
XenoSearch: Distributed Resource Discovery
in the XenoServer Open Platform

David Spence and Tim Harris

University of Cambridge Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 0FD

E-mail:
�
firstname.lastname � @cl.cam.ac.uk

Abstract

We describe the XenoSearch system for performing ex-
pressive resource discovery searches in a distributed envi-
ronment. We represent server meta-data, such as their loca-
tions and facilities, as points in a multi-dimensional space
and then express queries as predicates over these points.
Each XenoSearch node holds a portion of this space and the
key goal of XenoSearch is to direct queries to those nodes
containing the meta-data of matching XenoServers. Com-
munication between these XenoSearch nodes is based on the
self-organizing Pastry peer-to-peer routing substrate. Our
initial performance evaluation on a wide-area prototype
shows that queries are only a factor of 3-5 times longer than
basic Pastry routing, while supporting multi-dimensional
searches of arbitrary shapes.

1 Introduction

In the XenoServer project [9] we are building a public
infrastructure for wide-area distributed computing, creat-
ing a world in which XenoServer execution platforms are
scattered across the globe and available for any member
of the public. This allows users to run programs at points
throughout the network to reduce communication latency,
avoid network bottlenecks and minimize long-haul network
charges. XenoServers can be used to deploy large-scale ex-
perimental services, and to provide a network presence for
transiently-connected mobile devices.

This naturally prompts the question “How does a client
find a suitable XenoServer to use”? We anticipate a wide
range of job sizes and requirements, not just the large-scale
parallel and scientific computation that typifies Grid sys-
tems [1, 7, 8]. Furthermore, we view network location as
the key driver in selecting XenoServers; perhaps to find one
near a particular client, perhaps near a remote machine with
which the deployed task will interact, or perhaps within the

network to minimize the maximum round trip time between
users of a collaborative tool or immersive game. Different
jobs will have different needs.

As a consequence of this diversity, the resource discov-
ery system that we are building has a number of notable
requirements:

1. Server selection is not just case of “find the server clos-
est to me”, but often “find the server best placed for this
arbitrary [set of] host[s]”. These hosts may not them-
selves be part of the XenoServer platform; they may
well be uncooperative, perhaps being opponents in a
multi-player game.

2. As well as network locations, other criteria need to
be addressed. These include discrete properties (“the
server must provide a Linux execution environment”)
and predicates on continuous ones (“the server must
have a bandwidth available greater than 300Kb/s”).
Societal factors such as operating jurisdiction may also
feature.

3. Queries will be complex and span a combination
of these different criteria, for instance searching for
servers that closely match a series of terms combined
using boolean operations.

4. The clients initiating queries will be heterogeneous
and quite frequently resource-constrained (e.g. on
slow connections).

In this paper we introduce the XenoSearch system that
we have developed to manage resource discovery queries of
this kind. In Section 2 we provide a high-level overview
of the system, the key aspects of its architecture and how
they relate to the XenoServer platform. Section 3 then in-
troduces the design of XenoSearch and Section 4 describes
our current implementation. We evaluate its performance in
Section 5, running in a wide-area setting over the PlanetLab
testbed [22]. Finally, Section 6 discusses related work and
Section 7 concludes.

XenoSearch

Query compilation

Distributed

search
storage and

Facility compilation

Client
3

XenoServer

2

5

6

4

1

Figure 1. XenoSearch overview.

2 Architectural overview

Figure 1 provides an overview of XenoSearch. In out-
line, the system operates at two different levels; a high-level
which is specific to the XenoServer platform and a low-level
distributed search algorithm which can be re-targeted for
a variety of settings. Use of XenoSearch proceeds in six
steps, as indicated on the figure:

1. XenoServers periodically deposit high-level informa-
tion about the facilities that they have and the current
load on their resources.

2. These are distilled to the low-level formats used by the
distributed search algorithm.

3. Clients issue high-level queries specifying their job re-
quirements.

4. These are also mapped to low-level queries and issued
to the distributed search algorithm, ensuring that the
resulting query is at least as inclusive as its high-level
counterpart.

5. The resulting set of possible matching XenoServers is
returned to the client.

6. The client directly queries matching servers to confirm
their current status and suitability.

The focus in this paper is on the general-purpose low-
level distributed search algorithm. The companion plat-
form architecture paper introduces the broader aspects of
resource discovery and relates them to the XenoServer plat-
form as a whole [14]. In outline, however, these high-
level formats take the form of XML fragments such as that
sketched in Figure 2. This gives information in a form
which is meaningful to XenoServer operators and to clients
defining job requirements.

<?xmlversion="1.0" encoding="UTF-8"?>
<EnvironmentalRequirements>

<Basic>
<EnvName>MyEnvironment</EnvName>
<EnvType>Linux</EnvType>
<EnvKernel>2.4.18</EnvKernel>
...

