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Abstract. Work on non-blocking data structures has proposed extend-
ing processor designs with a compare-and-swap primitive, CAS2, which
acts on two arbitrary memory locations. Experience suggested that cur-
rent operations, typically single-word compare-and-swap (CAS1), are not
expressive enough to be used alone in an eÆcient manner. In this pa-
per we build CAS2 from CAS1 and, in fact, build an arbitrary multi-word
compare-and-swap (CASN). Our design requires only the primitives avail-
able on contemporary systems, reserves a small and constant amount
of space in each word updated (either 0 or 2 bits) and permits non-
overlapping updates to occur concurrently. This provides compelling ev-
idence that current primitives are not only universal in the theoretical
sense introduced by Herlihy, but are also universal in their use as foun-
dations for practical algorithms. This provides a straightforward mecha-
nism for deploying many of the interesting non-blocking data structures
presented in the literature that have previously required CAS2.

1 Introduction

CASN is an operation for shared-memory systems that reads the contents of a
series of locations, compares these against speci�ed values and, if they all match,
updates the locations with a further set of values. All this is performed atomically
with respect to other CASN operations and specialized reads. The implementation
of a non-blocking multi-word compare-and-swap operation has been the focus of
many research papers [7, 10, 2, 3, 15, 5]. As we will show none of these provides
a solution that is practicable in terms of the operations it requires from the
processor, its storage costs and the features it supplies.

This paper presents a new design that solves these problems. The solution
is valuable because it �nally allows many algorithms requiring CASN to be used
in earnest (for example those from [11, 5, 4]). CASN is useful as a foundation for
building concurrent data structures because it can update a set of locations
between consistent states. Aside from its applicability, our solution is notable in
that it considers the full implementation path of the algorithm. Previous work
has often needed a series of abstractions to build strong primitives from those
actually available { each layer adds costs, the sum of which places the algorithm
beyond reasonable use.



We present our new design through a two-stage process: we develop a re-
stricted form of CAS2 directly from CAS1 (Sect. 4) and we then show how to use
that to implement CASN (Sect. 5). In Sect. 6 we discuss implementation problems
such as memory management and the need for memory barrier operations. We
evaluate the algorithm through experimental results on six processor families.

2 Background

Throughout this paper we assume a shared-memory model. We assume that an
operation new allocates a fresh area of memory suÆcient for a speci�ed number
of words. We take CAS1 as a primitive and assume initially that it { along with
ordinary read and write operations { is implemented in a linearizable manner by
the system (meaning that it appears to occur atomically at some point between
its invocation and return). We assume that all memory accesses are of word-size
and are to word-aligned addresses. As usual we de�ne CAS1 as:

word t CAS1(word t *a, word t o, word t n)
f old = *a;
if (old == o) *a = n;
return old;

g

We wish CASN to be linearizable so that it is easy to reason about its use. It
should be non-blocking, meaning that some operation will complete if the system
takes a large enough �nite number of steps. This gives resilience against poor
scheduler interactions (e.g. priority inversion). For scalability it is crucial that it
is disjoint-access-parallel: operations on disjoint sets of locations should proceed
in parallel. Finally, it should act on data structures with a natural and eÆcient
representation. This means that reserving more than a few bits in each location
is unreasonable. We would like to be able to use a built-in CAS1 operation for
the case of a single-word update. It is usually necessary to use separate read and
write operations on locations subject to update by CASN since disjoint-access-
parallel designs place intermediate values in locations during their update.

2.1 Related Work

Herlihy's universal construction may form the basis of a CASN design, but it
is not disjoint-access-parallel [7]. Neither is Greenwald's basic implementation
using CAS2 [5], although he also shows how a further control word per word allows
parallel updates. Israeli and Rappaport's design is disjoint-access-parallel [10],
but each word must hold a processor `ownership' �eld and the algorithm requires
strong LL/SC operations. Those operations can be implemented over basic LL/SC
or CAS1 by reserving further per-processor `valid' bits in each word.

