
Serpent: A Proposal for the
Advanced Encryption Standard

Ross Anderson1 Eli Biham2 Lars Knudsen3

1 Cambridge University, England; email rja14@cl.cam.ac.uk
2 Technion, Haifa, Israel; email biham@cs.technion.ac.il

3 University of Bergen, Norway; email lars.knudsen@ii.uib.no

Abstract. We propose a new block cipher as a candidate for the Ad-
vanced Encryption Standard. Its design is highly conservative, yet still
allows a very efficient implementation. It uses S-boxes similar to those
of DES in a new structure that simultaneously allows a more rapid
avalanche, a more efficient bitslice implementation, and an easy anal-
ysis that enables us to demonstrate its security against all known types
of attack. With a 128-bit block size and a 256-bit key, it is as fast as DES
on the market leading Intel Pentium/MMX platforms (and at least as
fast on many others); yet we believe it to be more secure than three-key
triple-DES.

1 Introduction

For many applications, the Data Encryption Standard algorithm is nearing the
end of its useful life. Its 56-bit key is too small, as shown by a recent distributed
key search exercise [28]. Although triple-DES can solve the key length problem,
the DES algorithm was also designed primarily for hardware encryption, yet the
great majority of applications that use it today implement it in software, where
it is relatively inefficient.

For these reasons, the US National Institute of Standards and Technology
has issued a call for a successor algorithm, to be called the Advanced Encryption
Standard or AES. The essential requirement is that AES should be both faster
than triple DES and at least as secure: it should have a 128 bit block length and
a 256 bit key length (though keys of 128 and 192 bits must also be supported).

In this paper, we present a candidate for AES. Our design philosophy has
been highly conservative; we did not feel it appropriate to use novel and untested
ideas in a cipher which, if accepted after a short review period, will be used to
protect enormous volumes of financial transactions, health records and govern-
ment information over a period of decades.

We initially decided to use the S-boxes from DES, which have been studied
intensely for many years and whose properties are thus well understood, in a new
structure optimized for efficient implementation on modern processors while si-
multaneously allowing us to apply the extensive analysis already done on DES.
The resulting design gave an algorithm (to which we will refer as Serpent-0) that



was as fast as DES and yet more secure than three-key triple-DES, provided a
192 or 256 bit key was selected. This design was published at the 5th Interna-
tional Workshop on Fast Software Encryption [10] in order to give the maximum
possible time for public review. Since then we have sought to strengthen the algo-
rithm and improve its performance. As a result, we have selected new, stronger,
S-boxes and changed the key schedule slightly. We can now show that our design
(which we will call Serpent-1, or more briefly, Serpent) resists all known attacks,
including those based on both differential [12] and linear [27] techniques, with
very generous safety margins.

The Serpent ciphers were inspired by recent ideas for bitslice implementation
of ciphers [6]. However, unlike (say) the bitslice implementation of DES, which
encrypts 64 different blocks in parallel in order to gain extra speed, Serpent is
designed to allow a single block to be encrypted efficiently by bitslicing. This
allows the usual modes of operations to be used, so there is no need to change
the environment to gain the extra speed.

Serpent achieves its high performance by a design that makes very efficient
use of parallelism, and this extends beyond the level of the algorithm itself. For
example, in many applications, we wish to compute a MAC and perform CBC
encryption simultaneously with different keys; and as we will see below, our
design enables this to be done very efficiently on a processor with two 32-bit
integer ALUs (such as the popular Intel MMX series) and almost as efficiently
on a 64-bit processor (such as the DEC Alpha).

2 The Cipher

Serpent is a 32-round SP-network operating on four 32-bit words, thus giving
a block size of 128 bits. All values used in the cipher are represented as bit-
streams. The indices of the bits are counted from 0 to bit 31 in one 32-bit
word, 0 to bit 127 in 128-bit blocks, 0 to bit 255 in 256-bit keys, and so on.
For internal computation, all values are represented in little-endian, where the
first word (word 0) is the least significant word, and the last word is the most
significant, and where bit 0 is the least significant bit of word 0. Externally, we
write each block as a plain 128-bit hex number.

Serpent encrypts a 128-bit plaintext P to a 128-bit ciphertext C in 32 rounds
under the control of 33 128-bit subkeys K̂0, . . . , K̂32. The user key length is
variable, but for the purposes of this submission we fix it at 128, 192 or 256
bits; short keys with less than 256 bits are mapped to full-length keys of 256
bits by appending one “1” bit to the MSB end, followed by as many “0” bits
as required to make up 256 bits. This mapping is designed to map every short
key to a full-length key, with no two short keys being equivalent. (We do not
propose, for example, the use of 40-bit keys, but if they are required in some
applications, then our padding method can cope with them.) There are no other
restrictions on the keyspace.