</Basic>
<Network>

<EnvIPAddresses>1</EnvIPAddresses>
...

</Network>
<QoS>

<CPUmsps>150</CPUmsps>
<NetMbps>5</NetMbps>
....

</QoS>
<Position>

<NearHost>www.cam.ac.uk</NearHost>
<NearOneOf>

<Host>www.bbc.com</Host>
<Host>www.cnn.com</Host>

</NearOneOf>
</Position>

</EnvironmentalRequirements>

Figure 2. Example XML Query

The low-level format we use for describing job require-
ments and server facilities is based on a mapping to a multi-
dimensional space. Different dimensions of this space can
correspond to different resources (such as the amount of
free CPU time on a machine), to different location metrics
(such as a strictly-geographic location, or one based on net-
work measurements) and also to different discrete proper-
ties present in some servers and absent in others.

Clusters of XenoServers at the same site can be thought
of as a single multi-processor machine within XenoSearch.
To aggregate the site’s XenoServers to a single resource
some values will be considered identical across the clus-
ter; like topological location, while others will be repre-
sented by the total over the cluster; like CPU time available.
Each XenoServer, or cluster of XenoServers, can therefore
be considered as a point within this space, moving through
it as the server’s characteristics change.

Similarly, a query can be considered as a predicate over
these points, selecting those which provide appropriate fa-
cilities for the task that is being deployed. Simple queries
may take the form of � -nearest-neighbour searches around
some “optimal” position. Some server characteristics are
variable, such as available CPU time, and so the data held
by XenoSearch may not be up-to-date. This is why clients
are ultimately responsible for selecting a server from the list
returned by XenoSearch (Step 5 on Figure 1.

Simple nearest-neighbour searches can attach different
weights to the various dimensions in order to reflect the im-

portance of the quantities represented. We can then use a
standard ��� -norm. Other queries may be more complex,
for instance to find the servers in a non-connected volume.
In this paper we consider queries that can be expressed as
range-based searches on a number of different dimensions,
combined through boolean AND and OR operators.

2.1 Deployment in the XenoServer Open Platform

We distinguish between a number of entities involved in
the XenoServer platform. XenoServers are responsible for
running tasks or hosting mobile code on behalf of clients,
and are operated by a range of potentially competing organi-
sations. Their role is the same as merchants in a commercial
setting. Control-plane aspects of the system are managed by
one or more XenoCorps. These are the analogue of credit
card companies such as VISA and MasterCard – existing
as trusted third parties between merchants and clients and
providing ‘value added’ services to compete for business.

XenoSearch allows us to explore a range of different
configurations, ranging from a centralised system, oper-
ating as a single node, to a configuration in which each
registered XenoServer runs a XenoSearch node. In prac-
tice we envisage an intermediate position with a number
of XenoSearch nodes distributed geographically. As with
other services that form part of the XenoServer platform,
we expect that these search nodes may well be hosted on
XenoServers, using them as a convenient deployment plat-
form and as a mechanism for controlling and accounting
resource usage.

As we shall see in Section 3, a property of XenoSearch
is that the software infrastructure necessary to support each
different search dimension can be operated separately and
partitioned between one or more XenoSearch nodes. This
has a number of consequences. Firstly, it allows the Xeno-
Corps which act as trusted-third-parties between clients
and servers to provide certain important search dimensions
themselves. For instance, these could include basic loca-
tion properties which server operators might not be trusted
to provide accurately. Furthermore, it allows indepen-
dent organisations to provide their own additional search-
dimensions and to populate these with information about
servers. A wide variety of models are possible, including
subscription services in which servers pay to be included
and also “consumer guide” style services in which one or-
ganisation makes available its own subjective recommenda-
tions for others to consult or to ignore. The XML query
language allows such “ad-hoc” dimensions to be incorpo-
rated alongside existing ones.

3 Distributed multi-dimensional searching

The key facility provided by XenoSearch is to allow
such queries to be distributed between a number of nodes.
These XenoSearch nodes form a self-organising system be-
tween which information about server facilities is parti-
tioned. Queries can then be directed to only those nodes
at which solutions may be found. If parts of the state-space
are replicated by several XenoSearch nodes, queries can be
directed to the most appropriate replica. Within each node
we can exploit existing algorithms for multi-dimensional
searching [4].

Before turning to the design and implementation of our
distributed search algorithm, we will define the interface
that it exports:

Distributed search interface
void addpoint(handle s, point p)�
handle � search(query q)

An addpoint operation associates handle s with a
point p in the search space. For instance, handles could
identify individual XenoServers. Each handle can only be
associated with a single point and so, as a server’s status
changes, it will perform a succession of addpoint opera-
tions. Step 2 on Figure 1 is an invocation of addpoint.