Anderson and Moir's wait-free CASN uses strong LL/SC single-word primi-
tives [2]. It requires extensive auxiliary per-word structures. Moir subsequently
developed a simpler conditionally wait-free design for CASN [15], meaning one



Table 1. CASN algorithms for a system with p processes, a machine word size of w bits,
a maximum CASN width of n locations from a addresses, showing which algorithms are
disjoint-access-parallel (D-A parallel) and which require support from the operating
system kernel (OS)

D-A parallel Requires Bits-per-word

[7] No CAS1 0
[5] No CAS2 0
[3] No CAS1 + OS 0
[2] Yes Strong LL/SC p(w+ l) + l where l = lg

2
p+ lg

2
a

[15] Yes Strong LL/SC lg
2
p+ lg

2
n

[10] Yes Strong LL/SC lg
2
p

[3] Yes CAS1 + OS 1 + lg
2
n + lg

2
p

[10] Yes CAS1 p+ lg
2
p

New Yes CAS1 0 or 2

that is not intrinsically wait-free but which, at key points after contention is
detected, evaluates a user-supplied function to determine whether to retry.

Anderson et al. provide two further algorithms for priority-based sched-
ulers [3]. One is only suitable for uniprocessors. The other is not disjoint-access-
parallel. In their designs Anderson et al. use a restricted form of CAS2 which
is much the same as the RDCSS operation we de�ne in Sect. 4. However, it re-
quires priority-based scheduling and non-preemption guarantees for some code
sequences.

Moir shows several ways to build strong LL/SC from CAS1 or realistic LL/SC [14].
However, there are problems with each construction. The correctness of the �rst
relies on suÆciently large counters reserved in each value not overowing at
certain points. The second design allows ponter-sized values to be stored by
fragmenting them across words along with a header. This (at least) doubles the
storage required. The third design provides single-word LL/SC operations with-
out needing to avoid overow based on an elaborate mechanism to control tag
re-use { for example a single SC requires four operations on a tag-management
queue. This design also requires a processor ID �eld to be reserved in every
word, along with space for these bounded tags and a count �eld. None of these
algorithms �ts with our desire for a natural and eÆcient representation.

Table 1 summarizes the various existing CASN designs and contrasts them
with our algorithm. For all except [2] and [15] the per-word overhead is reserved
in each data location; in [2] and [15] it is separate.

3 Algorithmic Overview

As with most concurrent algorithms, the design of ours is rather intricate. We
hope that a brief overview of the the algorithm's operation will aid readability.
Central to it is the use of descriptors. These are data structures in which threads
initiating some operation make available all of the information that others need



to complete it { e.g. a CASN descriptor holds the addresses to be updated, the
values expected to be found there, the new values to store and a status �eld
indicating whether the CASN is still in progress.

A thread makes a descriptor active by placing a pointer to it into a location
in shared memory. This is our non-blocking alternative to locking that location.
Other threads seeing the descriptor pointer use the information in it to help the
owning thread complete its operation and release the location. A CASN proceeds
by placing pointers to its descriptor in each location being updated, checking
that they hold the expected old values. If this succeeds for all the locations then
each location is released, replacing the descriptor-pointers with the new values.
If any location does not hold the requisite old value then the CASN is said to have
failed and each location is restored to its old value. CASN therefore resembles an
update made using two-phase locking, but employing descriptor pointers so that
other threads accessing the locations do not block.

We decompose CASN into two layers. We �rst build a limited form of CAS2
(Sect. 4) that atomically introduces or removes descriptor-pointers conditional
on a status �eld. From this we construct CASN (Sect. 5). Sect. 6 considers imple-
mentation issues and the management of the memory holding descriptors.

4 Double-Compare Single-Swap

We de�ne RDCSS as a restricted form of CAS2 operating atomically as:

word t RDCSS(word t *a1, word t o1, word t *a2, word t o2, word t n2)
f r = *a2;
if ((r == o2) && (*a1 == o1)) *a2 = n2;
return r;

g

This is restricted in that (i) only the location a2 can be subject to an update,
(ii) the memory it acts on must be partitioned into a control section (within
which a1 lies) and a data section (within which a2 lies), and (iii) the function
returns the value from from a2 rather than an indication of success or failure.
RDCSS may operate concurrently with (i) any access to the control section, (ii)
reads from the data section using RDCSSRead, (iii) other invocations of RDCSS
and (iv) updates to the data section using CAS1, subject to the constraint that
such CAS1 may fail if an RDCSS operation is in progress on that location.