The cipher itself consists of:

– an initial permutation IP ;

2



– 32 rounds, each consisting of a key mixing operation, a pass through S-boxes,
and (in all but the last round) a linear transformation. In the last round,
this linear transformation is replaced by an additional key mixing operation;

– a final permutation FP .

The initial and final permutations do not have any cryptographic significance.
They are used to simplify an optimized implementation of the cipher, which
is described in the next section, and to improve its computational efficiency.
Both these two permutations and the linear transformation are specified in the
appendix; their design principles will be made clear in the next section.

We use the following notation. The initial permutation IP is applied to the
plaintext P giving B̂0, which is the input to the first round. The rounds are
numbered from 0 to 31, where the first round is round 0 and the last is round 31.
The output of the first round (round 0) is B̂1, the output of the second round
(round 1) is B̂2, the output of round i is B̂i+1, and so on, until the output of the
last round (in which the linear transformation is replaced by an additional key
mixing) is denoted by B̂32. The final permutation FP is now applied to give the
ciphertext C.

Each round function Ri (i ∈ {0, . . . , 31} uses only a single replicated S-box.
For example, R0 uses S0, 32 copies of which are applied in parallel. Thus the first
copy of S0 takes bits 0, 1, 2 and 3 of B̂0⊕ K̂0 as its input and returns as output
the first four bits of an intermediate vector; the next copy of S0 inputs bits 4–7 of
B̂0⊕K̂0 and returns the next four bits of the intermediate vector, and so on. The
intermediate vector is then transformed using the linear transformation, giving
B̂1. Similarly, R1 uses 32 copies of S1 in parallel on B̂1 ⊕ K̂1 and transforms
their output using the linear transformation, giving B̂2.

The set of eight S-boxes is used four times. Thus after using S7 in round 7,
we use S0 again in round 8, then S1 in round 9, and so on. The last round R31

is slightly different from the others: we apply S7 on B̂31 ⊕ K̂31, and XOR the
result with K̂32 rather than applying the linear transformation. The result B̂32

is then permuted by FP , giving the ciphertext.
Thus the 32 rounds use 8 different S-boxes each of which maps four input

bits to four output bits. Each S-box is used in precisely four rounds, and in each
of these it is used 32 times in parallel. The S-box design is discussed below.

As with DES, the final permutation is the inverse of the initial permutation.
Thus the cipher may be formally described by the following equations:

B̂0 := IP (P )
B̂i+1 := Ri(B̂i)

C := FP (B̂32)
where

Ri(X) = L(Ŝi(X ⊕ K̂i)) i = 0, . . . , 30
Ri(X) = Ŝi(X ⊕ K̂i)⊕ K̂32 i = 31

3



where Ŝi is the application of the S-box Si mod 8 32 times in parallel, and L
is the linear transformation.

Although each round of the proposed cipher might seem weaker than a round
of DES, this is not the case. For example, the probability of the best six-round
characteristic of DES is about 2−20, while for Serpent the corresponding figure
is less than 2−58. 16-round Serpent would be as secure as triple-DES, and twice
as fast as DES. However, AES may persist for 25 years as a standard and a
further 25 years in legacy systems, and will have to withstand advances in both
engineering and cryptanalysis during that time. We therefore propose 32 rounds
to put the algorithm’s security beyond question. This gives us a cipher that is
about as fast as DES but very more secure than 3DES.

2.1 The S-boxes

The S-boxes of Serpent are 4-bit permutations with the following properties:

– each differential characteristic has a probability of at most 1/4, and a one-bit
input difference will never lead to a one-bit output difference;

– each linear characteristic has a probability in the range 1/2 ± 1/4, and a
linear relation between one single bit in the input and one single bit in the
output has a probability in the range 1/2± 1/8;

– the nonlinear order of the output bits as a function of the input bits is the
maximum, namely 3.

The S-boxes were generated in the following manner, which was inspired by
RC4. We used a matrix with 32 arrays each with 16 entries. The matrix was
initialised with the 32 rows of the DES S-boxes and transformed by swapping
the entries in the rth array depending on the value of the entries in the (r+ 1)st
array and on an initial string representing a key. If the resulting array has the
desired (differential and linear) properties, save the array as a Serpent S-box.
Repeat the procedure until 8 S-boxes have been generated.

