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Abstract— This paper presents the design of the
XenoServer Open Platform: a public infrastructure for
wide-area computing, capable of hosting tasks that span
the full spectrum of distributed programming. The plat-
form integrates resource management, charging and au-
diting. We emphasize the control-plane aspects of the sys-
tem, showing how it supports service deployment with a
low cost of entry and how it forms a substrate over which
other distributed computing platforms can be deployed.

I. INTRODUCTION

The XenoServer1 project [23], [13] is building a public
infrastructure for wide-area distributed computing, cre-
ating a world in which XenoServer execution platforms
are scattered across the globe and available for any mem-
ber of the public. This allows users to run programs at
points throughout the network to reduce communication
latency, avoid network bottlenecks, and minimize long-
haul network charges. Also, it can be used to deploy
large-scale experimental services, and to provide a net-
work presence for transiently-connected mobile devices.

Our approach is distinguished from existing work on
mobile agents, execution platforms, code hosting and the
like by two principles:
1. Tackling difficult problems at the same time.
Acceptable designs for execution environments, re-
source management, resource discovery, authentication,
privacy, charging, billing, payment, and auditing are all
crucial to the success of our platform as an infrastruc-
ture service open to and accepted by the public. Existing
work has tackled individual subsets of these problems,
but tensions between the issues concerned mean that so-
lutions proficient in some dimension are lacking in an-
other.
2. No brave new world.
Our platform will host applications written in today’s
programming languages against existing APIs – and, we

1The name derives from the Greek word “ξενoς” (xenos), which
means foreign or unknown, much like the tasks that XenoServers
accept and safely execute.

believe, those written with tomorrow’s languages and li-
braries. We do not want to mandate a particular code
distribution format or a particular middleware toolkit for
distributed programming.

The XenoServer platform can be classed as open in
two different ways. Firstly, as a service deployment in-
frastructure, it provides an extremely low cost of entry
when compared with dedidicated-hosting facilities. This
is both a low intellectual cost, by supporting existing
programming environments, and a low monetary cost, by
supporting fine-grained resource management over flex-
ible timescales, and at a level much smaller than rent-
ing complete machines. Secondly, the system is struc-
tured so that it can host new kinds of execution envi-
ronments, new kinds of resource discovery systems, new
models for charging, new tradeoffs between privacy, per-
formance, and so on. Our open platform provides the
mechanisms necessary for its constituent servers and or-
ganisations to define the policies for themselves.

Overview

In Section II we introduce the general architecture of
the XenoServer Open Platform, showing the entities
involved and the minimum requirements for deploy-
ing tasks, performing authentication, and charging for
resource consumption. Sections III–V then build on
this to provide higher-level interfaces for publishing
XenoServer status information, performing resource dis-
covery and constructing flexible XenoServer systems.

In companion papers, we focus on the technical as-
pects of our current implementation of the XenoServer
component and the hardware virtualization it achieves
[2]. This allows authenticated clients to deploy tasks
over a flexible, resource-managed XenoServer, support-
ing Linux and Java execution environments. Elsewhere,
we introduce the XenoStore distributed file system, built
over the foundations presented here, to provide a shared
global storage network [22], and propose a trust manage-
ment architecture for our platform [8].



Related work

Many research groups have been developing computa-
tional grids [15]. These construct virtual supercom-
puters dynamically from geographically dispersed and
heterogenous resources linked by high-speed networks.
Such infrastructures include Globus [12], NEOS and
Condor [11], SNIPE [9], Javelin [18] and Globe [25].
The PlanetLab project is following a similar approach,
which substantiates an overlay network to serve as a
testbed for a new class of widely distributed network
services [21]. GridBank [3] combines features found
in computational grids with accounting mechanisms.
XenoServers are fundamentally different from grids and
overlay approaches, as the latter provide application-
level programming models and interfaces for sharing
existing resources rather than system-level support in
a large-scale, federated system with competing users
and tasks. In many ways, we share the goals of Pub-
lic Computing Platforms [24], although our architectural
approach is broader in scope.