4.1 Design

Figure 1 shows pseudo-code to implement RDCSS from CAS1. The descriptor

passed to RDCSS contains �ve �elds de�ning the proposed operation: the control
address (a1), expected value (o1), data address (a2), old value (o2) and new value

(n2). Descriptors are held outside the control and data sections and (aside from
those introduced by RDCSS) values in the data section are distinct from point-
ers to descriptors. Each invocation uses a fresh descriptor, meaning one whose



word t RDCSS (RDCSSDescriptor t *d) f
do f
r = CAS1(d�>a2, d�>o2, d); /* C1*/
if (IsDescriptor (r)) Complete(r); /* H1*/

g while (IsDescriptor (r)); /* B1*/
if (r == d�>o2) Complete(d);
return r;

g

word t RDCSSRead (addr t *addr) f
do f
r = *addr; /* R1*/
if (IsDescriptor(r)) Complete(r); /* H2*/

g while (IsDescriptor (r)); /* B2*/
return r;
g

void Complete (RDCSSDescriptor t *d) f
v = *(d�>a1); /* R2*/
if (v==d�>o1) CAS1(d�>a2, d, d�>n2); /* C2*/
else CAS1(d�>a2, d, d�>o2); /* C3*/

g

Fig. 1. RDCSS pseudo-code implementation

address is (or acts as if it is) held only by the caller. A predicate IsDescriptor
tests whether its parameter points to a descriptor { we discuss it in Sect. 6.

In outline RDCSS attempts a CAS1 on the data address to change the old
value into a pointer to the descriptor (C1). If successful, Complete �nishes the
operation: if the control address holds the expected value then the pointer is
changed to the new value (C2), otherwise the old value is re-instated (C3). If a
descriptor is found (H1, H2) then that RDCSS invocation is completed. A descriptor
is `active' when referenced from the data section, for example:

Data section Control section RDCSS descriptor

a1 o1

a2 o2 n2

a1a2

o1

4.2 Correctness

We wish to establish that RDCSS and RDCSSRead provide linearizable non-blocking
implementations. We proceeded by developing a model from the pseudo-code def-
initions and subjected this to exhaustive tests using the Spin model checker [9].
Direct model checking is impracticable: the size of the shared memory, the num-
ber of active threads and the number of concurrent RDCSS invocations are un-



bounded. However, inspection of the algorithm lets us reduce the size of the state
space to one which can be explored successfully:

{ Each invocation of RDCSS can be considered separately. This surprising obser-
vation follows by examining the memory accesses. C1 is the only one to make
a descriptor active and it succeeds at most once per descriptor (its return
value causes loop B1 to terminate). Updates, C2 and C3 make descriptors in-
active. Therefore each descriptor has at most one interval of time over which
it is active, causing at most two updates { one to active it and one to de-
activate it. Both updates are to the data address speci�ed in the descriptor.
Di�erent RDCSS operations acting on the same location are thereby serialized
by the order of their active periods, so we can consider them individually.

{ We divide values in memory into equivalence classes. We classify the contents
of the control address as either equal or not equal to the expected value. We
need four classes for the data address: the old value, the new value, a pointer
to the descriptor active on it and �nally all other values.

{ Although there may be an unbounded number of threads in the system, each
is in one of a limited number of states de�ned by a point in the code of Fig. 1
and the values of local variables. We model the threads collectively as a set
of pairs (p;m) where p represents a possible thread state and m is a boolean
indicating whether at most one, or possibly more than one, thread is in that
state. For example, this set initially contains one pair representing a single
thread invoking RDCSS and multiple potential invocations of RDCSSRead.

We hypothesized that RDCSS can be linearized at the last execution of R2 for
a descriptor that becomes active and otherwise at the last execution of C1.
RDCSSRead would be linearized at its last execution of R1. From this abstraction
we developed a Spin model in which global variables represent (i) the set of
possible thread states (ii) the contents of the control and data addresses and (iii)
the `logical' contents of the data address, updated at the proposed linearization
point of RDCSS and read at the proposed linearization point of RDCSSRead.