More formally, let serpent[·] be an array containing the least significant four
bits of each of the 16 ASCII characters in the expression “sboxesforserpent”.
Let sbox[·][·] be a (32 × 16)-array containing the 32 rows of the 8 DES S-
boxes, where sbox[r][·] denotes the rth row. The function swapentries(·, ·) is
self-explanatory. The following pseudo-code generates the Serpent S-boxes.

index := 0
repeat
currentsbox := index modulo 32;
for i:=0 to 15 do
j := sbox[(currentsbox+1) modulo 32][serpent[i]];
swapentries (sbox[currentsbox][i],sbox[currentsbox][j]);

if sbox[currentsbox][.] has the desired properties, save it;
index := index + 1;

until 8 S-boxes have been generated

4



In Serpent-0, we used the DES S-boxes in order to inspire a high level of public
confidence that we had not inserted any trapdoor in them. A similar assurance
for Serpent-1 comes from the fact that the S-boxes have been generated in this
simple deterministic manner.

2.2 Decryption

Decryption is different from encryption in that the inverse of the S-boxes must
be used in the reverse order, as well as the inverse linear transformation and
reverse order of the subkeys.

3 An Efficient Implementation

Much of the motivation for the above design will become clear as we consider
how to implement the algorithm efficiently. We do this in bitslice mode. For a
full description of a bitslice implementation of DES, see [6]; the basic idea is that
just as one can use a 1-bit processor to implement an algorithm such as DES
by executing a hardware description of it, using a logical instruction to emulate
each gate, so one can also use a 32-bit processor to compute 32 different DES
blocks in parallel — in effect, using the CPU as a 32-way SIMD machine.

This is much more efficient than the conventional implementation, in which
a 32-bit processor is mostly idle as it computes operations on 6 bits, 4 bits, or
even single bits. The bitslice approach was used in the recent successful DES
key search [28], in which spare CPU cycles from thousands of machines were
volunteered to solve a challenge cryptogram. However the problem with using
bitslice techniques for DES encryption (as opposed to keysearch) is that one has
to process many blocks in parallel, and although special modes of operation can
be designed for this, they are not the modes in common use.

Our cipher has therefore been designed so that all operations can be executed
using 32-fold parallelism during the encryption or decryption of a single block.
Indeed the bitslice description of the algorithm is much simpler than its con-
ventional description. No initial and final permutations are required, since the
initial and final permutations described in the standard implementation above
are just those needed to convert the data from and to the bitslice representa-
tion. We will now present an equivalent description of the algorithm for bitslice
implementation.

The cipher consists simply of 32 rounds. The plaintext becomes the first
intermediate data B0 = P , after which the 32 rounds are applied, where each
round i ∈ {0, . . . , 31} consists of three operations:

1. Key Mixing: At each round, a 128-bit subkey Ki is exclusive or’ed with the
current intermediate data Bi

2. S-Boxes: The 128-bit combination of input and key is considered as four
32-bit words. The S-box, which is implemented as a sequence of logical op-
erations (as it would be in hardware) is applied to these four words, and the

5



result is four output words. The CPU is thus employed to execute the 32
copies of the S-box simultaneously, resulting with Si(Bi ⊕Ki)

3. Linear Transformation: The 32 bits in each of the output words are linearly
mixed, by

X0, X1, X2, X3 := Si(Bi ⊕Ki)
X0 := X0 <<< 13
X2 := X2 <<< 3
X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 << 3)
X1 := X1 <<< 1
X3 := X3 <<< 7
X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 << 7)
X0 := X0 <<< 5
X2 := X2 <<< 22

Bi+1 := X0, X1, X2, X3

where <<< denotes rotation, and << denotes shift. In the last round, this linear
transformation is replaced by an additional key mixing: B32 := S7(B31⊕K31)⊕
K32. Note that at each stage IP (Bi) = B̂i, and IP (Ki) = K̂i.

The first reason for the choice of linear transformation is to maximize the
avalanche effect. The S-boxes have the property that a single input bit change
will cause two output bits to change; as the difference sets of {0, 1, 3, 5, 7, 13,
22} modulo 32 have no common member (except one), it follows that a single
input bit change will cause a maximal number of bit changes after two and more
rounds. The effect is that each plaintext bit affects all the data bits after three
rounds, as does each round key bit. Even if an opponent chooses some subkeys
and works backwards, it is still guaranteed that each key bit affects each data
bit over six rounds. (Some historical information on the design of the linear
transformation is given in the appendix.)

The second reason is that it is simple, and can be used in a modern processor
with a minimum number of pipeline stalls. The third reason is that it was an-
alyzed by programs we developed for investigating block ciphers, and we found
bounds on the probabilities of the differential and linear characteristics. These
bounds show that this choice suits our needs.