Virtual machine (VM) technologies allow unmodified
guest operating systems to run in virtualized systems
multiplexed over a single physical machine. This ap-
proach is taken by VMWare [26] and Virtual PC [6].
The vMatrix [1] project is based on VMWare, building
a platform for moving code between different machines.
However, hosting unmodified operating systems usually
has negative effects on both reliability and performance.
Moreover, vMatrix does not address the issues related
to a large-scale deployment of the system, like authen-
tication, discovery of participating machines, charging,
auditing, and so on – nor how to accommodate tasks that
require different kinds of execution environments.

As explained in Section V-A, in the XenoServer Open
Platform there is no need to check for “safe” code, or
for guaranteed termination – the only person hurt is the
client deploying the code, not the hosting XenoServer
or its other clients. This allows XenoServers to accept
a broad range of existing code execution environments:
the XenoServer Open Platform immediately becomes
the ideal testbed for wide-scale deployment of research
prototypes. This flexibility is, we believe, unique to our
platform. There is no requirement for binaries to be dig-
itally signed by a trusted compiler (as in SPIN [4]), to be
accompanied by a safety proofs (as with PCC [19]), to
be written in a particular language (as in SafetyNet [16]
or Java-based systems), or to rely on a particular middle-
ware (as with mobile-agent systems [17]).

II. GENERAL ARCHITECTURE

Figure 1 illustrates the high-level architecture of the
XenoServer Open Platform, distinguishing the various
roles and interfaces. On the left hand side we see a
XenoServer, on the right hand side a client, and at the top
an entity called XenoCorp. XenoServers host tasks that
are submitted by clients and XenoCorp acts as a trusted
third party.
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Fig. 1. The XenoServer Open Platform architecture

For exposition, it is easiest to assume a single Xeno-
Corp. However our architecture is designed to sup-
port multiple competing entities, providing that they
follow the same basic interfaces – much as the com-
mercial world supports several banks. However, to set
the general scene, it is important to realize the separa-
tion between a XenoCorp and the organizations running
XenoServers. The former provides authentication, au-
diting, charging and payment, and has contractual rela-
tionships with clients and with XenoServer operators –
much as VISA or MasterCard act as intermediaries be-
tween credit card holders and the merchants from which
they make purchases.

The XenoServers themselves may be run by disparate
organizations much as server hosting facilities are cur-
rently operated. We expect XenoServers will operate on
well-maintained machines with long-term network pres-
ence – not in “spare cycles” on users’ desktop systems.

A. Usage overview

The general operation of the XenoServer Open Plat-
form can be described by considering four successive
stages: registration, advertisement & discovery, deploy-
ment, and management. These stages are analyzed fur-
ther in the following paragraphs. Following this we de-
scribe the operations depicted in Figure 1 in more detail.



A.1 Registration

Registration is the process of establishing an identity and
obtaining credentials allowing participation in the plat-
form. Both XenoServers and clients must be registered
with a XenoCorp before they can host or submit tasks.
XenoCorps are discovered using external mechanisms –
advertising, word-of-mouth, and so on. Registration is
an infrequent operation; it is undertaken when a com-
pany launches a new XenoServer or when a client wishes
to use the platform for the first time. The formats and in-
ference rules of attribute-based access control systems
are ideal for representing and managing registration cre-
dentials [20].

XenoCorps may differ in the charging model that they
enforce or in the privacy that they provide clients – per-
haps whether a XenoServer hosting a job knows the
client’s “real world” identity. XenoCorps may also dif-
fer in how XenoServer operators receive payment; for
instance, whether the amounts XenoServer operators re-
ceive are guaranteed, or they whether are a share in
XenoCorp’s overall profit. This can shift the exposure
to fraud borne by XenoCorps and XenoServer operators.

A XenoServer must be registered in order to be eligi-
ble to claim payment for hosting jobs. XenoCorp may
require that the XenoServer’s operators enter into a con-
tractual relationship with it, for instance agreeing to cor-
rectly host the jobs placed on it.