A search operation returns a set of handles that
might match a query q constructed from simple queries by
boolean AND and OR operators. A simple query is a range-
based predicate on one of the dimensions of the space in
which points are defined. Step 4 on Figure 1 is an invoca-
tion of search. Note that we expect clients of search
to make their own investigations of the results that they re-
ceive. In the case of XenoSearch this is necessary because a
server’s resource availability may have changed and so up-
to-date information is needed before deploying a job on the
server. A key goal in designing a good implementation is
to improve the precision with which searches operate and
to develop an acceptable balance between this, implemen-
tation complexity, and run-time costs.

After introducing the routing substrate over which we
build our work (Section 3.1), our design follows two stages.
Firstly, in Section 3.2 we construct a mechanism for per-
forming range-based searches within a single dimension.
Secondly, in Section 3.3 we perform searches separately
for each of the simple queries from which a search is con-
structed and then combine the results.

3.1 Routing substrate

Our design is built over the API provided by the Pas-
try [26] routing substrate, developed at Microsoft Research
and Rice University. In outline, this provides a simple
mechanism concerned with routing messages between a

self-organising collection of nodes. In Pastry, each node is
assigned a unique 128-bit nodeId. This ID space is usu-
ally depicted as a ring with the minimal and maximal values
adjacent. Aside from initialisation, there is a single invoca-
tion that may be made on the Pastry module:

Pastry routing substrate
void route(msg m, key k)

This requests that the message m be sent to the Pastry
node whose ID is closest to the 128-bit key k. Normally,
nodeIds are selected uniformly at random, giving proba-
bilistic load-balancing assuming that route messages are
similarly distributed. An application built over Pastry re-
ceives call-backs in a number of situations:

Pastry call-backs
void deliver(msg m, key k)
key forward(msg m, key k, key next)
void leafSetChanged(leaf set l)

The first of these, deliver, is invoked to deliver m on
the node whose ID is closest to k. The second, forward, is
invoked at each intermediate node through which m passes,
providing an opportunity to modify m or to return an alter-
native destination key. Finally, leafSetChanged is in-
voked when there is a change to the node’s leaf-set, which
is the set of closest Pastry nodes in the key space.

Applications are built over Pastry by introducing an
application-specific interpretation of the key space. For in-
stance, a simple distributed hashtable (DHT) could gener-
ate keys from the hashed items, with each node holding the
portion of the hashtable whose keys are closest to its own
nodeId. Alternatively, the Scribe [27] application-layer
multicast system uses keys to identify multicast groups,
with the owning Pastry node holding their membership.

Pastry routes messages by splitting the destination key
into groups of b bits and sending it, hop by hop, to a
node which has at least one more matching group at the
start of its nodeId. For instance, as shown in Figure 3,
a message sent from 23333333 to 02000000 could first go
to 033321212 (matching the first group), then 02321221
(matching the first two) and so on. It is easy to see that
the performance is going to be bounded by �
	��������� : this is
proved in [26] and experimentally it performs slightly bet-
ter. If the node is near the final destination (by NodeId) it
will be contained within the leaf-set and delivered directly.

Although Pastry therefore provides a message-based
API, we shall proceed in this section to describe the op-
eration of XenoSearch in terms of a procedural interface,
before looking at how this is implemented in terms of mes-
sages in Section 4.

03321212

23333333

02000000

02032121

02321221

Figure 3. Example Pastry ring routing to
02000000 from 23333333 (with 16-bit nodeId
expressed as eight 2-bit values)

3.2 Range-based searching

The first part of our design is to build an application over
Pastry which supports operations to return sets of servers
whose keys lie within some range in a single dimension.
Servers themselves are identified by globally unique han-
dles.

Range-based searches
void addpoint 1d(handle s, key k)
handle summary search 1d(key k1, key k2)

A handle summary represents a set of possible re-
sults from a search request. It should include all of the
matching handles but may include additional ones, either
because of approximations in the implementation of the ini-
tial search, or because of approximations made in the rep-
resentation of the summary.

A separate Pastry ring operates for each dimension with
XenoSearch nodes registering separately in each ring. A
XenoServer invokes addpoint 1d for each dimension
deriving a key from its co-ordinate in that dimension – while
the key is therefore likely to be different in each ring, the
handle that it uses to identify itself remains common.

In each dimension, information is conceptually held in
the form of a tree with the leaves being the individual
XenoServers and interior nodes being aggregation points
(AP) which summarise the membership of ranges of nodes
below them. These APs are themselves identified by loca-
tions in the key space which can be determined algorith-
mically by forming keys with successively longer suffices
of the form ����������� . For instance, the AP directly above
10233102 is 10233101, then 10233110, then 10233100 and
so on:

Lo
wer

 le
ve

ls

Hig
he

r l
ev

el
s

Aggregation point=

02032121

Figure 4. How aggregation points cover Pas-
try rings. The outer edge represents the key
space, inner arcs regions owned by each AP.
Darker arcs show how 02032121 is covered.

