to to provide Grid users with a reli-
able multicast transport protocol.

Our approach has been to use Globus XIO – an eX-
tensible Input/Output library for Globus, that provides a
POSIX-like API to swappable I/O implementations. We
have wrapped TCP-XM in XIO to extend Globus to sup-
port multicast transmission.

This paper describes the implementation and operation
of our Globus XIO multicast driver, reviews the TCP-XM
protocol design, and provides some experimental results.

1. Introduction

The Globus Toolkit is an open source software toolkit
primarily developed by the Globus Alliance. It has become
the de-facto standard for middleware used to build Grid ser-
vices.

The toolkit includes software for security, informa-
tion infrastructure, resource management, data manage-
ment, communication, fault detection, and portability. It is
packaged as a set of components that can be used either in-
dependently or together to develop applications.

At present, almost all bulk data transfer is carried out us-
ing the GridFTP protocol [16, 1]. This is based on the con-
ventional FTP protocol, but includes some extra features to
optimize bulk data transfer e.g. parallel data streams. Soft-
ware that makes use of the protocol must support the Grid

Security Infrastructure (GSI) [11] so that user authentica-
tion can take place using Grid certificates.

2. Globus XIO

Globus XIO is an eXtensible Input/Output library for the
Globus Toolkit. It provides a POSIX-like API to swappable
I/O implementations – essentially “I/O plugins” for Globus
[3].

There are two main goals for Globus XIO:

1. Provide a single user API to all Grid I/O protocols.
There are many different APIs for many different pro-
tocols. XIO should abstract this complexity for Grid
developers.

2. Minimize the development time for creating new pro-
tocols. Writing with the XIO framework in mind al-
lows the protocol designer to maximize the time spent
on protocol code.

This approach is similar to the Streams [17] concept
originally introduced in System V Unix. A stream is a full-
duplex connection between a user process and a device. It
consists of one or more connected processing modules, and
is analogous to a Shell pipeline, except that data flows in
both directions. A key advantage of the Streams module ap-
proach is the ability to develop new code within the proto-
col stack without requiring changes to the kernel source.

Figure 1 shows the Globus XIO Architecture. The
User API provides a familiar and convenient POSIX-like
open/close/read/write interface to programmers. The
Framework facilitates the XIO system itself, while the
Driver Stack comprises one or more transform drivers over
a single transport driver.

Transform drivers manipulate data buffers passed to
them via the user API and the XIO framework. Trans-
port drivers are always at the bottom of the stack and are
solely responsible for sending data over the wire.

Example transform driver functionality includes
tasks such as compression, logging and security. Trans-



port drivers typically implement protocols such as TCP or
UDP.

The configuration and order of drivers in the stack can
be selected at runtime.
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Figure 1. Globus XIO Architecture

Globus XIO provides an ideal mechanism for introduc-
ing new protocols to Grid users deploying Globus applica-
tions. We have built a modified version of TCP that sup-
ports multicast, and wrapped it using XIO to create a multi-
cast transport driver for Globus.

3. TCP-XM

TCP-XM is a modified TCP engine that supports multi-
cast, and runs in userspace over UDP. It forms the basis for
our XIO transport driver.

This section provides some background rationale. A
more detailed description of the protocol can be found in
[13].

Today, applications use TCP for reliable unicast trans-
fers. It is a mature and well-understood protocol. By mod-
ifying TCP to deliver data to more than one receiver at a
time, and use multicast when available, an application can
transparently send data reliably to multiple recipients. Us-
ing existing TCP mechanisms, the modified protocol en-
sures that data is delivered reliably. Multicast transmission
is attempted for performance reasons, but fallback to uni-
cast preserves backwards compatibility and reliability guar-
antees, and capitalizes on more than a decade of experience
that TCP implementations enjoy.

Network protocols are typically implemented in the ker-
nels of hosts and network devices. Any proposals that re-
quire modifications to these protocols imply changes to ker-
nel code. This immediately restricts deployment opportuni-
ties. By limiting changes to code that runs in userspace on
end stations, new protocols can be developed and tested on
live networks.

Our approach is to implement a modified multicast TCP
over UDP. User-space applications can freely send and re-

ceive UDP packets, so a small shim layer can be introduced
to encapsulate and decapsulate the TCP-like engine’s pack-
ets into UDP.

While there are performance implications by running in
userspace, the instant deployment potential of a userspace
implementation, coupled with the scalability of multicast,
mean that any such limitations are more than acceptable.