Clients register with XenoCorp in order to be able
to place jobs on XenoServers and to set up an account
for the charges incurred. The client must present some
means of settling these charges. For example, in our
public wide-area deployment, by providing a credit card
number to bill.

A.2 Advertisement and Discovery

XenoServer operators compete for the business of
clients. Crucial to the success of this is a way for
XenoServers to advertise their capabilities, resources
and prices, and for clients to discover servers which
match their requirements.

In designing the platform, we are faced with the
choice of how much support should be provided for
these “matchmaking” services. One extreme option
is for XenoCorps to be involved in XenoServer se-
lection. However, aside from the complexity of de-
signing appropriate job-description formats and scalable
reqiurements-matching algorithms, this would compli-
cate the relationship that XenoCorps hold with their af-
filiated XenoServers. Retaining XenoCorp as simply a
trusted third party avoids accusations that it may favour

particular XenoServer operators.
Within the core architecture, all that is required is

some means by which a client may obtain the current
capabilities of a particular XenoServer. This interface is
represented in Figure 1 by the query xenoserver status
operation exported by XenoServers.

It is unreasonable to expect that each client will in-
dividually poll all of the XenoServers in order to assess
their suitability. Indeed, the core architecture does not in
itself even provide a mechanism for a client to enumerate
the servers. Our view is that this is rightly so; such a fa-
cility can be constructed over the core architecture rather
than being ingrained within it. We return to this point in
Section III when we introduce how a XenoServer Infor-
mation Service can be constructed.

A.3 Deployment

Once a client has selected a XenoServer and determined
that it is suitable for running a particular task, the next
step is deployment. We have a fairly broad notion of
what might be meant by deploying a task, for example:
• starting a well-defined server (e.g. Quake-3 v1.07),
• instantiating a new execution environment on the
XenoServer, booting a particular operating system on it,
and then shipping binaries to it for execution,
• transferring a binary, or sources to be compiled, to
an existing virtual machine, and then running the exe-
cutable.
This functionality is broken into two steps: firstly a ses-
sion is created which establishes an agreement between
a client and a XenoServer regarding the resources to be
provided, and the payment to be made; secondly, a task
or tasks are deployed on the XenoServer in the context of
that session. In the following we elaborate on the mech-
anisms used in the establishment of sessions.

Session requirements

During deployment, a client must come to agreement
with the intended XenoServer regarding the terms and
conditions of their future cooperation – in other words,
the client needs to specify its expectations from the
XenoServer, and the latter has to acknowledge that those
can be met while the session is operating. A client is re-
sponsible for creating an appropriately-provisioned ses-
sion before deploying tasks within it.

In our design, resource requirements and availability
are represented using XML. At the deployment stage,
the client sends an XML description of its requirements
to the XenoServer. The XenoServer then tries to match
them with the available resources. The integrity and con-
sistency of those descriptions can be checked using the



built-in XML Schema mechanism [10]. An illustrative
example of such a description is shown below:

<?xmlversion="1.0" encoding="UTF-8"?>
<EnvironmentalRequirements>

<Basic>
<EnvName>MyEnvironment</EnvName>
<EnvType>Linux</EnvType>
<EnvKernel>2.4.18</EnvKernel>
...

</Basic>
<Network>

<EnvIPAddresses>1</EnvIPAddresses>
...

</Network>
<QoS>

<CPUmsps>150</CPUmsps>
<NetMbps>5</NetMbps>
....

</QoS>
...

</EnvironmentalRequirements>

In the above example, the client is asking for a Linux
execution environment, using the 2.4.18 kernel. Also,
the XenoServer is asked to allocate a globally-valid IP
address to the execution environment (rather than using
network address translation), and to provide it with a net-
work bandwidth of 5 Mbps –this is not a network-wide
guarantee; it is similar to installing a 5Mbps network
interface on that XenoServer. The session is to receive
150 ms of CPU time for every second of real time. Ex-
tensions to this basic format may specify the burstiness
of these allocations, or provide separate peak and mean-
rate requirements.