We model execution by de�ning a guarded statement for each thread state,
enabled when that state is possible. Additional statements, always enabled,
model operations that can operate concurrently with RDCSS{ for example ex-
ternal updates to the value held at the control address. We used assertion state-
ments to compare the logical and actual memory contents at the proposed lin-
earization points. Spin accepts the resulting model without any assertion failures.

Showing non-blocking behaviour proceeds more directly: observe that each
backward branch (B1, B2) is taken only if a descriptor-pointer was read from the
data section and Complete invoked on that descriptor. Each descriptor-pointer is
stored in the data section at most once (as above, at C1) and each invocation of
Complete either removes the descriptor-pointer (if C2 or C3 succeeds) or observes
it to have already been removed (if the attempted CAS1 fails. Therefore backward
branches can only occur if system-wide progress has been made.



bool CASN (CASNDescriptor t *cd) f
if (cd�>status == UNDECIDED) f /* R4*/

phase 1: status = SUCCEEDED;
for (i = 0; (i < cd�>n) && (status == SUCCEEDED) ; i++) f /* L1*/

retry entry: entry = cd�>entry[i];
val = RDCSS (new RDCSSDescriptor t (&(cd�>status), UNDECIDED,

entry�>addr, entry�>old, cd)); /* X1*/
if (IsCASNDescriptor t (val)) f
if (val != cd) f
CASN (val); /* H3*/
goto retry entry;

g
g else if (val != entry�>old) status = FAILED;

g

CAS1 (&(cd�>status), UNDECIDED, status); /* C4*/
g

phase 2: succeeded = (cd�>status == SUCCEEDED);
for (i = 0; i < cd�>n; i ++)
CAS1 (cd�>entry[i].addr, cd,

succeeded ? (cd�>entry[i].new) : (cd�>entry[i].old)); /* C5*/
return succeeded;

g

word t CASNRead (addr t *addr) f
do f
r = RDCSSRead(addr); /* R5*/
if (IsCASNDescriptor (r)) CASN (r); /* H4*/

g while (IsCASNDescriptor (r)); /* B3*/
return r;

g

Fig. 2. Two-phase CASN pseudo-code implementation using RDCSS at X1

5 CASN Using RDCSS

We will now show how CASN can be implemented using RDCSS. As before a
descriptor held in shared memory describes the operation. A CASN-descriptor

contains a status �eld (holding UNDECIDED, FAILED or SUCCEEDED), a count (n)
and then a series of n update entries each having a distinct update address (a1,
. . . ), an old value (o1, . . . ) and a new value (n1, . . . ).

The update addresses lie in the data section of memory and are held according
to some total order agreed by all threads to guarantee non-blocking behaviour,
e.g. sorted. The CASN descriptors themselves are held in the control section: the
status �eld will be subject to comparison using RDCSS. As before, each invocation
is made with a fresh descriptor. CASN may operate concurrently with (i) other
invocations of CASN and (ii) reads from the data section using CASNRead.



Fig. 2 shows the two-phased pseudo-code for our CASN algorithm and for an
associated CASNRead operation. The �rst phase attempts to introduce pointers
from each update address to the descriptor. For example, after installing two
such pointers the memory may be depicted:

a1 o1

a2 o2 n2a2 o2 n2

n1

n3o3a3

CASN Descriptor

Status

n=3

a1 a2 a3

Data section

If phase 1 encounters a pointer to another descriptor then it helps that opera-
tion before re-trying. At the end of phase 1, C4 tries to set the status �eld to
SUCCEEDED (if pointers were installed at each address) or FAILED (if some address
did not contain the value expected). The second phase iterates over the update
entries removing the pointers. A descriptor is undecided whenever its status �eld
holds that value; otherwise it is decided and either failed or succeeded. The logical
contents of a data location are (i) the value it holds if that is not a descriptor
pointer, (ii) the old value for that location in an undecided or failed descriptor
it points to, or (iii) the new value for that location in a succeeded descriptor.

CASNRead is structured in the same way as RDCSSRead: it retries the read
operation until it does not encounter a descriptor pointer. Although we do not
show them here, other kinds of read operation are also possible. One alternative
is for CASNRead not to help other CASN invocations and instead to derive the
logical contents of the location using the descriptor that it encounters. As Moir
observed, the ability to read without helping can aid performance [15].