4 The Key Schedule

As with the description of the cipher, we can describe the key schedule in either
standard or bitslice mode. We will give the substantive description for the latter
case.

6



Our cipher requires 132 32-bit words of key material. We first pad the user
supplied key to 256 bits, if necessary, as described in section 2. We then expand
it to 33 128-bit subkeys K0, . . . , K32, in the following way. We write the key K
as eight 32-bit words w−8, . . . , w−1 and expand these to an intermediate key
(which we call prekey) w0, . . . , w131 by the following affine recurrence:

wi := (wi−8 ⊕ wi−5 ⊕ wi−3 ⊕ wi−1 ⊕ φ⊕ i) <<< 11

where φ is the fractional part of the golden ratio (
√

5 + 1)/2 or 0x9e3779b9
in hexadecimal. The underlying polynomial x8 + x7 + x5 + x3 + 1 is primitive,
which together with the addition of the round index is chosen to ensure an even
distribution of key bits throughout the rounds, and to eliminate weak keys and
related keys.

The round keys are now calculated from the prekeys using the S-boxes, again
in bitslice mode. We use the S-boxes to transform the prekeys wi into words ki
of round key in the following way:

{k0, k1, k2, k3} := S3(w0, w1, w2, w3)
{k4, k5, k6, k7} := S2(w4, w5, w6, w7)
{k8, k9, k10, k11} := S1(w8, w9, w10, w11)
{k12, k13, k14, k15} := S0(w12, w13, w14, w15)
{k16, k17, k18, k19} := S7(w16, w17, w18, w19)

. . .

{k124, k125, k126, k127} := S4(w124, w125, w126, w127)
{k128, k129, k130, k131} := S3(w128, w129, w130, w131)

We then renumber the 32-bit values kj as 128-bit subkeys Ki (for i ∈ {0, . . . ,
r}) as follows:

Ki := {k4i, k4i+1, k4i+2, k4i+3} (1)

Where we are implementing the algorithm in the form initially described in
section 2 above rather than using bitslice operations, we now apply IP to the
round key in order to place the key bits in the correct column, i.e., K̂i = IP (Ki).

5 Security

As mentioned above, the initial version of Serpent used the DES S-boxes, as their
differential and linear properties are well understood. Our estimates indicated
that the number of known/chosen plaintexts required for either type of attack
would be well over 2100. Having investigated how these S-boxes worked in our
structure, we realised that it was simple to find S-boxes that would improve
this figure to 2256, and our desire to offer the best candidate algorithm led us
to change to the S-boxes presented in the appendix. (A secondary consideration

7



was that by using 8 S-boxes rather than 32, we greatly reduce the gate count of
a high performance hardware implementation and significantly reduce the code
size of a compact implementation for use in low-cost smartcards.)

By a strength of 2256, we mean that a differential or linear attack against
any key would take that many texts, assuming that they were available (though
they aren’t). This figure comes from computing the relevant probabilities over
all the keys. There are of course higher probability differentials for fixed keys;
indeed for any fixed key. differentials with probability 2−120 can be expected,
and these could in theory be found by exhaustive search. Such differentials are
expected in all the AES candidates, as only the required block size of 128 bits
affects their probability. In addition, if a key of 128 or 192 bits is selected, then
the theoretical cost of keysearch will be reduced.

The conclusion of our analysis is that there is no indication of any useful
shortcut attack; we believe that such an attack would require a new theoreti-
cal breakthrough. The expected strength of Serpent with various key lengths is
therefore as summarised in the following table. In any case, it should be noted
that regardless of the design of a 128 bit block cipher, it is normally prudent to
change keys well before 264 blocks have been encrypted, in order to avoid the
collision attack of section 5.2 below (which applies equally to all AES candi-
dates). This would easily prevent all known kinds of key recovery attack other
than keysearch.

Block Size Key Size Workload Type of attack Chosen/Known Texts
128 128 2128 Exhaustive Search 1
128 192 2192 Exhaustive Search 2
128 256 2256 Exhaustive Search 2

In our analysis, we use conservative bounds to enable our claims to resist
reasonable improvements in the studied attacks. For example, our differential
and linear analysis uses 24-round and 28-round characteristics, shorter by 8 and
4 rounds than the cipher, while the best attack on DES uses characteristics that
are shorter by only three rounds. Our estimates of the probabilities of the best
characteristics are also very conservative; in practice they should be considerably
lower. Therefore, our complexity claims are almost certainly much lower than
the real values, and one may expect Serpent to be much more secure than we
actually claim.