Purchase orders

Apart from the requirements specifications, the session
creation request must be accompanied by a purchase or-
der created by a XenoCorp with which the XenoServer is
registered and subsequently signed by the client initiat-
ing the session. This identifies the account to charge for
running the session, and may contain limits imposed by
the XenoCorp, or constraints made by the client on the
resources that can be consumed, on the type of session
that may be requested, or on the XenoServers on which
the purchase order may be spent.

Before the session is created, the XenoServer must
validate the purchase order with the issuing XenoCorp.
Again, XenoCorps will differ in how they implement
this step. Order validation represents the point at which
the XenoServer’s operator has accepted a session, has
confirmed that it can provide the requested execution

environment, and has made a positive admission con-
trol decision. Beyond this, the semantics of order-
validation are something that must be agreed contrac-
tually between each XenoCorp and its associated clients
and XenoServers.

At one extreme, the validation interface may be im-
plemented in a daemon task that the XenoCorp places
on registered XenoServers – perhaps a simple check that
the purchase order was issued by that XenoCorp. At
the other extreme, the validation interface may be imple-
mented remotely by XenoCorp, and cause pre-payment
of the maximum amount, perhaps incorporating a digital
coin into the purchase order [5].

A.4 Management

Once a session is running, it is important that both the
client and the relevant XenoServer perform some ongo-
ing management. In the case of the client we allow any
management infrastructure desired – it may simply de-
ploy a management task alongside the others it places
within a session. For example, if the client requests
a simple resource-managed Linux environment then a
management interface may return the initial “boot time”
messages produced as that environment starts, before
presenting the user with a shell. Alternatively, the man-
agement interface might accept control operations over
some existing network protocol.

From the point of view of the XenoServer itself, the
most important ongoing task is to account for resource
usage and to make appropriate charges against the pur-
chase orders that fund those sessions. An interesting
problem here relates to the provision of an audit-trail –
this is required in case a task performs anti-social or ille-
gal activities. In our current model, XenoServers use the
same charge from purchase order interface to provide
this log by annotating charges with information about
the current activities of the session, effectively identify-
ing what it is that is being paid for. If sufficiently autho-
rised, an enforcement agency may request XenoCorp to
correlate payments with purchase order creation.

B. Interfaces

We now consider in more detail the operations between
each of the core components of the XenoServer platform.

B.1 Operations exported by a XenoCorp

1. Register client: Clients send registration requests to
the XenoCorp, specifying the details necessary for the
proposed account, such as name, address, and charging
information. For instance, in our prototype deployment



of XenoServers, the first XenoCorp will provide a simple
web-based form for performing registration.
The result of this is the production of unique credentials
for the clients, with which they can identify themselves
to XenoCorp or to XenoServer operators. XenoCorps
will vary according to the information revealed in the
credentials – while they must identify the issuing Xeno-
Corp, they may vary between indicating that “this is a
client known to me” and indicating the actual identity of
the client.
2. Register XenoServer: Potential XenoServers have
to subscribe to a XenoCorp in order to join the platform
and start servicing clients. To register, a XenoServer
will need to provide information about its owner, such as
name, address, and bank account or credit card details,
as well as the specifications of the machine, including
the hardware architecture family, type of CPU, available
memory, and network connectivity. The result of this is
the production of unique credentials for the XenoServer.
3. Create purchase order: A purchase order represents
a client’s commitment to funding a session, subject to
certain constraints. The creation of a purchase order is
a two stage process. First of all the client requests that
a XenoCorp issues it a basic purchase order up to a cer-
tain amount. At that stage the XenoCorp may check the
credit-worthiness of the client, may ring-fence the por-
tion issued as a purchase order, and may endorse the
order with restrictions that must be met in order for it
to honour payment – for instance that the purchase or-
der must be properly validated before the XenoServer
selected to perform the session starts work. The client,
before using the order to fund deployment, may then an-
notate it with further restrictions – for instance specify-
ing that only the XenoServer that it selects may cash in
the order.
4. Validate purchase order: The validation inter-
face provides an ahead-of-execution step with which a
XenoServer operator may check the correctness of a pay-
ment order funding a job it has received. A purchase
order therefore flows from XenoCorp, to the client to
whom it is issued, to the XenoServer on which it funds a
session, and finally back to XenoCorp at the point of val-
idation. The validation policy will vary between Xeno-
Corps, but it provides a point at which the XenoCorp can
agree to each transaction – for instance vetting that the
purchase order has not already been presented to another
XenoServer. Note that although the validation interface
is conceptually part of a XenoCorp, its implementation
need not be centralized – XenoCorps may rent space on
XenoServers that they trust to perform validation func-
tions.