Aggregation Point Range of Nodes
10233101 10233100...10233103
10233110 10233100...10233133
10233100 10233000...10233333
10231000 10230000...10233333
10210000 10200000...10233333
10100000 10000000...10333333
11000000 10000000...13333333
10000000 00000000...33333333

The XenoSearch node closest in the key space to an AP
is responsible for managing this information and for dealing
with messages it receives as a consequence This locality is
provided by the Pastry substrate as its basic routing is to the
node closest to the destination key. Each AP can directly
answer search 1d queries corresponding to the full key
range that it covers. This is shown graphically in Figure 4.

3.3 Multi-dimensional searching

Multi-dimensional searching is performed by making a
series of search 1d invocations for each of the separate
dimensions involved in the query and forming their inter-
section. Of course, in addition to simple volume-based
queries, we can in fact support more general queries based
on union and intersection. In either case, the node per-
forming the search is left with a single handle summary
which indicates the servers which may match the original
query. Queries can be initiated by any node in the overlay.

The final step is to translate this summary back to an
explicit set of handles to be returned to the client, using a

single additional operation:

Multi-dimensional search�
handle � expand summary(key k,

handle summary s)

An invocation of expand summary routed to the key
k of an ‘below’ k which are contained in the summary set
s. Effectively it proceeds as an application-layer multicast
down the aggregation point tree, ending in those nodes. The
multicast is filtered at all levels to include only those that
may occur in the handle summary.

4 Implementation

We now turn to a number of aspects of how the opera-
tions defined in Section 3 can be implemented over Sun’s
Java SDK version 1.4.1 and FreePastry1. In Section 4.1 we
describe the implementation and management of the han-
dle summary sets returned by range searches. In Sec-
tion 4.2 we describe the information held at aggregation
points and how this is updated as XenoSearch nodes join
and leave. Section 4.3 describes how these are used to im-
plement single-dimensional range searches. Finally Sec-
tion 4.4 explains how query summaries are translated to a
set of handles.

4.1 Summary sets

We summarise sets of handles by Bloom filters [3]. Each
filter provides a constant-space approximate representation
of the contents of a set. Errors between the actual set and
the Bloom filter representation are always of the form of
false positives to inclusion tests. Concretely, a Bloom fil-
ter is a bit vector and items are inserted by setting the bits
corresponding to a number of independent hash functions.
Set-wise operations can be performed directly by AND (for
intersection) and OR (for union) between these vectors. In-
clusion tests are performed by checking that all of the bits
given by the hash functions are set – therefore, as the num-
ber of items in the set increases, so does the likelihood of
false positives. Figure 5 illustrates this scheme.

4.2 Aggregation Point Structure

The XenoSearch node owning each aggregation point
(AP) holds a summary set for each of its children, along
with the approximate counts of the membership of those
sets and a timestamp indicating when this information was
last refreshed by the children. These children may either be
lower APs, or may be individual entries that have been de-
fined in the range that the AP covers. Each AP constructs its

1http://www.cs.rice.edu/CS/Systems/Pastry/

1 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

Hash:

1 0 1 1 0 0 1 1 1

0 0 1 0 0 0 1 0 1

(OR)

(AND)
intersection

0x5451256122

Hash:

0x457512154215

union

Figure 5. Bloom filters constructed for two
singleton sets and the operations of union
and intersection.

own filter from these components and reconstructs it when-
ever any of them changes.

The information held at APs is treated as soft-state in
that XenoServers continue to periodically invoke add-
point 1d to reflect their current status and nodes within
the tree periodically update the summaries held at their
parents. This balances the load across APs, so long as
nodes within the tree have a similar number of children
to the number of XenoServers managed by leaf APs. This
soft-state system can be used because we assume that fur-
ther checking of the returned results will be performed,
XenoSearch returns an approximate result set and so the AP
structure does not need to always totally up to date.

This uses a combination of Pastry messages, which can
be directed toward specific key values in each ring, and a
custom UDP-based protocol to avoid the overhead of a Pas-
try message send when the XenoSearch node hosting an AP
has not changed. The Pastry leafSetChanged call-back
is used to trigger a change from one UDP endpoint to an-
other, causing the previous owner of the AP to inform its
children of the new owner’s location.

4.3 Implementing search 1d

The search 1d operation is implemented by sending
Pastry messages to the minimal number of APs which cover
the requested range. For instance, the heavy lines in Fig-
ure 6 indicate the three indicated section of the key space.
Each AP is contacted in parallel using asynchronous I/O
operations to collect the results.