5.1 Correctness

We initially developed CASN in concert with a Spin model of its behaviour param-
eterized on the number of concurrent operations, the number of storage locations
and the range of values that those locations could hold. The model maintained
the actual contents of those locations (updated using our algorithm with CAS1 as
a primitive) and the logical contents (updated by an atomic step at the proposed
linearization point). The largest con�guration that could be checked exhaustively
comprised 3 concurrent CAS2 operations on up to 4 binary locations.

While invaluable in identifying problems with early designs, this approach
also helped us develop our ideas of why the algorithm works in a general setting.
In this section we show that CASN is linearizable, performing an atomic update
to the logical contents of memory at the point the descriptor becomes decided.

Conceptually, the argument is simpli�ed if you consider the memory locations
referred to by a particular CASN descriptor and the updates that various threads
make on those locations within the implementation of the CASN function. A
descriptor's lifecycle can be split into a �rst undecided stage and a second decided

stage, joined by C4 which updates the descriptor's status �eld. We show that,



aside from C4, all of the updates preserve the logical contents of memory and we
then show that, when C4 is executed, it atomically updates the logical contents
of the locations on which the CASN is acting.

Firstly, we consider the descriptor lifecycle and the updates that can be made
by threads operating on undecided descriptors:

Lemma 1. Descriptor lifecycle is undecided ! decided. The only update to
the status �eld is C4 which speci�es UNDECIDED as the expected old value and
either FAILED or SUCCEEDED as the new value. The old and new values di�er and
so C4 can succeed only once for each descriptor.

Lemma 2. Threads operating on a descriptor in the undecided stage are in

phase 1 of the algorithm. To reach phase 2 a thread must either complete C4

(the �rst to do so would make the descriptor decided) or observe the descriptor
to be decided at R4. In each case a contradiction.

Lemma 3. Threads operating on undecided descriptors preserve the logical

contents of memory. The only update made in phase 1 of the algorithm is X1
which replaces the expected old value for a location with a pointer to a CASN

descriptor specifying that same old value for that location. Hence the logical
contents are preserved.

Secondly, we consider the linearization of CASN operations:

Lemma 4. Linearization of failed CASN. If C4 sets the status FAILED then X1

returned a non-descriptor value, not matching the expected old value. The time
the unexpected value was read can be taken as the linearization point.

Lemma 5. Linearization of successful CASN. If C4 sets the status SUCCEEDED
then the L1 completed and so (i) for each update entry, either X1 installed a
descriptor-pointer or it found a pointer already in place, (ii) those values remain
in place since no thread is yet in phase 2 (Lemma 2) and so (iii) C4 changes the
logical contents of all update addresses, forming the linearization point.

Thirdly, we consider the decided stage of a descriptor's lifecycle:

Lemma 6. Threads with visible e�ects operating on decided descriptors are

in phase 2 of the algorithm. The only updates to shared storage outside phase 2
are X1 and C4. Each tests the descriptor status for UNDECIDED.

Lemma 7. Threads with visible e�ects operating on decided descriptors pre-

serve the logical contents of memory. The only update is C5 and, if it succeeds,
the computed value matches the logical contents of the location.

Lemma 8. All descriptor-pointers are removed after one thread exits phase

2 of the algorithm. During phase 2 a thread attempts C5 for each update entry.
Only C5 changes a descriptor-pointer into a non-descriptor pointer: it will fail if
(i) a descriptor-pointer was not installed at that location or (ii) another thread
has already removed the descriptor-pointer by its own execution of C5.

Finally, a technical requirement of the restrictions RDCSS imposes (Sect. 4):

Lemma 9. CAS1 operations do not fail because of concurrent RDCSS. C4 acts
on the control section so cannot encounter an RDCSS descriptor pointer. The only
other consideration is between C5 and X1. C5 has a CASN descriptor pointer as its
old value and X1 has a non-descriptor value as its old value, so if C5 fails because
it encounters a pointer to an RDCSS descriptor then it would have failed anyway.



6 Implementation

The pseudocode makes a number of assumptions about the underlying platform,
and ignores four important problems: allocating and de-allocating descriptors,
implementing the IsDescriptor predicates, the availability of CAS1 as an atomic
primitive and the non-linearizability of the processor-supplied read/write and
CAS1 primitives. We address those concerns in Sects 6.1{6.4.

