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1 Introduction and Motivation

OS virtualization is drastically changing the face of sys-
tem administration for large computer installations such
as commercial datacenters and scientific clusters. A re-
cent report by Gartner predicts that commercial use of
virtualization will triple over the five year period begin-
ning in 2004 [1]. While it is commonly held that OS vir-
tualization improves the utility, manageability, and scal-
ability of large-scale environments, we believe that it is
not sufficient in itself. In this paper we argue that the
next key challenge facing these environments lies in the
dramatically evolving requirements for the management
of persistent storage.

More hosts: Over the past few years, academic labs,
server hosting centers, banks and other related organiza-
tions have moved firmly in the direction of centralizing
compute resources into single facilities. Clusters espe-
cially have gained considerable momentum: academic
installations of between 500 and 1,000 nodes are not un-
common and we are aware of several industrial installa-
tions of between 5,000 and 10,000 machines in opera-
tion today. In these environments, OS virtualization will
result in a multiplication by between 10 and 100 in the
number of active operating system instances; we have
corresponded with several organizations who expect one
million virtual node clusters within the next few years.
Needless to say, each one of these hosts requires a sys-
tem image to boot from.

More availability: Live OS migration [2] represents a
qualitative shift in the management of these systems. Vir-
tual hosts may be moved between physical systems while
they run: this not only allows administrators increased
freedom to service hardware but is also being explored as
a mechanism for load-balancing in cluster environments.
In order for a VM to migrate, its system image must re-
main available, mandating the location and access trans-
parency of persistent storage.

More history: In addition to the benefits of physical sep-
aration provided by migration, several research projects
have explored the benefits available through storing his-
torical versions of VM state and allowing them to “time-
travel”. In these projects, a VM is rewound to a pre-
viously checkpointed state and either resumes execution
there or is replayed using an instruction trace relative to
the checkpoint. Revisiting these past states of a VM’s
execution has been used for intrusion detection [3], con-
figuration debugging [4], and debugging for software de-
velopment [5]. For these approaches to work though, en-
tire versions of a VM’s block devices must be captured
along-side the suspended memory and processor state.
In extremis, it is foreseeable that enough historical state
could be preserved to perform instruction-granularity re-
play through the entire life of a cluster. Such functional-
ity would provide a complete set of forensic information
and be of interest to highly-secure installations.

These three orthogonal issues each imply an increase in
the scale of storage required for clusters of virtual ma-
chines. In this paper we propose Parallax, a distributed
storage system which simultaneously provides different
views on a single underlying distributed block store. Par-
allax tackles the problems of management and scale for
huge numbers of both active and historical system im-
ages in large cluster environments.

The nature of this new environment has led to two key
design decisions that distinguish Parallax from previous
systems. First, we observe that system image manage-
ment is effectively free of write sharing. This allows us
to easily exploit persistent caching for high performance
and to eschew the complexity of a distributed lock man-
ager. Second, we capitalize on the nature of the virtu-
alized environment to run an isolated Parallax server on
each physical host, giving it control of local disk and al-
lowing it to serve the set of local VMs directly. Parallax
also uses block-level copy-on-write techniques to sup-
port both sharing and frequent, lightweight snapshots.



2 Design Space

An executing virtual machine requires a certain amount
of persistent storage to hold a root file system, appli-
cation data, swap files, and so on. Over time, VMs
may wish to snapshot their persistent storage to allow
backup, to deal with subsequent application or human er-
rors, or even to allow “time-travel” as described in Sec-
tion 1. Finally, there may be storage required for VMs
not currently executing but which may be deployed (or
re-deployed) in the future.

We unify all forms of persistent storage in a virtual server
farm under the concept of a virtual disk image (VDI), the
basic unit of management. A VDI represents the current,
writable persistent state of a virtual disk, as well as a
set of immutable snapshots representing the state of the
VM at points in its history. A VDI is accessible from
any physical machine in the cluster, and is stored in a re-
dundant fashion to ensure high availability and durabil-
ity. VDIs have human-readable site-unique names which
facilitate the life-cycle management of virtual machines
(e.g. deployment, snapshotting, suspension, time-travel).