4.4 Implementing expand summary

The expand summary operation is implemented by
introducing a FilteredMulticastmessage which car-

Figure 6. Aggregation points queried to return
handle summaries for the indicated region of
the key space.

ries the original query to the nodes present in the summary
set of results. It is sent directly to each of the IP addresses
(by IP unicast) of the APs which might contain results,
again as indicated in Figure 6. These APs then forward
this on to their children (using the Pastry ring, within which
their children will tend to be members of the leaf-set, if not
on the same node). The multicast can be pruned if an AP
has no children which could match the summary set.

However, note that it does not have to be implemented in
this top-down manner: APs can be contacted directly with-
out needing to go through their parents. This may be useful
to avoid placing a high load on APs towards the top of the
tree if searches cover very large regions of the key space.
The disadvantage is that it requires more network round-
trips to the (possibly poorly-connected) search client.

5 Results

In this section we present a number of results from our
prototype system which can run over the XenoServer plat-
form, over PlanetLab, or as a standalone application.

5.1 Initial simulation

We initially developed a simple simulation to inform a
number of the implementation decisions – in particular the
size of the Bloom filters to use and the branching factor at
each aggregation point. The system did not involve distribu-
tion and so our main performance metric was the precision
that XenoSearch delivered: that is, the ratio of the number
of servers returned by search to the number of genuine
matches. We assumed that each server was an individual
XenoSearch node as the most extreme case.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600

P
re

ci
si

on

Filter size (bits)

Precision achieved

Asymptotic precision

Figure 7. The effect of the Bloom filter size on
precision.

We considered simple 3-dimensional searches, finding
points within a sphere. Figure 7 shows how the size of the
Bloom filters impacts the precision. While there is a clear
trade-off between the filter size and the resulting precision
there are diminishing returns beyond 448-bit filters. Be-
yond that point, appreciable numbers of false positives are
not being generated by the Bloom filters. However, note
that false positives in the filter will only lead to false pos-
itives in the results if they lie below an aggregation point
targeted by expand summary, as indicated in Figure 8 –
false positives in other sections are benign because they do
not receive that expand summary request as we filter the
multicast on the search range in that dimension.

In this setting, the best precision we could hope for is���! #"%$'&)(�* as we are approximating a sphere with a cube.
Of course, the “curse of dimensionality” will have an impact
with higher numbers of dimensions [34], but in the context
of server discovery we expect only moderate numbers of
search dimensions such as 4–7. More will be available but
we expect most users will only wish to use a few. In prac-
tical settings we expect better results: searches will either
be looking for “square” ranges, or we can approximate a
sphere more closely by searching in additional dimensions
defined as rotations of the existing ones.

5.2 Simple searches

We deployed our prototype XenoSearch system over 18
PlanetLab nodes (13 in North America, 4 in Europe and
1 in Australasia). Each machine ran a single XenoSearch
node holding, on average, ++�, of the information for each
dimension.

We discarded start-up transients, these are caused by the
JVM optimising various parts of the code and only affect
the first 10 results. As XenoSearch will be run as a service,

Search Area (Circle)

expand_summary
invoked in this
dimension

enclosing square
False positives in

Additional false positives possible here

Figure 8. Possible sources of imprecision
(2D).

these will not affect normal operation.
We performed 100 timed remote searches – i.e. searches

which could not be serviced locally – and compared the
time taken against that taken for a basic Pastry message de-
livery. This gives a search time roughly independent of dis-
tance travelled in the network. Figure 9 shows the results
for searching in 1 to 5 dimensions.

From the graph it can be seen that the vast majority of
searches take 3-3.5 times longer than routing a basic mes-
sage over Pastry. This follows from the design of the sys-
tem. Firstly a series of Pastry messages are sent to request
handle summaries. Secondly, the results are returned to the
requester. Thirdly, a filtered multicast is sent directly to the
aggregation points within the query and then onward over
Pastry down the tree. Due to the small number of nodes, the
APs we send to will be on the same node that the multicast
message destination, in the majority of cases. Therefore the
filtered multicast step will normally be a single UDP delay.
Furthermore, with this moderate number of nodes, routing
over Pastry will generally be satisfied by the leaf-sets. It is
therefore consistent to expect a latency ratio of just over 3.

As we increase the number of nodes, we would expect
the Pastry message cost to increase, as -�.�/'02143 . This will
mean the saving of using UDP-based messages directly in
XenoSearch will become important. At the same time we
will, of course, begin to see more situations involving ad-
ditional work in the filtered multicast stage (again approxi-
mately -5.6/702123). Although searches will always be bounded
by 8
9:-5.6/63�; , it remains to see the exact effect that these two
factors will have when combined.