Therefore, it is possible to build a new end-to-end proto-
col, and implement as a userspace library. Grid applications
can avail of this via a Globus XIO driver.

The key advantage of this approach is that any Globus
application can make use of this new protocol by simply
pushing its XIO driver onto the stack, while non-Globus
Grid applications can link against an independent userspace
library.

No changes are required in the network (other than en-
abling IP multicast).

Because the protocol is not tightly coupled to the appli-
cation, should it become adopted for widespread use, a na-
tive implementation can be built in the kernel to boost per-
formance.

Our implementation of TCP-XM has been built as an ex-
tension to the lwIP TCP/IP stack [7].

4. Previous work

Reliable multicast has proved to be a difficult problem
to solve, and over the last decade, much research has been
carried out into how best to approach this problem [10, 14,
15, 5].

Moving TCP out of the kernel into userspace is not a
new idea. A number of projects have done this in the past,
either as a by-product of a larger project, or as an end in it-
self [9, 6, 8, 2, 7].

A number of transform and transport drivers have been
built as part of the Globus XIO system. These include
GSI and HTTP transform drivers, and TCP, UDP, File
and SABUL transport drivers. An XIO implementation of
GridFTP is in development[4].

There are no known existing Globus XIO multicast trans-
port drivers.

5. XIO driver operation

Two important XIO data structures must be considered
when implementing and making use of a transport driver:

1. Attribute – in order to set driver-specific parameters, a
custom attribute structure can be used. For TCP-XM,
the list of n destination addresses is supplied in this
way.

2. Handle – this is returned to the user once the XIO
framework has all the information needed to open a



new connection. It is then used to reference the connec-
tion on all future I/O calls. An lwIP netconn struc-
ture will constitute the handle for multicast.

With these data structures in place, the transport driver is
built by mapping XIO’s POSIX open/close/read/write calls
to the appropriate TCP-XM API calls.

Figure 2 shows how a developer can take advantage of
XIO. First, the XIO stack is initialized. Next, drivers are
pushed onto the stack (in this example, a TCP-XM trans-
port driver). Any necessary driver attributes are created and
with a stack in place, a handle for all subsequent I/O opera-
tions is created. The example finishes with six bytes of data
being written to the network.

// init stack
globus_xio_stack_init(&stk, NULL);

// load drivers onto stack
globus_xio_driver_load("tcpxm", &tdrv);
globus_xio_stack_push_driver(stk,tdrv);

// init attributes
globus_xio_attr_init(&attr);
globus_xio_attr_cntl(attr, tdrv,
GLOBUS_XIO_TCPXM_SET_REMOTE_HOSTS,
hosts, numhosts);

// create handle
globus_xio_handle_create(&handle, stk);

// send data
globus_xio_open(handle, NULL, attr);
globus_xio_write(handle, "hello\n", 6,
1, &nbytes, NULL);
globus_xio_close(handle, NULL);

Figure 2. Sample XIO User Code

6. Internals

This section contains detailed information on the inter-
nals of the XIO driver implementation. Some knowledge of
Globus and XIO development is required.

6.1. Data structures

The globus l server t structure is used for XIO
servers when TCP-XM is receiving data. listen conn
points to the initial netconn structure used on server lis-
ten, while conn points to the post-accept structure.

The globus l attr t structure contains TCP-XM
specific protocol information. If the driver is acting
as a server, the server variable points to the rel-
evant globus l server t structure. It acts as a
bridge for the driver between the creation of a server
object and the assignment of a handle. This is be-
cause the globus l xio tcpxm open() call will
use the value of the attribute server pointer to deter-
mine if the driver is operating as a client or a server.
If the pointer is non-NULL, the user must have called
globus xio server create. Otherwise, the driver is
a client, so a call to netconn connect() will yield a
new handle.

Two client specific variables in globus l attr t are
hosts and numhosts. These are passed into the driver
when acting as a client. hosts is an array of destination
hostnames, while numhosts is the number of hosts. The
GLOBUS XIO TCPXM SET REMOTE HOSTS command is
used to set these attribute values.
globus l attr t also contains srcport and

dstport variables. These are used by both clients and
servers to set the underlying UDP ports used by TCP-XM.
The GLOBUS XIO TCPXM SET UDP PORTS com-
mand is used to set these attribute values.

Finally, the globus l handle t structure is very
simple, containing a single pointer to the netconn struc-
ture that is ultimately used as the user handle for all I/O
calls.