We now list the possible weaknesses and attacks which we had in mind. We
designed Serpent with a view to reducing or avoiding any vulnerabilities that
might arise from them.

5.1 Dictionary Attacks

As the block size is 128 bits, a dictionary attack will require 2128 different plain-
texts to allow the attacker to encrypt or decrypt arbitrary messages under an

8



unknown key. This attack applies to any deterministic block cipher with 128-bit
blocks regardless of its design.

5.2 Modes of Operation

After encrypting about 264 plaintext blocks in the CBC or CFB mode, one
can expect to find two equal ciphertext blocks. This enables an attacker to
compute the exclusive-or of the two corresponding plaintext blocks [23]. With
progressively more plaintext blocks, plaintext relationships can be discovered
with progressively higher probability. In addition, when the algorithm is used
in feedforward mode as a hash function, a collision can be found with an effort
somewhat more than 264 [30]. This attack applies to any deterministic block
cipher with 128-bit blocks regardless of its design.

5.3 Key-Collision Attacks

For key size k, key collision attacks can be used to forge messages with complexity
only 2k/2 [8]. Thus, the complexity of forging messages under 128-bit keys is only
264, under 192-bit keys it is 296, and under 256-bit keys it is 2128. This attack
applies to any deterministic block cipher, and depends only on its key size,
regardless of its design.

5.4 Differential Cryptanalysis

An important fact about Serpent is that any characteristic must have at least
one active S-box in each round. At least two active S-boxes are required on
average, due to the property that a difference in only one bit in the input causes
a difference of at least two bits in the output of each S-box. Therefore, if only one
bit differs in the input of some round, then at least two differ in the output, and
these two bits affect two distinct S-boxes in the following round, whose output
differences affect at least four S-boxes in the following round.

We searched for the best characteristics of this cipher. For this, we made a
worst case assumption that all the entries in the difference distribution tables
have probability 1/4, except the few entries with a one-bit input difference and
one-bit output difference, which are assumed impossible (probability zero). The
following results hold independently of the order of the S-boxes used in the
cipher, and independently of the choice of the S-boxes, so long as they satisfy
these minimal conditions. We searched for the best characteristics with up to
seven rounds, and the ones with the highest probabilities are given in Table 1.

We see that the probability of a 6-round characteristic is bounded by 2−58.
Thus, the probability of a 24-round characteristic is bounded by 2−4·58 = 2−232.
This means that even if an attacker can implement an 8R-attack (which seems
unlikely) this will require many more plaintexts than are available.

Notice that if the linear transformation had used only rotates, then every
characteristic could have 32 equiprobable rotated variants, with all the data

9



Rounds Differential Linear Probability
Probability (1/2± p) p−2

1 2−2 1/2± 4/16 = 1/2± 2−2 24

2 2−6 1/2± 22(4/16)3 = 1/2 ± 2−4 28

3 2−14 1/2± 27(4/16)8 = 1/2 ± 2−9 218

4 2−26 1/2 ± 213(4/16)14 = 1/2± 2−15 230

5 2−42 1/2 ± 219(4/16)20 = 1/2± 2−21 242

6 2−58 1/2 ± 226(4/16)27 = 1/2± 2−28 256

7 < 2−70 1/2 ± 232(4/16)33 = 1/2± 2−34 > 268

Table 1. Bounds on the Probabilities of Differential and Linear Characteristics

words rotated by the same number of bits. This is the reason that we also use
shift instructions, which avoid most of these rotated characteristics.

We have bounded the probabilities of characteristics. However, it is both
much more important and much more difficult to bound the probabilities of
differentials. In order to reduce the probabilities of differentials we have (1)
reduced the probabilities of the characteristics, (2) ensured that there are few
characteristics with the highest possible probability, and that they cannot be
rotated and still remain valid, (3) arranged for characteristics to affect many
different bits, so that they cannot easily be unified into differentials.

We conjecture that the probability of the best 28-round differential is not
higher than 2−120, and that such a differential would be very hard to find. Note
that for any fixed key there expected to be differentials with probability 2−120;
such differentials are to be expected in all ciphers with 128-bit block lengths.

5.5 Linear Cryptanalysis

In linear cryptanalysis, it is possible to find one-bit to one-bit relations of the
S-boxes. The probability of these relations is bounded by 1/2± 1/8. Thus, a 28-
round linear characteristic with only one active S-box in each round would have
probability 1/2±227(1/8)28 = 1/2±2−57, even if the LT is eliminated, and that
an attack based on such relations would require about 2114 known plaintexts.
However, the linear transformation assures that in the round following a round
with only one active S-box, at least two are active.