6.1 Storage Management

For both RDCSS and CASN we assumed that fresh descriptors would be used on
each invocation. We developed two techniques to reduce allocations. Firstly, we
embed a group of RDCSS descriptors into each CASN descriptor to form a combined

descriptor. Rather than holding the �ve RDCSS �elds directly, these embedded
descriptors contain a single constant reference to the enclosing CASN descriptor
from which the RDCSS descriptor values are derived. Secondly, in each combined
descriptor, we provide only one embedded RDCSS descriptor per thread. This
still acts `as if' fresh addresses are used because (i) the addresses operated on
by a particular CASN are distinct from one another, and (ii) the RDCSS X1 will
install a thread's embedded descriptor at most once at each address (if the RDCSS
does install the pointer then either the loop advances to the next iteration or it
terminates because the status �eld is no longer UNDECIDED).

We evaluated two ways of managing these combined descriptors. In the �rst
we assume garbage collection is already provided. In the second we introduce ref-
erence counting following Valois' CAS1-based design [17]. We use per-thread lists
of free descriptors so that, without contention, a descriptor retains aÆnity for a
particular thread. Manipulating reference counts and free lists forms around 10%
of the execution time of an un-contended CASN. Although this scheme does not
allow the storage that holds descriptors to be re-used for other non-reference-
counted purposes, it is easy to imagine hybrids in which long-term shrinking uses
garbage collection but short-term re-use employs counts. We are currently eval-
uating such combinations as well as Michael's SMR algorithm [13] and Herlihy
et al.'s solution to the Repeat O�ender Problem [8].

6.2 Descriptor Identi�cation

The IsDescriptor and IsCASNDescriptor predicates must identify pointers to
the descriptors used by RDCSS and CASN. If run-time type information is available
then this could be exploited without further storage cost. Otherwise, the pointers
themselves can be made distinct by non-zero low-order bits (as we did in previous
work to indicate deleted items [6]). We need two bits to distinguish ordinary
pointers, references to RDCSS descriptors and references to CASN descriptors.

We favour this second scheme because it is widely applicable and it avoids
an additional memory access to obtain type information. An attractive hybrid
scheme, which we have not yet evaluated, is to reserve a single bit to identify
descriptor-pointers in general and then to use type information, or prescribed
header values, to distinguish between the two kinds.



Table 2. CPU microseconds per successful CASN operation on a range of popular four-
processor systems and CASN widths of 2, 4, 16 and 64 words

IA-32 IA-64 Alpha SPARC

Type 2 4 16 64 2 4 16 64 2 4 16 64 2 4 16 64

HF 2.4 4.2 21 280 1.6 2.8 17 280 2.0 3.9 24 200 3.1 5.5 30 430
HF-RC 2.1 3.6 19 270 1.5 2.6 16 270 2.2 3.7 23 200 3.2 5.5 28 400

IR 4.0 6.3 26 340 3.4 4.4 19 300 4.5 6.4 31 490 5.4 8.7 44 570
MCS 4.8 7.2 22 84 5.6 8.2 24 92 7.1 7.4 17 63 10 16 61 250

MCS-FG 2.1 4.2 17 130 1.4 2.8 14 130 2.6 5.3 26 210 3.5 6.9 43 290

6.3 Atomic Hardware Primitives

Rather than implementing CAS1 directly, some processors provide the more
expressive LL/SC (load-linked, store-conditional) operations. Unlike the strong

LL/SC operations sometimes used in algorithms, these must form non-nesting
pairs and SC can fail spuriously [7].

Where necessary we used a software version of CAS1, based on LL/SC, to
generate the CASN results in this paper. Methods for building stronger primitives
from LL/SC are well known: for example, the Alpha processor handbook shows
how to use them to construct atomic single-word read-modify-write sequences
such as CAS1. Such constructions, based on a simple loop that retries a LL/SC
pair, are non-blocking under a guarantee that there are not in�nitely many
spurious failures during a single CAS1 operation.