It is quite reasonable to think of managing millions or
even tens of millions of VDIs across a single cluster. In
the following, we first discuss why existing techniques
are inadequate, and then present our design for Parallax
and how it addresses this challenge.

2.1 Yet another distributed storage
system?

Storage systems have been one of the most exhaustively
explored aspects of systems research over the past 30
years. Probably the most relevant state-of-the-art in
cluster-wide image management is that of storage area
networks (SANs). There are several current commer-
cial offerings which tout “storage virtualization”: sys-
tems that aggregate a set of storage servers into a single
block-level substrate, and then allow this substrate to be
divided up into individual volumes for export to network-
attached hosts. Four important factors distinguish Paral-
lax from these systems.

First, SANs are very expensive. Many, especially aca-
demic, environments will desire an alternative to expen-
sive storage products. Furthermore, given that clusters
are typically built from commodity systems, each hous-
ing a commodity disk, it seems reasonable to build a stor-
age system that aggregates these disks. A virtualized en-
vironment makes this even more desirable given that the
system-wide set of disks may be directly controlled us-
ing a set of per-host, isolated virtual machines. The chal-
lenge here is to provide the manageability afforded by

SANs in this new environment.

Next, the scale that we are attempting far exceeds the ca-
pacity of any SAN that we are currently aware of. Fortu-
nately there is an economy to this scale: we expect hosts
to be based on a small set of original template disk im-
ages, and take advantage of the fact that common blocks
may be shared across images. The underlying block store
in our system will overlay common data where efficiency
permits, allowing common blocks to be shared in many
situations.

Third, the creation of new disk images is of critical im-
portance to our scheme. Preserving historical images re-
quires frequent run-time snapshotting of active OS im-
ages. A design goal that we are targeting is to be able
to efficiently snapshot a running OS’s disk and mem-
ory state every thirty seconds. Additionally, we antici-
pate that new virtual machine instances will generally be
composed from existing templates, and so the duplica-
tion of VDIs is also important. A fundamental aspect of
our design is in the management of per-VM block meta-
data, and providing fast primitives to fork and snapshot
an active image.

Finally, we make the observation that write sharing is un-
necessary in VDI management since at any given time,
there is at most a single VM associated with a particu-
lar VDI. We take advantage of this fact to aggressively
write-optimize our system, and achieve very high disk
performance with considerably less complexity than is
seen in systems using a distributed lock manager and
lease-based persistent caching.

2.2 Parallax: Basic design

Our basic approach is to eliminate write-sharing, enable
aggressive client-side persistent caching, seed the system
with a small number of template images, use snapshot
and copy-on-write to allow block-level sharing and use
simple replication for high availability and durability.

The local storage on each physical machine is partitioned
into a persistent cache for locally hosted VMs and a con-
tribution to a pool of distributed storage shared by the
cluster. These two tasks are provided as a service run-
ning in an isolated “Parallax VM” that presents a simple
block device abstraction to each user VM and translates
requests for the virtual blocks that are visible to the VMs
into requests for physical blocks distributed throughout
the cluster.

Each virtual disk is described in metadata as a log of
snapshots, each pointing to the root of a radix tree.
Radix trees allow an effecient copy-on-write representa-
tion of mappings from virtual disk blocks to 64 -or 128-



  w 00
...

w 11

  w 00
...

w 11

  w 00
...

w 11

  w 00
...
w 11

  r 00
...
w 11

  w 00
...

w 11

  r 00
...

w 11

  w 00
...
w 11

  w 00
...
w 11

  w 00
...
w 11

  w 00
...
w 11

  r 00
...
w 11

Previous
Radix Root

Current
Radix Root

VDI Record

Snapshot Log VDI Address Mapping Metadata Data Blocks

last_snapshot
radix_root

capacity
...

parent_log

2005.3.2
23:10:12.59

2005.3.2
23:40:12.23

Read-only Link

Writable Link

Radix mappings:

VDI Snapshot and Copy-on-Write

Figure 1: VDI Snapshot and Copy-on-Write

bit cluster-unique physical block identifiers. All but the
last radix tree in a snapshot log are immutable, and the
mutable tree is only written to by a single VM, allow-
ing common blocks to be shared across images without
requiring distributed mutual exclusion.