As we increase the number of dimensions, we increase
the response-latency only marginally. This is because the
network part of the searching algorithm happens in parallel
and vastly dominates the CPU-bound computation on each
node. This implies that the system is scalable with respect

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

%
 C

um
ul

at
iv

e
Fr

eq
ue

nc
y

of
 S

ea
rc

he
s

Normalised response latency

1-d
2-d
3-d
4-d
5-d

Figure 9. Cumulative frequency graph of la-
tency for hyper-sphere searches in succes-
sively greater numbers of dimensions, nor-
malised so Pastry messages have latency 1.

to dimensions. Previous experiments showed the local CPU
bound time to scale linearly with the number of dimensions,
for our local machines it was 9.5ms for 1 dimension, rising
by about 3.6ms per dimension. This is much less than the
network bound time which can be up to 200ms for planet-
lab and much more than the sub 1ms for remote CPU time.

We also investigated the volume of network traffic gen-
erated by searches. Excluding aggregation point (AP) up-
dates, a 2-d range-based search generated approximately
2 Kilobytes of Pastry messages and 2.7 Kilobytes of other
UDP traffic. Each additional dimension adds around 800
bytes to each. The network traffic generated by AP updates
can be reduced arbitrarily by controlling the refresh cycles
and timeouts involved.

5.3 Complex searches

Our second set of results show how the system per-
formed given more complex queries, such as those that will
be used in the XenoServer Open Platform. Figure 10 shows
the results of the experiment, as before we used the same
18 servers, this time we obtained 80 results, comparing the
routing stretch over Pastry for various types of searches.

The first of these, “Simple” is a hyper-sphere search in
all 5 dimensions, as used in the section above. The remain-
ing, “Complex-1”, “Complex-2” and “Complex-3” perform
more realistic searches. In these cases we imagined the 5
dimensional space to be split up as 3 dimensions for po-
sition and the fourth and fifth dimensions for continuous
QoS attributes such as CPU speed and link bandwidth. In
the position dimensions we performed one, two or three
hyper-sphere searches respectively combining the results by
union. This corresponds to a query where we would like
a server that is close to one of three hosts. In the fourth

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

%
 C

um
ul

at
iv

e
Fr

eq
ue

nc
y

of
 S

ea
rc

he
s

Normalised response latency

Simple
Complex 1
Complex 2
Complex 3

Figure 10. Cumulative frequency graph of la-
tency for a number of successively more com-
plex searches, normalised so Pastry mes-
sages have latency 1.

and fifth dimensions we performed range searches, corre-
sponding to queries for a range of CPU speeds or link band-
widths. The individual results were then intersected to find
the servers which fulfilled the criteria.

The simple search and one with one hyper-sphere per-
form similarly. This is not surprising; they are both per-
forming a hyper-sphere/cube search. The searches which
add additional hyper-sphere regions introduce 2 additional
Pastry-delays. This is explained by the fact that only in
these searches do we visit dimensions twice, meaning that
the second request (made up of a set of messages) to that
same dimension gets queued behind the first set as they are
routed through Pastry. This delay is only felt once in the
3 hyper-sphere search, therefore we expect all searches of
more complexity to take similar time.

6 Related Work

As we saw in the introduction, resource discovery in
XenoServers is not like the traditional closest server discov-
ery, as performed by hierarchical resource discovery sys-
tems like SSDS [18]. These require searches to be started at
the host we wish to find a server for, which may be impossi-
ble or impractical as we often wish to return a set of servers,
or to search for those close to some remote location.

Centralised directory systems like SLP [32] are mainly
useful for intranets and are not really useful for wide-area
distributed use. Guyton and Schwartz [13] compare many
of the various methods of location. JXTA [33], an all-in
peer-to-peer system, includes a search mechanism for rout-
ing XML queries between “search consumers” and “search
information providers” on a publish/subscribe model with
‘hubs’ acting as search engines. There is initially no method

of linking these hubs together.
Various kinds of distributed search have been developed

in the peer-to-peer community. These are often just the
mechanisms by which naming is performed in those sys-
tems, rather than being directly intended for searching. Ex-
amples include simple file sharing applications [5] and also
distributed hashtable abstractions (DHTs) [17, 23, 24, 26,
29] as well as skip graphs [2] and distributed tries [10]. In
all of these cases, the search facilities are too limited for di-
rect use in the XenoServer platform, allowing only filename
based searches in the former systems, or nearest-key based
searches in the latter. Andrzejak and Xu [1] extend CAN
for range queries, although in the one-dimensional context.