6.2. Function calls

[Note: the glxt prefix is used in this section as to ab-
breviate globus l xio tcpxm.]

The XIO framework uses glxt activate() to ac-
tive the driver and glxt deactivate() to later deacti-
vate it. These are followed respectively by glxt init()
to tell XIO what functions are present in the driver, and later
by glxt destroy() to deallocate the driver.

Handles are created with glxt handle init() and
destroyed with glxt handle destroy().
glxt attr init() initialises attributes; copies

are made with glxt attr copy() and then,
when no longer of use to the driver, destroyed with
glxt attr destroy(). User-specified commands such
as GLXT SET REMOTE HOSTS used to set the destination
hosts and number of host, and GLXT SET UDP PORTS to
set the UDP ports used are made via glxt attr cntl()

If the driver is a server, glxt server init() ini-
tialises the globus l server t structure, starts the
lwIP/TCP-XM threads, and then binds and listens for new
connections. Calling glxt server destroy() cleans
up.



If a client, glxt connect() is used inter-
nally to open a connection and create a new handle.
glxt server accept() is the corresponding inter-
nal function on the server side; it blocks waiting for an
incoming connection.

When a handle has been created, glxt open() will
open a new connection if a client, or block waiting if a
server. Reads are then made via glxt read(); writes are
via glxt write(), and glxt close() is used to clean
up.

7. One-to-many caveats

Two significant caveats with the current XIO approach
have become apparent during the implementation of the
multicast driver.

1. The XIO architecture assumes one-to-one connections.
The XIO User API therefore requires modifications to
better support one-to-many protocols. While minimal
changes are required at the API, there may be more sig-
nificant changes required within the XIO framework.

2. GSI is one-to-one. Most Globus application make use
of GSI to authenticate with peers on connection setup.
However, as it stands, GSI cannot be expected to au-
thenticate n peers. Some form of “GSI-M” that sup-
ports one-to-many authentication is required.

The first of the above caveats is a relatively minor dif-
ficulty. Workarounds are possible due to the flexible nature
of the XIO attribute data structure.

The second caveat, however, is more serious. From a
practical perspective, the multicast transport driver provides
Globus applications with multicast data transfer capability
to multiple destinations. But as it is not possible to push a
one-to-one transform driver on top of a one-to-many trans-
port driver, multicast support currently comes at the expense
of security.

It is worth noting that security for many-to-many is of-
ten a problem because of late joiners and early leavers. But
unlike many multicast protocols, TCP-XM has per-receiver
state in the sender. And for bulk transfer from one to n hosts,
it is assumed that session and transport lifetimes are aligned.
Because of this, while building a “GSI-M” transform driver
may require changes to XIO, it is a far less onerous task
than addressing many-to-many security [12].

8. Experimental results

We have carried out tests on both local and wide area net-
works. For local testing, a selection of departmental work-
stations were used. For wide area testing, shell accounts

on machines at eScience Centres around the UK were ob-
tained. These machines and locations were primarily cho-
sen as they are representative of the target audience for our
work i.e. physicists requiring bulk data transfer to a rela-
tively small number of regional sites.

The UK eScience Centres are connected via the JANET
academic network. Figure 3 illustrates the geographical
connections.

Figure 3. The UK eScience Network

Table 1 lists the hosts used. As the table shows, most of
these sites have functional multicast connectivity. This is, in
large part, due to the frequent use of the multicast-enabled
AccessGrid video conferencing system.

Site Hostname Mcast
Belfast gridmon.cc.qub.ac.uk No
Cambridge mimiru.escience.cam.ac.uk Yes
Cardiff agents-comsc.grid.cf.ac.uk Yes
Daresbury ag-control-2.dl.ac.uk Yes
Glasgow cordelia.nesc.gla.ac.uk No
Imperial mariner.lesc.doc.ic.ac.uk Yes
Manchester vermont.mvc.mcc.ac.uk Yes
Newcastle accessgrid02.ncl.ac.uk Yes
Oxford esci1.oucs.ox.ac.uk Yes
Rutherford gridmon.rl.ac.uk No
Southampton beacon1.net.soton.ac.uk Yes
UCL sonic.cs.ucl.ac.uk Yes

Table 1. UK eScience Testbed Hosts

The specifications, network connectivity and operating
systems used by the hosts varies widely from site to site.
Some hosts are high speed machines connected close to the



WAN backbone. Others are smaller and older departmen-
tal machines with poorer connectivity.