This approach makes the creation of both snapshots and
entire new VDIs both very simple and efficient oper-
ations: Figure 1 illustrates how the radix tree block
mapping structure provides snapshots and copy-on-write
block access for VDIs. The figure shows a simplified
radix tree mapping six-bit block addresses with two ad-
dress bits per radix page. The example shows a VDI that
has had a snapshot taken, and successively written to a
block of data at virtual block address 0x111111.

Creating an entirely new VDI from a template image is
similar to taking a snapshot. The key difference is that
a new snapshot log is created, refering bak to the tem-
plate snapshot as a parent. This results effectively in a
fork of the parent snapshot log, allowing a new writeable
radix root. We envision that a the system would initially
be seeded with a set of well-known base images (Fedora
Core, FreeBSD, etc.), and that new VDIs would be cre-
ated based on these to serve individual VMs.

Read-only sharing is achieved for all data derived from a
common ancestor image, but coincidental redundancy—
e.g. where two VMs install the same package on their
respective VDIs and hence create a set of duplicate
blocks—is not exploited nor detected in this scheme.

Writes are generally committed first to the local disk
in the persistent cache and then to the permanent repli-
cas within the cluster. Both data blocks (parts of VDIs)
and index blocks (parts of the radix tree) are persistently
cached, with a subset of both also being cached in mem-
ory. The cache maintains both the virtual and physical
block address for data blocks, hence avoiding the need to
do the radix tree lookup for cache hits.

The persistent cache additionally serves to reduce the
load on distributed storage servers. As mentioned above,
a major concern in the deployment of VMs in large clus-
ters is the greatly increased load on storage servers. The
local cache serves to aggregate common read requests
across the set of local VMs, lessening the load on stor-
age servers. Write-back is performed periodically, and
is also explicitly triggered by the creation of a snapshot.
The frequency with which writes are pushed out from lo-
cal cache to distributed storage allows administrators to
trade-off data resilience and availability against load on
storage servers.

Physical blocks are striped across a replication group
composed of storage volumes on other hosts. Each stor-
age server explicitly manages block allocation for its vol-
umes. A block write to a replication group receives the
allocated block ids from each server in the group and
combines these ids to build the global block id for the
replicated block.

2.3 Parallax: Improved sharing

Block-level snapshots with copy-on-write semantics al-
low extensive sharing between VMs with a common an-
cestor, and between historical snapshots within each in-
dividual VDI. Additional sharing of redundant content is
possible if blocks are indexed by content.

The basic design can be extended to collapse redundant
blocks without changing the fundamental structure of
the block store and without affecting read performance
and semantics. As described, the basic system uses a
radix tree to map the per-VDI block numbers to universal
block IDs. With the introduction of a distributed service
mapping content hashes to universal block IDs, an extra
step in the block write process can consolidate duplicate
blocks.

Writes are made initially to the persistent cache and a
content hash is computed asynchronously. This keeps
potentially slow operations like hashing and collision de-
tection out of the critical performance path. The hash is
computed and the hash-to-block map is consulted to de-
termine if the block is a duplicate. If it is, then the ex-
isting block ID is stored in the radix tree; otherwise the
block is written as in the basic design and the hash-to-
block map is updated.