As we have seen in building our work over Pastry [26],
these distributed systems form useful substrates for devel-
oping applications. Other authors have built search mecha-
nisms over these systems. Many are distributed implemen-
tations of existing Information Retrieval (IR) techniques,
for instance PlanetP [6] using a “Name dropper” flood al-
gorithm [15] and pSearch [30] and Sedar [21] using CAN.
More traditionally, efficient keyword searches have been re-
searched, which distribute an inverted index [11, 25].

In their work on Astrolabe, van Renesse et al. use
Bloom filters combined hierarchically to summarise interest
in publish/subscribe groups [31]. Harren et al. investigated,
in simulation, how to support an expressive set of queries
over CAN [16]. However, their focus was on a database-
style of interface, for instance building ‘join’ operators by
the temporary creation of new DHT name-spaces.

Work at UCSB [12, 28] has centred on providing caches
for range based database searches, this assumes reasonably
static and non-distributed data, whereas our scheme looks at
dynamic distributed searches. Work by Iamnichi and Fos-
ter [19] looks at Resource Discovery in the context of Grid
environments. An unstructured approach is taken, while
ours is a structured approach, allowing us to bound the hops
to distant nodes. This is important because we believe the
commonest type of search in XenoSearch will be to locate
a topological distant XenoServer.

We did consider basing our system on CAN instead of
Pastry. CAN would seem to be a natural choice because it
itself locates nodes within a multi-dimensional space rather
than Pastry’s 1-d keys. Although this would enable a sim-
ple “find node containing point p” style of search, it does
not lend itself readily to the more general style of search
which we propose. We would have to route a request to the
centre of the search area then perform a flood search of the
surrounding area to find the nodes that are contained within
the search. It would be hard to perform searches that are not
limited to simple connected regions. It would also prevent
the ad-hoc development of additional search metrics in the
way we described in Section 2.1. Such decentralisation is
key to the success of the XenoServer platform as an infras-

tructure service open to and accepted by the public.

7 Conclusion

In this paper we have introduced the self-organising
XenoSearch system, providing a mechanism through which
information can be partitioned between a number of dis-
tributed nodes, and queries routed to subsets of those nodes
on which results may be found. Providing a system which
can service arbitrarily complex volume searches in multi-
dimensional vector spaces, while only being a factor of 3-5
slower than plain Pastry routing.

This was presented with the aim to develop a resource
discovery system for the XenoServer Open Platform, sup-
porting complex queries over server resource availability or
location. In keeping with the XenoServer architecture, our
system allows third parties to readily introduce new ‘dimen-
sions’ on which searches can be performed without cen-
tralised control.

Our evaluation of XenoSearch presented here is only
preliminary and we look forward to and are already testing
the system in less synthetic situations and workloads within
PlanetLab and the XenoServer Open Platform.

In future work, we plan to develop XenoSearch in a
number of directions. Firstly, it is still clearly possible
to identify kinds of query which cannot be made over the
current system. For instance, a client may seek a num-
ber of machines with inter-dependent properties (such as
having different owners or dispersed geographic locations).
Such extensions raise interesting questions both in terms of
the query language and in terms of the implementation of
searches. Secondly, we see this current work as being an in-
teresting step from original peer-to-peer applications toward
more controlled self-organising distributed systems. We are
investigating what common building blocks are generally
useful in such cases, and whether lightweight implementa-
tions exist. Finally, we intend to evaluate the extent to which
space-filling curves can be used in this context to map multi-
dimensional data onto a single-dimensional space [20].

We are continuing this work as part of the FutureGRID
UK e-science project in collaboration with Microsoft Re-
search.

8 Acknoledgments

We are greateful to the States of Jersey Education De-
partment for funding the work of David Spence.

References

[1] A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries
for Grid Information Services. Technical Report HPL-2002-
209, Hewlett-Packard Laboratories, Palo Alto, 2002.

[2] J. Aspnes and G. Shah. Skip graphs. In proceedings
of 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Baltimore, MD, USA, pages 384–393, January 2003.

[3] B. H. Bloom. Space/Time Tradeoffs in Hash Coding with
Allowable Errors. Communications of the ACM, 13(7):422–
426, July 1970.

[4] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marro-
quin. Searching in Metric Spaces. ACM Computing Surveys,
33(3):273–321, September 2001.

[5] J. Crowcroft and I. Pratt. Peer-to-Peer: Peering into the Fu-
ture. In Proceedings of the IFIP-TC6 Networks 2002 Con-
ference, Pisa, Italy., May 2002.

[6] F. M. Cuenca-Acuna and T. D. Nguyen. Text-Based Content
Search and Retrieval in ad hoc P2P Communities. Technical
Report DCS-TR-483, Rutgers University, 2002.

[7] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Sharing.
In 10th IEEE Symposium On High Performance Distributed
Computing, August 2001.