More general attacks can use linear characteristics with more than one active
S-box in some of the rounds. In this case the probabilities of the S-boxes are
in the range 1/2 ± 1/4. As with differential cryptanalysis, we can bound the
probability of characteristics. We searched for the best linear characteristic of
this cipher under the assumptions that a probability of any entry is not further
from 1/2 than 1/4 and that the probability of a characteristic which relates one
bit to one bit is not further from 1/2 than 1/8. Note that due to the relation
between linear and differential characteristics, the searches are very similar; we
actually modified the search program used in the differential case to search for
the best linear characteristics with up to seven rounds, and those with the highest
probabilities are given in Table 1.

10



We can see that the probability of a 6-round characteristic is in the range
1/2 ± 2−28, from which we can conclude that the probability of a 24-round
characteristic is in the range 1/2± 2−109. The number of plaintexts needed for
such an attack is thus at least 2218, which is much higher than the number of
available texts.

Based on these figures we believe that the probability of the best 28-round
linear differential (or linear hull) is in the range 1/2± 2−120, so an attack would
need at least 2240 blocks. This is a very conservative estimate; we believe the
real figure is well over 2256. In any case, linear attacks are infeasible.

5.6 Higher Order Differential Cryptanalysis

It is well known that a dth order differential of a function of nonlinear order d is
constant, and this can be exploited in higher order differential attacks [7, 22, 26].
The S-boxes all have nonlinear order 3 so one would expect that the nonlinear
order of the output bits after r rounds is about 3r, with the maximum value of
127 reachable after five rounds. Therefore we are convinced that higher order
differential attacks are not applicable to Serpent.

5.7 Truncated Differential Cryptanalysis

For some ciphers it is possible and advantageous to predict only the values of
parts of the differences after each round. This notion, of truncated differential
attacks, was introduced by Knudsen in [22]. However, the method seems best
applicable to ciphers where all operations are done on larger blocks of bits.
Because of the strong diffusion over many rounds, we believe that truncated
differential attacks are not applicable to Serpent.

5.8 Related Keys

As the key schedule uses rotations and S-boxes, and as we XOR the round
number into the prekey, it is highly unlikely that keys can be found that allow
related key attacks [9, 20, 21]. Moreover, different rounds of Serpent use different
S-boxes, so even if related keys were found, related-key attacks would not be
applicable.

Serpent has none of the simpler vulnerabilities that can result from ex-
ploitable symmetries in the key schedule: there are no weak keys, semi-weak
keys, equivalent keys, or complementation properties.

5.9 Other Attacks

Davies’ attack [17, 18] and the improved version of [11] are not applicable, since
the S-boxes are invertible, and no duplications of data bits are applied.

As far as we know, neither statistical cryptanalysis [31] nor partitioning
cryptanalysis [19] provides a less complex attack than differential or linear crypt-
analysis.

11



Non-linear cryptanalysis has so far only managed to improve the linear attack
by small factors [29]. Since a linear attack would involve an impossibly large
number of texts, there is no reason to suspect that non-linear techniques will
give a useful improvement.

5.10 Timing Attacks

The number of instructions used to encrypt or decrypt does not depend on either
the data or the key, and even cache accesses cannot help the attacker as we do
not access different locations in memory for different plaintexts or keys. It follows
that timing attacks [24] are not applicable.

5.11 Analysis based on Electromagnetic Leakage

Some encryption devices have been found to leak key material electromagneti-
cally, such as through variations in their power consumption [25, 32]. Defending
against such attack is primarily the concern of implementers and evaluators; but
since most operations in Serpent use all bits in their operands actively, we believe
that such attacks will be harder than they would be against comparable devices
using many other block ciphers. Much the same should hold for attackers who
attempt to exploit compromising electromagnetic radiation.

5.12 Fault Analysis

We have not been concerned to build in any particular protection against at-
tacks based on induced faults [5, 13, 14]. If an attacker can progressively remove
the machine instructions by which this cipher is implemented, or progressively
destroy selected gates, or progressively modify the bits of the key register, then
he can clearly extract the key. An attacker with the ability to modify the imple-
mentation detail may have many other options based not just on compromising
keys but on subverting protocols, extracting plaintext directly and so on [4]. The
mechanisms required to protect against such attacks depend on the device and
on the protocols it uses, rather than on the design of any block cipher used [1].
They are thus beyond the scope of this work.