The level of indirection for combining duplicate content
allows it to be a straightforward add-on to the base ar-
chitecture with the same distributed block storage pool.
The look-aside cache hides most of the performance im-
pact for writes, and nothing changes for reads. Poten-
tial storage savings are obtained at the cost of computing



content hashes and the storage and network overhead of
maintaining the hash-to-block map.

2.4 The Parallax VM

An additional unique aspect of the Parallax design is that
the service is hosted in an isolated VM, with direct con-
trol of local disks. Unlike historical approaches to dis-
tributed storage, and distributed services in general, this
model allows centralized administration of the cluster-
wide service down to the device level, and also intro-
duces fate sharing between the client and server.

As a cluster-wide storage service, Parallax is a dis-
tributed conglomeration of a set of per-host storage
servers, each running in an isolated VM. These VMs are
given direct control of the physical disks used by Par-
allax: they run the physical device drivers, and export
a generic block interface to local VMs accessing VDIs.
This approach allows the administration of storage ser-
vice within the cluster to be isolated from other adminis-
trative tasks. Administrators are free to log in to storage
VMs, potentially upgrading software (even OS and de-
vice driver binaries) without requiring specific access to
client VMs or to VMM management functions.

We have previously demonstrated that hosting device
drivers in isolated VMs improves robustness and the abil-
ity to very quickly restart crashed driver VMs [6]. The
approach described here takes this model one step fur-
ther, incorporating the storage service and using the VM
container to provide both performance and administra-
tive isolation. Moreover, hosting the Parallax server on
the same physical host as the clients provides a degree of
fate sharing between the two. The server has the benefit
of not needing to consider failures such as network par-
titions between it and its clients, allowing simpler fault
tolerance. While the distributed storage system must still
address such issues across nodes, this fate sharing pro-
vides a clean architectural interface between client VMs
and the Parallax server.

We feel that this aspect of the Parallax design is a
good demonstration of how VMM-based systems may
be structured to avoid liability inversion [7]. Parallax is
providing a critical system service for a set of VMs, but
is not a function of the VMM itself. If the Parallax server
crashes completely, only the client VMs will be affected:
the remainder of the system including the VMM and the
non-dependent VM instances will be completely unaf-
fected. Further resiliency could potentially be achieved
by dividing the Parallax server into separate instances, in
situations where a very high degree of isolation between
VMs is desired.
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Figure 2: The Parallax server VM

2.5 Discussion

Parallax comprises a flexible and lightweight snapshot
mechanism and a simple (and largely orthogonal) dis-
tributed block store for replication and enhanced avail-
ability. Provided that a sufficiently rich set of base im-
ages is provided, most of the sharing between different
VMs and different generations of a single VM will be
captured through common ancestry.

Duplicate content within a single image and duplicate
blocks created independently in different images can
be exploited by the use of content hashing. However
this adds an additional mapping structure and associated
computation and storage overhead: it remains to be seen
whether the benefits outweigh the costs.

3 Prototype Implementation

To elucidate the design of our system, we have devel-
oped a prototype implementation over the past several
months. This is not a finished artefact, but serves as a
proof of concept which uses the same data paths from
VM to physical disk, and allows experimentation with
the various design options and techniques that we have
developed.

Our prototype extends the block tap [8], which is a block
interpositioning mechanism for the Xen VMM [9]. The
block tap handles disk requests for a collection of vir-
tual machines by forwarding them to a user-space library
in an isolated VM. The tap maintains good performance
while allowing us to easily modify the Parallax code.

The Parallax server is implemented as a user-space appli-
cation in an isolated VM. In this configuration it is able to
aggregate block requests from VMs on the local physical
host and concurrently serve requests from remote hosts.
The VM receives direct physical access to local storage,



and uses a GNBD1 client library to access remote blocks.

The structure of our implementation is shown in Fig-
ure 2. The server currently implements a simple copy-
on-write scheme, allowing remote GNBD images to be
accessed by local VMs with writes stored on the local
disk. While this implementation is considerably simpler
than the full Parallax design, it serves to validate our ap-
proach and allow us to obtain baseline performance fig-
ures.