5. Charge from purchase order: XenoCorp receives
resource consumption claims from XenoServers, re-
questing for charging a certain amount against particu-
lar purchase orders. These requests are annotated with
resource usage information to form an audit trail. The
rate and detail of these messages will again vary between
XenoCorps.

B.2 Operations exported by a XenoServer

1. Query XenoServer status: Registered clients query
the XenoServer in order to obtain information about its
status. The XenoServer supplies its current resource us-
age and availability information, along with its identifi-
cation credentials.
2. Create session: A registered client connects directly
to a selected XenoServer in order to create a session.
This request has to include the client’s expectations from
the XenoServer, such as Quality of Service requirements
(optional, like CPU percentage, minimum network band-
width), environmental needs (necessary, specifying a
version of an operating system or JVM needed to run
its tasks), and any other kind of general constraints (like
maximum amount to be spent on resource consumption).
3. Deploy task: A client deploys a task in the context
of an existing session — a handle describing the relevant
session is passed to the XenoServer along with an XML
description of the task to be deployed.

III. XENOSERVER INFORMATION SERVICE

In Section II we introduced the three core components
of the XenoServer Open Platform. These provide the
basic functions of authentication, task deployment, and
charging for resource usage. However, in considering
the core components, we deferred the question of how a
client of the system selects an appropriate XenoServer.

One possibility would be to use a meta-directory ser-
vice such as MDS-2 [7] – an LDAP-based implemen-
tation of the Grid Information Service (GRIS). How-
ever the strictly two-level hierarchy and the fairly rigid
schema means that another solution may be preferable.
This is particularly true since we wish to support a
broad range of execution formats and capabilities – in-
corporating servers which can host only certain operat-
ing systems, or which offer relatively more or fewer re-
sources at a variety of prices. Furthermore, we expect
a large and dynamically changing number of competing
XenoServers.

Therefore, although clients can directly query individ-
ual XenoServers to determine their status, it would be
impracticable for them to do so in any non-trivial deploy-
ment. Instead, information about XenoServers is aggre-



gated within a highly available information service. We
term this the XenoServer Information Service (XIS); its
role in the architectural picture is shown in Figure 2.
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Fig. 2. XenoServer platform with XIS

As illustrated, this acts as an intermediary between
XenoServers, who advertise information within it, and
clients, who perform queries on the service. There are
no architectural conventions requiring there be only one
XIS although we envisage that this situation will de-
velop naturally since it makes sense for XenoServers to
advertise as widely as possible, and for clients to draw
on the largest number of XenoServers when performing
lookups. By analogy, the vast majority of the Internet
prefers to use a single DNS hierarchy, even though there
is no technical restriction to the deployment of separate
namespaces (however, we note that alternatives which
have been attempted do not find currency).

A. Interface

In designing the XIS it is necessary to balance the
clients’ desire for being able to perform expressive
queries versus the desire for a straightforward and scal-
able implementation of the XIS. Crucially, we must iden-
tify (i) what information a XenoServer may store into
the XIS and (ii) what kinds of query the XIS supports
over this information. The approach we take here fol-
lows the general techniques that we have used in design-
ing the XenoServer platform: the XIS is relatively ag-
nostic about what kinds of data it holds and it defers the
implementation of more advanced queries either to the
clients themselves or to specialized Resource Discovery
Systems (see Section IV).