6 Performance in Various Environments

We first implemented this cipher on a 133MHz Pentium/MMX processor. Our
32-round bitslice implementation gave speeds as fast as DES: it encrypted 9,791,000
bits per second, or about 1738 clock cycles per block, while the best optimized
DES implementation (Eric Young’s Libdes) encrypts 9,824,864 bits per second
on the same machine and with the same measuring program. With the most
obvious optimisation — keeping the subkeys in a fixed array in memory rather
than passing them as parameters — the speed increases to 10,281,124 bits per
second, or about 1656 clock cycles per 128-bit block. (This version has not been

12



included as it is not consistent with the specified API.) We estimate that on the
NIST platform of a 200 MHz Pentium, it will take about the same number of
clock cycles (the exact figure will depend on the chip version) and will run at
about 14.7 Mbit/s (although this will depend on the test software).

The performance of the cipher on other 32-bit processors in bitslice mode
should be similar to the standard implementation of DES, and when coded in
assembly language Serpent can be faster than DES. It takes about 1830–1940
instructions (depending on the processor) to encrypt 128 bits versus typically
685 instructions to encrypt 64 bits in DES. The reason our cipher is not 50%
slower is that it has been designed to make good use of pipelining, and it does
not need so many memory accesses for table lookups.

The instruction count is based on the observation that a gate circuit of the 4x4
(DES-based) S-boxes requires an average of 15.75 gates on the Pentium, about
14.5 on MMX (using only MMX instructions), and even less on the DEC Alpha
(the numbers vary due to the different sets of instructions, which are detailed in
the appendix). MMX has the additional advantage that it can operate on 64-bit
words, or alternatively on two 32-bit words at once (so two encryptions can be
done in parallel using the same or different keys, thus enabling simultaneous
CBC encryption and MAC computation). It is also implemented with greater
parallelism on some recent chips, such as the Pentium II. On the other hand, it
does not have rotate operations, so rotates require four instructions (copy, shift
left, shift right, and OR).

Interpreted languages will of course give lower performance. Our bitslice Java
implementation, for example, performs 10,000 encryptions in 3.3 seconds on a
133 MHz Pentium MMX. This translates to 388 kbit/s, and we expect 583 kbit/s
on the NIST 200 MHz machine. Just-in-time compilation should improve these
figures dramatically.

It is also worth noting that in many applications we wish to simultaneously
encrypt a string and compute a MAC on it, using two different keys. With
the market leading Intel/MMX architecture this can be accomplished without
difficulty; as noted above, the MMX processor can perform SIMD processing of
two 32-bit computations. With a 64-bit processor such as DEC Alpha, it is only
slightly more complicated; the S-box computations for both 32-bit computations
can be done in parallel and we simply have to implement two different instances
of the linear transformation.

When hashing data, the ability to perform a number of encryptions simulta-
neously may be an advantage, as several streams of data can be hashed separately
and then combined at the end of the computation. Even in the absence of such
techniques, Serpent can be used in feedforward mode as a hash function, and as
key setup takes about one encryption, and 256 bits of message can be hashed
at once, the hashing throughput should be roughly equivalent in speed to the
encryption or decryption throughput.

For very high speed implementation, one would use dedicated hardware which
might have separate logic to pipeline key changes. We estimate that a fully
pipelined hardware implementation would have somewhat under 100,000 gates.

13



This is made up of about 33,000 gates for each of encryption, decryption and key
scheduling, plus control logic and buffers. However we know of no applications
that would require separate hardware for key scheduling.

Unless hardware keysearch chips are required to recover 40-bit (or other
nonstandard length) keys, the application likely to require the greatest key agility
would be ATM/B-ISDN. Here, if successive cells are encrypted with different
keys, this could mean a key change after every 3 blocks encrypted. However,
Serpent’s key change overhead is much the same as a single block encryption,
and so separate S-boxes for key scheduling are unlikely to be an economic use
of silicon. Thus a high performance implementation might take 67,000 gates.
However, as Serpent consists of four repetitions of the same structure of 8 S-
boxes, it would in most high-speed applications be adequate to pipeline only
eight rounds at a time, leading to a gate count of approximately 18,000.

It is also worth remarking that if chip makers wish to support high speed
implementations, then it may not be necessary to add a hardware encryption
circuit to the CPU. It would be sufficient to add what we call the ‘BITSLICE in-
struction’: this works as a generalised multiplexer in that it executes an arbitrary
boolean function on four registers under the control of a truth table encoded in
a (64-bit) fifth register. We estimate that the cost of implementing this on an
n-bit processor will be only about 100n gates, and it would have many uses
other than cryptography (image processing is a particular candidate). If sup-
ported, one BITSLICE instruction would replace many of the instructions in
each round; Serpent would become much faster, and require much smaller code.