As shown in the figure, our prototype contains two points
at which blockIDs are remapped. First, virtual IDs vis-
ible to VMs are mapped to a logical ID used by the
cluster-wide block store. Second, these logical IDs are
mapped to the physical hosts, disks, and blocks where
the data is stored. In our prototype, this second map-
ping is one-to-one: VMs see the actual block addresses
of a remote GNBD-mounted image. The first mapping,
however, reflects the replacement of remote blocks in the
VM’s image with locally-stored copy-on-write blocks.

The intention of our prototype has been to guide design
decisions and establish the feasibility of our approach for
constructing a real system. To this end, we have mea-
sured the current performance, achieving remote read
throughputs of 15MB/s to GNBD-connected images and
50MB/s to the local disk. Our implementation currently
does not benefit from persistent caching, replication or
parallel I/O, and uses a heavyweight mechanism to store
the virtual to logical block mappings in lieu of radix
trees. We are working on integrating these mechanisms
into our prototype and anticipate dramatic performance
improvements.

A further avenue of investigation involves the evaluation
of the performance and functionality of our snapshotting
and time-travel capabilities. As our design caters specif-
ically to the frequent snapshotting of VDIs, we expect to
achieve very good performance.

4 Related & Future Work

Distributed file systems have existed for over 30 years,
and have been in common use since the late 80’s. Most
successful systems (e.g., AFS [10], NFS [11]) have in
practice been ‘networked file systems’ in which one or
a few servers export disjoint and non-replicated file sys-
tems to a number of clients. Many researchers have also
proposed fully distributed file systems (e.g. Echo [12],
xFS [13] and Farsite [14] to name but a few).

Our design is motivated by previous work on distributed
block-level storage, most notably Petal [15] and the Fed-
erated Array of Bricks (FAB) [16]. FAB has recently

1http://sources.redhat.com/cluster/gnbd

also explored approaches to image snapshots [17]. Our
assumption of single-writer access allows us to eschew
much of the complexity present in these projects: we
hope that this will allow us considerably more room to
scale both in terms of number of images and frequency
of snapshots.

Although we are not aware of any work directly address-
ing the same problem as Parallax, there are certainly sim-
ilarities with other research. Frisbee [18] has explored
the transport issues associated with efficiently deploy-
ing a template image onto the disks of a large number of
clustered hosts. The notion of using an immutable store
with copy-on-write stems back at least to Plan 9 [19], and
similar techniques have been used by Elephant [20] and
Venti [21]. Our current design is most similar to those
from Bell Labs in that we have not considered deletion.
However we hope to investigate ways in which deletion
can safely be done, both to save space and to aid incre-
mental addition and removal of storage devices.

In the future we hope to investigate how to most effi-
ciently manage live migration [2] in the presence of ag-
gressive persistent caching. A simple design would sim-
ply require write-back of all cached bocks for a particular
VDI before a migrated VM can begin execution, but this
could adversely impact VM downtime.

Instead we plan to keep LRU statistics for cached blocks
on a per VM basis, allowing us to proactively transfer
“hot” blocks to the destination node during live migra-
tion. Liaising with the guest operating system may also
be of value, since certain blocks will already be con-
tained within its private buffer cache. A further inter-
esting question is whether we can choose the destination
for migration based on the similarity of blocks cached
at both locations; probabilistic similarity metrics such as
bloom filters or sketches may make sense in this context.

Finally, we also intend to produce complete implementa-
tions of both the basic design of Parallax and the content-
mapped variant, and perform extensive comparisons in
terms of performance, availability guarantees, and shar-
ing characteristics.

5 Conclusion

Virtual server farms and their variants are emerging as
the architecture of choice for utility computing, and
present a rather different set of distributed storage chal-
lenges. We believe Parallax represents a first step at ad-
dressing these requirements, and hope to see it evolve
into the solution for these environments.
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