[8] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[9] K. Fraser, S. Hand, T. Harris, I. Leslie, and I. Pratt. The
XenoServer Computing Infrastructure. Technical Report
UCAM-CL-TR-552, University of Cambridge, Computer
Laboratory, January 2003.

[10] M. J. Freedman and R. Vingralek. Efficient Peer-to-Peer
Lookup Based on a Distributed Trie. In Proceedings of
the 1st International Workshop on Peer-to-Peer Systems
(IPTPS), Cambridge, MA, March 2002.

[11] O. D. Gnawali. A Keyword-Set Search System for Peer-to-
Peer Networks. Master’s thesis, Electrical Engineering and
Compter Science, MIT, June 2002.

[12] A. Gupta, D. Agrawal, and A. E. Abbadi. Approximate
range selection queries in peer-to-peer systems. Technical
report, Department of Computer Science, University of Cal-
ifornia at Santa Barbara, October 2002.

[13] J. D. Guyton and M. F. Schwartz. Locating Nearby Copies
of Replicated Internet Servers. In proceedings of ACM SIG-
COMM, pages 288–298, August 1995.

[14] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt. Controlling
the XenoServer Open Platform. In Proceedings of the 6th In-
ternational Conference on Open Architectures and Network
Programming (OPENARCH), April 2003.

[15] M. Harchol-Balter, F. T. Leighton, and D. Lewin. Resource
Discovery in Distributed Networks. In proceedings of the
18th annual ACM Symposium on Principles of Distributed
Computing, pages 229–237, May 1999.

[16] M. Harren, J. M. Hellerstein, R. Huebsch, B. T. Loo,
S. Shenker, and I. Stoica. Complex queries in DHT-based
peer-to-peer networks. Lecture Notes in Computer Science,
2429:242–250, Mar. 2002.

[17] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
tributed Object Location in a Dynamic Network. In Pro-
ceedings of the Fourteenth ACM Symposium on Parallel Al-
gorithms and Architectures, pages 41–52, August 2002.

[18] T. D. Hodes, S. E. Czerwinski, B. Y. Zhao, A. D. Joseph, and
R. H. Katz. An Architecture for Secure Service Discovery
Service. Wireless Networks, 8(2–3):213–230, March 2002.

[19] A. Iamnitchi and I. Foster. On Fully decentralized Resource
Discovery in Grid Environments. In Proceedings of the
International Workshop on Grid Computing, Denver, Col-
orado, November 2001.

[20] J. K. Lawder and P. J. H. King. Querying multi-dimensional
data indexed using the hilbert space-filling curve. SIGMOD
Record, 30(1):19–24, 2001.

[21] M. Mahalingam, C. Tang, and Z. Xu. Towards a Semantic,
Deep Archival File System. Technical Report HPL-2002-
199, Hewlett-Packard Research Labs, July 2002.

[22] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
blueprint for introducing disruptive technology into the in-
ternet. In proceedings of the first ACM HotNets Workshop,
October 2002.

[23] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
Nearby Copies of Replicated Objects in a Distributed En-
vironment. In proceedings of the 9th ACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, June
1997.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
proceedings of ACM SIGCOMM, pages 161–172, August
2001.

[25] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. http://issg.cs.duke.edu/search/.

[26] A. Rowstron and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In proceedings of Middleware 2001
IFIP/ACM international conference on distributed systems
platforms, November 2001.

[27] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The Design of a Large-Scale Event Notification
Infrastructure. In Networked Group Communication, pages
30–43, 2001.

[28] O. Sahin, A. Gupta, D. Agrawal, and A. E. Abbadi. Query
processing over peer-to-peer data sharing systems. Techni-
cal report, Department of Computer Science, University of
California at Santa Barbara, October 2002.

[29] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-To-Peer Lookup Service
for Internet Applications. In R. Guerin, editor, Proceedings
of the ACM SIGCOMM 2001 Conference (SIGCOMM-01),
volume 31, 4 of Computer Communication Review, pages
149–160, New York, August 2001. ACM Press.

[30] C. Tang, Z. Xu, and M. Mahalingam. pSearch: Information
Retrieval in Structured Overlays. In First Workshop on Hot
Topics in Networking, October 2002.

[31] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system mon-
itoring, management, and data mining, 2001. ACM TOCS
(Conditionally accepted November 2001, revised September
2002).

[32] J. Veizades, E. Guttman, C. Perkins, and S. Kaplin. Service
location protocal, June 1997.

[33] S. Waterhouse. JXTA search: distributed search for dis-
tributed networks, May 2001. Sun Microsystems.

[34] R. Weber, H.-J. Schek, and S. Blott. A Quantitative Anal-
ysis and Performance Study for Similarity-Search Methods
in High-Dimensional Spaces. In Proc. 24th Int. Conf. Very
Large Data Bases, VLDB, pages 194–205, August 1998.