Table 2 shows the average round-trip times and transfer
rates seen between our test system and other sites around
the network. The round-trip times vary in range from ap-
proximately 5 to 21 milliseconds. The transfer rates attain-
able on single TCP connections varied from as little as 1.5
Mb/s to over 50 Mb/s.

While this mixture may not be conducive to optimal
headline results, it allows a truly representative set of proto-
col performance results for a live wide area network.

Site RTT (ms) B/W (Mb/s)
Belfast 18.6 16.0
Cardiff 13.5 22.4
Daresbury 21.3 28.1
Glasgow 16.2 33.9
Imperial 17.1 51.0
Manchester 9.9 34.5
Newcastle 11.8 1.5
Oxford 7.0 4.0
Southampton 8.8 39.3
UCL 4.9 42.1

Table 2. WAN RTTs & Bandwidth

Note that for simplicity, these experiments were carried
out using a standalone test program linked against the TCP-
XM userspace library, and not with a Globus application us-
ing the XIO driver. We would not expect to see any perfor-
mance difference.

All tests compare TCP-XM (in userspace over UDP)
with native kernel-based TCP. Our userspace implementa-
tion of TCP-XM means that it is at an immediate perfor-
mance disadvantage to native TCP. Nevertheless, the results
provide a useful indicator of the protocol’s worth.

Figure 4 shows a comparison of the TCP and TCP-XM
data transfer rate to n hosts on a local departmental LAN.
As would be expected, TCP’s throughput declines as the
host count increases. TCP-XM peaks at a much lower rate,
but then consistently maintains this rate despite the intro-
duction of more destination hosts.

Figure 5 shows the number of bytes being sent on the
wire for the same transfer. Because TCP-XM is multicast-
ing, it naturally scales. TCP is sending more and more data
as the host count increases, so performance inevitably suf-
fers. Note that the TCP-XM data is split in two: unicast
bytes and multicast bytes. The unicast bytes are barely vis-
ible at the bottom of the graph. These account for connec-
tion setup, close, and retransmissions. The majority of the
TCP-XM data transfer is composed of multicast bytes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1  2  3  4  5  6  7  8  9  10

Tr
an

sf
er

 S
pe

ed
 (k

bp
s)

Number of Hosts

TCP
TCP-XM

Figure 4. LAN Speed

         0

  20000000

  40000000

  60000000

  80000000

 100000000

 1  2  3  4  5  6  7  8  9  10

B
yt

es
 T

ra
ns

fe
rr

ed

Number of Hosts

TCP
TCP-XM Unicast
TCP-XM Multicast

Figure 5. LAN Efficiency

Figure 6 shows how TCP and TCP-XM compare when a
transfer to n hosts takes place using a wide area network. As
in the local area, TCP outperforms TCP-XM in raw speed,
but less so than might be expected. The inherent bottlenecks
present across the WAN, and the varied performance speci-
fication of receivers, prevent TCP from achieving the same
strong results that are possible on a LAN. TCP-XM finds its
optimum transfer rate quickly and again manages to main-
tain this rate across the WAN while making use of both uni-
cast and multicast simultaneously.

Figure 7 once again shows TCP’s inefficiencies as the
host count increases. More interestingly, we can see more
clearly how TCP-XM is combining unicast and multicast.
Unlike the LAN test above, not all destinations are multi-
cast capable, so TCP-XM cannot quickly switch to multi-
cast after connection setup. The number of bytes unicast by
TCP-XM is therefore much more significant. There is an
obvious step up in unicast bytes sent each time TCP-XM
encounters a destination host without multicast.
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With some optimisation in our implementation, we
would expect considerable improvements in perfor-
mance to be possible. And, of course, while kernel-based
TCP will always have an advantage over a userspace im-
plementation of TCP-XM encapsulated in UDP, the same
would not be true of a kernel-based TCP-XM implementa-
tion.

In addition, the key benefit from TCP-XM and its multi-
cast capability is not its raw data transfer rate, but its ability
to reliably transfer large amounts of data in a far more effi-
cient manner. In an appropriate application domain, this fea-
ture will outweigh native TCP’s data transfer rate so much
that even a limited userspace implementation can be more
desirable than kernel-based TCP.

9. Conclusion

We have described the work to date on the TCP-XM pro-
tocol, and its implementation as a Globus XIO transport

driver. By implementing this protocol in userspace above
UDP, we are in a position to test the operation of the pro-
tocol in live networks, while delivering a reliable multicast
transport mechanism to the Grid community.
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