A.1 Operations exported by XIS

1. Advertise XenoServer: XenoServers advertise their
status within the XIS using an XML format as we did
for specifying task requirements. While the scheme

specifies some basic information that all XenoServers
must provide – such as the XenoCorps with which they
are registered – this can be augmented with information
about current location, server and network load, average
CPU utilization, number of clients connected, available
bandwidth, and execution environments that are sup-
ported.
2. Update Specifications: XenoServers update their
records in the XIS regularly. In the absence of updates,
the XIS ages information and may ultimately discard it.
3. Lookup XenoServer: Clients view the XIS as pro-
viding an inverted file which indexes the information re-
ceived by XenoServers. That is, as a mapping from each
token that can occur in the XML specification onto a
list of XenoServers which contained it. Clients perform
queries, passing as parameters the token to query and the
acceptable range for the token’s value –for example, “to-
ken=CPUmsps, values=100-150” would cause a lookup
for XenoServers that can provide 100 to 150 ms of CPU
time per second to the task. The operation returns a
number of matches and their corresponding places in
the result stream. This interface allows clients to per-
form simple searches directly (perhaps specifying a to-
ken that represents a particular kind of execution envi-
ronment) and to perform boolean searches by making
several “lookup” requests on different tokens and com-
bining the results.

B. Implementation

The initial XIS implementation is a distributed storage
service optimized under the assumptions that (i) writes
are always total rewrites (ii) XenoServers arrange that
there is only ever one writer for each piece of data, (iii)
reads of stale data are always either safe or can be ver-
ified, and (iv) information held in the XIS is for use by
tools rather than humans, allowing inelegant internal de-
sign choices like explicit versioning.

The storage service comprises a number of distributed
nodes which each hold some portion of the stored in-
formation; each node will hold a portion of the inverted
file mapping from one or more tokens on to matching
XenoServers. These nodes export the XIS interface to
users interacting with it. They communicate with one
another using a separate protocol. This design builds on
that of our Pasta distributed file system, using the same
techniques for replicating information between nodes of
the XIS, and “drawing out” and caching this information
toward the users that are requesting it. Self-certifying
names [14] are used to ensure the authenticity of re-
trieved information and to allow clients to complain to
the XenoServer’s XenoCorp about inaccurate advertise-



ments.
The initial deployment will place XIS nodes on con-

stituent XenoServers – as we shall see in Section V the
prototype XenoServer can host arbitrary isolated Linux
environments. The first XenoCorp will require, as part of
the XenoServer registration process, that the server iden-
tifies a node with which it has arranged to have its adver-
tisement information injected into the XIS. This provides
an incentive for XenoServer operators to host XIS nodes.

Of course, placing XIS nodes on XenoServers intro-
duces the possibility that XenoServer operators may at-
tempt to subvert the system – particularly if they are
hosting a node which carries information about competi-
tor XenoServers. This can be addressed by a variety
of mechanisms, some technical and some contractual.
Firstly, the XIS implementation will look as an ordinary
task to the XenoServer; it is not in a XenoServer owner’s
interest to get a reputation for interfering with tasks. Sec-
ondly, the same part of the inverted file will be replicated
over multiple XIS nodes. This aids access to the data and
requires a larger conspiracy to lose part of it.

IV. RESOURCE DISCOVERY SYSTEM

In Section II we introduced the three core aspects of
the platform; XenoServers which hosts tasks, clients
who submit tasks, and XenoCorps which act as trusted
third parties. In that initial setting, clients needed an
out-of-band mechanism for introduction to appropriate
XenoServers. We then showed, in Section III how the
XenoServer Information Service (XIS) provides a basic
mechanism for XenoServers to publish their functional-
ity, resource availability, and pricing. A low-level inter-
face, presenting these advertisements as an inverted file,
allowed clients to perform elementary searches.