6.4 Weak Memory Architectures

Finally, our pseudo-code assumes the sub-operations it uses are themselves lin-
earizable. This is not true of modern systems { including all those used in Sect. 7.
In general these systems provide cache-coherence, serializability of accesses to
single words and total ordering between accesses from the same processor to the
same location. Stronger ordering must be established using barrier instructions:
operations before the barrier must commit before any later operation may be
executed. Adve and Gharachorloo provide a tutorial on the subject [1].

7 Evaluation

Our benchmark is much the same as the resource allocation one used by Shavit
and Touitou's which they argue is representative of highly concurrent queue
and counter implementations [16]. A shared vector is initialized with distinct
pointers. Each processor loops selecting a set of locations, reading their current
values using CASNRead and attempting a CASN operation to permute the values
between the locations. For a test using CASN operations of width n we divide the
vector into n equal sized buckets and select one entry from each bucket. This
benchmark enables a range of contention levels to be investigated by varying the
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Fig. 3. CPU time per successful CASN operation for two large systems

concurrency, vector size, the width of CASN performed and whether padding is
inserted between elements to place them on separate cache lines.

We implemented three non-blocking algorithms: ours assuming a garbage
collector (HF) or using reference counting (HF-RC) and Israeli and Rappoport's
CAS1-based design as the only practical alternative from Fig. 1 (IR). We also
implemented two lock-based schemes using the queued spin-lock design of Mellor-
Crummey and Scott [12], either with one lock to protect the entire vector (MCS)
or with �ne grain (i.e. per-entry) locks (MCS-FG).

Our measurements exclude initialisation. We start timing after all threads
signal that they are executing and then run for two seconds. Results showing
time per successful operation are calculated by dividing the total CPU time
used (excluding initialisation) by the number of successful CASN operations. The
CPU time and successful operations are summed across all threads. All results
are presented to 2 signi�cant �gures. Although we do not analyse the costs
of CASNRead operations in isolation, it is worth noting that a well-engineered
implementation for any of the non-blocking algorithms adds only two operations
to each read from a location that may be subject to CASN updates.

7.1 Small Systems

We ran our benchmark application using four threads on four-processor IA-
32 Pentium-III, IA-64 Itanium, Alpha 21264 and SPARC Ultra-4 workgroup
servers. We used a vector of 1024 elements without padding { in doing so we
aim to produce a worst-case layout. The CPU requirements in �s per successful
CASN are shown in Table 2 over a range of CASN widths on each system.

Our CASN algorithm performs universally better than the IR scheme. This is
the case for every test we ran and follows intuition: the algorithms use the same
helping strategy and, for an uncontended n way operation, HF performs 3n+ 1
word-size CAS1 steps whereas IR performs 4n + 4 double-width steps. There is
little di�erence in performance between HF and HF-RC: in low contention the



Table 3. Power3-II system (top) and MIPS R12000 system (bottom) : CPU microsec-
onds per successful CASN operation with 16 threads vs. vector size and CASN width

CAS2 CAS4 CAS8
Type 256 1024 4096 256 1024 4096 256 1024 4096

HF-RC 4.7 3.8 3.6 11 6.8 5.9 39 17 12
IR 89 79 76 140 110 94 270 160 120

MCS 50 51 49 77 77 78 130 130 130
MCS-FG 4.2 3.6 3.6 11 7.6 6.9 35 18 14
DUMMY 2.8 2.7 2.7 4.8 4.4 4.3 9.4 8.0 7.7

CAS2 CAS4 CAS8
Type 256 1024 4096 256 1024 4096 256 1024 4096

HF-RC 21 16 15 55 33 28 180 99 58
IR 130 120 120 190 150 140 470 220 180

MCS 130 120 130 220 190 200 380 380 430
MCS-FG 18 14 12 38 29 24 115 69 54
DUMMY 14 11 12 26 23 21 62 44 40

cost of reference counting is balanced by the locality gained by re-use and as
contention rises the main loop of the CASN dominates execution.

Only the non-blocking algorithms experience CASN failures because the lock-
based designs prevent updates between the old values being read and the CASN

being attempted. On the 2-processor system the non-blocking algorithms exhibit
indistinguishable success rates: 97-99% for widths of up to 8, 90% for 16, 70%
for 32 and 50% for 64. On the 4-processor machines success rates of 90% and
above are achieved for CASN widths of 2, 4 or 8.

