
Robin Milner, FRS
 1934-2010

Programming Language
Design and Semantics

Quite simply, the versatility of computers is exactly equal to
the versatility of the languages by which we prescribe their
behaviour, and this appears to be unbounded.

1997 University of Bologna

The Influence of
Robin’s Work

What impresses me most about Robin’s
contributions to PL’s is not just their influence,
but the extent to which his ideas were born fully
formed.

Typed Functional
Programming

We believe that ML contain[s] features worthy of serious
consideration; these are the escape mechanism, and the
polymorphic type discipline ..., and also the attempt to make
programming with functions-including those of higher type-
as easy and natural as possible.

Edinburgh LCF 1979

Classic ML

• Polymorphic type inference.

• Crucial for concision and convenience.

• Minimizes bureaucracy of types.

• Escape mechanism = exceptions.

• Supports backtracking proof search.

Classic ML

• Abstract Types.

• Enforcement of representation invariants.

• Confines trusted computing base in provers.

• Higher-order functions.

• Crucial for tactic-based interactive provers.

• Mathematically natural.

Polymorphic Type
Inference

• Principal Typing Theorem

• If ⊢ e : τ, then there is principal type
scheme σ such that ⊢ e : σ and σ ≥ τ.

• The type scheme σ may be found by first-order
unification.

• One of the most important and influential
theorems in the theory of PL’s!

Polymorphic Type
Inference

• Principal type scheme for map function:

• (* → **) → * list → ** list

• ∀ α, β (α → β) → α list → β list

• Specializes to instances such as

• (int → string) → int list → string list

Polymorphic Type
Inference

• Milner’s Theorem is both an inspiration and a
torment to language designers.

• Extremely hard to do significantly better!

• Many useful extensions, including record and
object types, type classes, and modules.

• Shown to be complete for DEXPTIME, yet is
amazingly practical and useful for real code.

Abstract Types

• ML featured a rigorous abstract type
mechanism.

• abs/rep mediate between an abstract type
and its representation

• ensures representation independence

• tightly connected with polymorphism

• Bounds trust assumptions for provers.

Abstract Types

absrectype thm = form list # form
with hyps t = h
 where h,c = repthm t
and concl t = ...
and truthI = absthm (nil, TRUE)
and ...

The representation of thm is hidden from clients
so that the only values of type thm are theorems.

Influence of ML

• ML gave rise to Hope, Miranda, Haskell, Caml,
and Standard ML (and inspired many more).

• Pattern matching, modules/type classes,
exceptions, mutation, records, objects/classes.

• The standard against which all functional
language designs are judged.

• Numerous papers were inspired by ML.

• Appel: “POPL is the Principles of ML”

ML Modules

• Modules generalize abstract types and type
classes.

• Components are called structures.

• Interfaces are called signatures.

• Functions are called functors.

• Apply functional programming “in the small” to
programs “in the large”.

Standard ML

signature THEOREM = sig
 type thm
 val truthI : thm
 val andI : thm -> thm -> thm
 val andEL : thm -> thm
 ...
end

structure Thm :> THEOREM = ...

Language Definition

The aim of a language definition is ... to establish a theory
of semantic objects upon which the understanding of
particular programs may rest.

The Definition of Standard ML 1997

Language Definition

• What does it mean for a programming language to
exist?

• Precise definitions support rigorous theory.

• Precise definitions support implementation by
ensuring compatibility.

• The Definition of Standard ML remains the best
example of rigorous language definition at scale.

Language Definition

• Operational, rather than denotational.

• Contrary to conventional wisdom (at the time).

• Readable, scalable, applicable.

• Symmetry between static and dynamic semantics.

• Safety as coherence of statics and dynamics.

Language Definition

• Static semantics: elaboration of programs.

• ⊢ program ⇒ type

• Dynamic semantics: evaluation of programs.

• ⊢ program ⇒ result

• The result can be either an answer or wrong.

Type Safety

Theorem: Well-typed programs do not go wrong.

If ⊢ program ⇒ type and ⊢ program ⇒ result, then
result is a value of type, and hence cannot be
wrong.

States the coherence of the static and dynamic
semantics. First crisp formulation of “safety”.

Full Abstraction

• Robin formulated the full abstraction problem
for language semantics:

• Find a compositional interpretation of a
language such that equality of meaning
coincides with operational (behavioral)
equivalence.

• Showed that there is a unique fully abstract model
by an ingenious construction.