We now introduce the higher-level Resource Discov-
ery (RD) Systems which provide a more effective means
for selecting XenoServers. Although the RD Systems
build on the primitive operations exported by the XIS,
they implement internally more intelligent searching al-
gorithms and with clearer scope for differentiation be-
tween competing RD Systems.

A. Interface

An RD System is responsible for performing the match-
making process between clients and XenoServers. It re-
ceives find xenoserver queries from the clients contain-
ing specifications of the environmental and QoS require-
ments from the interface to be deployed. For instance,
these requirements could be represented using XML, as
was described in Section II-A.3.
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Fig. 3. XenoServer platform with XIS and RD System

After receiving the client’s requirements and applying
the search algorithms, the RD System suggests a number
of suitable XenoServers to the client. This has to include
information about all suggested XenoServers’ pricing
scheme, load, location, and so on. As with the XIS,
the information returned is based on the advertisements
received; clients may query the suggested XenoServers
directly to obtain a spot price.

A.1 Operation exported by RD System

1. Find XenoServers: Given a resource requirement
specification, the Resource Discovery System performs
a search in the XenoServer Information Service on be-
half of the client in order to find a number of suitable
XenoServers.

B. Implementation

There may be multiple such RD Systems, either for
simple competition (as exists between online search en-
gines) or for specialisation to particular kinds of client,
XenoServer or task. The algorithm with which the map-
ping is performed is entirely dependent on the RD mech-
anism. For example, different RD Systems may answer
queries of the form:
• “Suggest 10 XenoServers with approximately equal
network latency to the machines 131.111.202.88 and
141.163.61.250.” This might be implemented using a
distributed multi-dimensional search algorithm.
• “Suggest pairs of XenoServers which appear to have
separate network links to 128.232.8.50”.
• “Find a XenoServer which may run a job with these
resource requirements at a total cost of £10”.

We envisage many Resource Discovery Systems being
implemented over the XenoServer foundations – as with
networked services in general, XenoServers will provide
an incremental deployment platform from which more



resources can be acquired as the service grows (or from
which only a low up-front cost is made if the service does
not prosper).

There is no single platform-wide implementation of
the matching algorithms, as the co-existence of several
independent RD Systems will offer choice and diversity
in resource discovery mechanisms and charging models.
Some RD Systems might provide intelligent searching
capabilities – such as finding a XenoServer that will min-
imize the total round-trip time for a given set of clients,
while others will offer just basic searching functionality.
Also, some RD Systems might be configured to charge
clients for using the search mechanisms or to charge
XenoServers for putting them higher in the suggestions
list. Others can offer free services.

V. XENOSERVER CONTROL ARCHITECTURE

In Sections II–IV we have presented the core architec-
ture of the XenoServer Open Platform and shown how,
over that, we structure services for advertisement and re-
source discovery. For the final part of this paper, we
turn our attention to the XenoServers themselves and
their internal structure. We do so at two levels. First of
all, Section V-A introduces the prototype XenoServer.
Secondly, in Section V-B we present the decomposi-
tion of this system into a number of components, to ex-
tract common functionality and to aid the deployment
of XenoServers based on existing platforms for mobile
agents and code execution.

A. The Xen-based XenoServer

Figure 4 shows the general structure of our prototype
XenoServer. This is based on a low-level component,
termed the Xen hypervisor, which virtualizes the physi-
cal resources of the machine, apportioning them between
the various environments that it hosts, by creating a vir-
tual machine for each one. Each of these environments is
called a domain, and is isolated from the other domains
in terms of security and resource consumption. The hy-
pervisor accounts the resource usage that each domain
makes.