7.2 Large Systems

We now examine larger systems: an IBM SP node of 16 Power3-II processors
with uniform memory access and a ccNUMA Origin 2000 system with 64 MIPS
R12000 processors. For these systems we inserted padding between vector el-
ements to place each on its own cache line and eliminate false sharing. This
improved the performance of all algorithms, particularly where contention was
high. Furthermore, we maximized the performance of the MCS-FG algorithm by
locating each vector element and its associated lock in the same cache line.

Fig. 3 shows how the CPU time per successful CASN varies with the number
of processors used. In each case we examined CAS2 and CAS4 operating on a
vector of 1024 pointers, corresponding to a minimum success rate of 92% on the
Power3-II machine and 90% on the MIPS machine. We did not run experiments
with HF because of its high per-processor memory demands in the absence of a
garbage collector. In all graphs the lines for MCS-FG and HF-RC are coincident:
we therefore present these results with suitably-labelled single lines.

Finally, we investigated the e�ects of varying the vector size. Table 3 shows
�s per success on two 16-processor con�gurations. It is interesting to note the



deleterious e�ect on performance caused by the increased contention occurring
with smaller vector sizes, particularly for wider CASN. For example, on Power3-II
the time per successful HF-RC CAS8 operation increases by 340% when the vector
size reduces from 4096 to 256. With the larger vector 92% of operations succeed,
but this drops to 52% for 256. The increased time per successful operation is
due to the large amount of wasted work, but also to the heavy load placed on
the machine's memory system as cache line ownership moves between CPUs.

Throughout all of our experiments we found that HF-RC outperforms the
other non-blocking algorithm, IR, by a wide margin. Performance of HF-RC was
closely comparable to that of theMCS-FG, the best lock-based algorithm. During
these experiments we also recorded the ratio of minimum and maximum per-
thread number of successful operations. Using this as a metric of fairness we
found that HF-RC is at least as fair as MCS-FG.

7.3 Performance Bounds

We attempted to establish a best-case performance bound for CASN implemen-
tations on these systems. This was achieved by using a DUMMY function that
performs a CAS1 on each of the N locations, but without any attempt to provide
atomicity across the updates. For larger vector sizes (hence where contention
is low) we found that the CPU time per operation used by DUMMY typically
accounted for over 75% of that consumed by HF-RC. It is perhaps surprising
that this simple operation takes such a large fraction of the time taken to com-
plete the considerably more complex HF-RC and MCS-FG routines: For example,
HF-RC requires three times as many CAS1 operations.

This discrepancy is because the cost of individual CAS1 operations vary con-
siderably depending on whether the location's cache line is already held in an
exclusive state in the local cache, or whether such a request must be issued to
all other CPUs. When a CASN operation is started the locations that are to be
updated are initially unlikely to be held locally since the vector is being actively
shared with other CPUs. In contrast, the CAS1 operations that manipulate the
CASN descriptor are likely to be local unless `helping' has occurred.

We reason that any implementation of CASN will have to incur the cost of
gaining exclusive ownership of the locations to be updated, and hence the per-
formance of DUMMY provides a reasonable lower bound. From these results we
conclude that substantial improvement on HF-RC is unlikely.

8 Conclusion

The results show that our algorithm achieves performance comparable with tra-
ditional blocking designs while maintaining the bene�ts of a non-blocking ap-
proach. By reserving only a small and constant amount of space (0 or 2 bits
per location) we obtain key bene�ts over other non-blocking designs: those bits
can often be held in storage that is otherwise unused in aligned pointer values,
letting us build CASN from a single-word CAS1 operation and letting us use it



on ordinary data structures. In contrast, Israeli and Rappoport's design requires
per-processor reserved bits and further ownership information. Current proces-
sors provide a maximum of a 64-bit CAS1 so if pointers are themselves 64-bits
then this prevents the IR design from being used without substantial limitations
on the data being held (or from being implementable at all much beyond the
32-processor results shown here). Moir's LL/SC constructions avoid per-processor
reservations, but they are not amenable to use with natural pointer representa-
tions and their space reservations still grow with the level of concurrency [14].
Our work provides compelling evidence that CAS1 is suÆcient for practical im-
plementations of concurrent non-blocking data structures, in contrast to other
work that mandates CAS2.
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