Thus, unsafe and unverified tasks can only be mis-
chievous inside their execution domain, harming no one
but the client who instantiated them. Each domain runs
an instance of a guest operating system. These operat-
ing systems are specially ported to operate over Xen,
accessing the virtualized hardware through appropriate
device drivers. The companion paper describes Xen and
its interfaces in detail, and shows the benefits of eschew-
ing full virtualization of the underlying hardware [2].
Currently, we have developed one guest operating sys-

tem providing a complete Linux environment, and have
two further systems in progress to provide NetBSD and
Win32 environments.

There can be multiple concurrent domains running the
same guest operating system and so creating a resource-
guaranteed session on a Xen-based XenoServer corre-
sponds to booting a fresh domain for it.
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Fig. 4. The Structure of the Xen XenoServer

In addition to supporting guest operating systems, Xen
exports a privileged control interface to the initial “Do-
main0” environment that it starts at boot-time. This do-
main’s role is to run the control plane aspects of the sys-
tem and, in particular, to export the session creation, de-
ployment, and status interfaces seen earlier. Depending
on their requirements, other domains may host code sup-
plied by the XenoCorps with which the XenoServer has
entered into a relationship – for instance performing val-
idation of credentials locally if the security implications
are deemed acceptable.

B. XenoServer Control Architecture structure

We will now introduce how the control aspects of a
XenoServer can be structured. This is motivated by two
examples. Firstly, we expect that most installations of
XenoServers will co-locate groups of machines. For
such clusters it is worthwhile to aggregate the session
deployment and query interfaces to act over the cluster
as a whole rather than distinguishing each machine indi-
vidually. Secondly, clients may wish to use the platform
to deploy tasks other than complete operating system
instances over Xen – for instance, a XenoServer could
host Enterprise JavaBeans (EJB) or .NET components
using existing application-server packages. Our design
reduces the effort necessary to deploy new kinds of exe-
cution environment.

These observations lead us to introduce an additional
level of indirection between the system that ultimately
hosts tasks and the interface with which clients interact.
Figure 5 illustrates this structure, showing a configura-



tion in which the deployment interface is exported by an
environment manager which in turn starts and manages
tasks through internal task management interfaces which
control particular execution environments.
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Fig. 5. The environment manager

The figure shows a XenoServer configuration in which
one task manager is responsible for tasks running di-
rectly over the Xen hypervisor, and another is respon-
sible for controlling tasks within a particular application
server that is hosted in one of the domains.

The environment manager, if implemented as a Linux
process, could itself execute within Domain0 – perhaps
over this same Xen hypervisor, or over another in the
same cluster. It is responsible for interacting with clients
during session creation and task deployment – for in-
stance activating the appropriate execution environment,
or selecting which particular machine in a cluster should
host a given task.

VI. CONCLUSION

In this paper we have introduced the XenoServer Open
Platform with a particular focus on the control-plane as-
pects of its architecture. Only a core part of this must
be fixed across the system; the basic interfaces presented
in Section II to enable the exchange of security creden-
tials, charging information, and deployment functions.
At this level we aim to specify only the minimum that
is required; decisions on charging policies are left to the
individual XenoCorps and decisions on task execution
formats are deferred to the individual XenoServers. In
both cases this promotes scalability, flexibility, robust-
ness, and competition. We introduced one way of build-
ing on these foundations in Sections III–V.

Looking beyond these facilities, many other compo-
nents are desirable for a full-service public platform. We
have not discussed our ideas about data storage and repli-
cation – for example how a XenoServer aquires the code
and data from which to instantiate a new task or a new
kind of execution environment; techniques for secure
boot are of interest here. Similarly, we have not dis-
cussed how clients name their deployed tasks, or how
they ensure that XenoServers adhere to their contracts.
Broadly, as with the XIS and resource discovery ser-
vices, we consider these to be components that can and
should be implemented over the core XenoServer Open
Platform – recent research has had no shortage of inno-
vative schemes for solving such problems; what it has
lacked is the global substrate that will allow them to be
evaluated and deployed “in the large”. This is what the
XenoServer project is providing. Please contact us if you
would like to be involved with the initial public deploy-
ment of the XenoServer Open Platform.
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