A compact hardware implementation of the cipher would iteratively apply
one round at a time, and as the S-boxes in each round are different, one could
use a trick similar to the BITSLICE instruction: get a description of the S-
boxes as a parameter in some register, and compute the S-boxes according to
this description. This trick also reduces the number of gates required for the
hardware implementation of the cipher, to an estimated 4,500.

Another kind of hybrid software-hardware implementation is possible in ap-
plications such as satellite TV and indeed analog pay-TV scrambling in general.
Here, a keystream generator provides pseudorandom values which specify cut
points in luminance and colour signals, which are then cut and rotated using
a dedicated hardware descrambler which contains A/D, FIFO and D/A logic.
The keystream can be provided by Serpent externally, or by means of a small
(4,500 gate) hardware circuit, or by a RISC core such as the ARM embedded
in the descrambler. The advantage of having intelligence there is that authenti-
cation protocols can be executed with the customer smartcard, which prevents
key material being available in the clear to attackers — a known vulnerability
of current systems.

With the move to HDTV and to digital video broadcasting in general, de-
cryption functions can be combined with decompression and copyright manage-
ment functions on a single chip or in a tamper-resistant PCMCIA assembly for
upgrading already fielded equipment. Here, if the decoding is performed in an
ASIC, a 4,500-gate implementation of Serpent would take up negligible space;

14



if the decoding is done using an embedded 32-bit RISC or DSP chip (such as
an ARM) then Serpent can provide more than adequate performance. The same
holds in applications such as secure telephony: here the majority of the pro-
cessing effort relates to speech compression, and the 32-bit processors that are
appropriate for this task can encrypt and decrypt using Serpent at the relevant
bit rates (2.4 through 64 kbit/sec) using less than 1% of their clock cycles. Such
low CPU utilisation is also a goal of videoconferencing equipment makers, and
here too we expect that Serpent will use only a tiny fraction of the relevant CPU
(e.g., less than 1% of a Philips’ 100MHz TriMedia to encrypt or decrypt at 256
kbit/sec).

On processors with a smaller word size, the instruction count is larger but
in many applications one optimises for code size rather than speed. The block
cipher applications that use 8-bit processors, such as smartcards, toll tags and
prepayment utility meters, typically encrypt or decrypt only one or two blocks
during a transaction lasting a second or more; but the cost of the processors,
and thus memory size, is a critical factor [3]. The most compact implementation
of Serpent appears to be a bitslice implementation (thus avoiding the initial and
final permutations) but using table lookups for each S-box (thus avoiding the
code size of the Boolean expression of the S-box).

An Ada implementation that uses this strategy indicates a code size of just
under 1K and a computational cost of 34,000 clock cycles. Thus on a 3.5 MHz
6805, we expect a throughput of about 100 encryptions per second or 12.8 kbit/s.
A full bitslice implementation would occupy more memory (2K) but should take
11,000 clock cycles and thus deliver 40.7 kbit/s. These figures are more than
adequate for the applications in question.

However, we expect that the great majority of implementations will use soft-
ware on general purpose computers such as Pentium MMX and its compatible
successors. We therefore designed Serpent to operate as efficiently as possible
in this environment subject to the constraint of a highly conservative design in
which no radical and untested cryptologic mechanisms are used.

7 Conclusion

We have presented a cipher which we have engineered to satisfy the AES require-
ments. It is as fast as DES, and we believe it to be more secure than three-key
triple DES. We believe that it would still be as secure as three-key triple DES
if its number of rounds were reduced by half. Its security is partially based on
the reuse of the thoroughly studied components of DES, and even although the
final version of the cipher no longer reuses the DES S-boxes, we can still draw on
the wide literature of block cipher cryptanalysis. Our design strategy should also
give a high level of confidence that we have not inserted any trapdoors. The algo-
rithm’s performance comes from allowing an efficient bitslice implementation on
a range of processors, including the market leading Intel/MMX and compatible
chips.

15



A patent application has been filed, but if this cipher is adopted as the
Advanced Encryption Standard we shall grant a worldwide royalty-free license
for conforming implementations.

Finally, information on Serpent, including not just this submission but also
the initial version that appeared at ‘Fast Software Encryption’ and implemen-
tations in other languages such as Ada, are linked to the authors’ home pages:

http://www.cl.cam.ac.uk/~rja14/
http://www.cs.technion.ac.il/~biham/
http://www.ii.uib.no/~larsr/

Acknowledgments

We are extremely grateful to Frank Stajano for coding reference implementations
in C and Python which enabled us to debug our initial version of Serpent, for
running many of the tests independently, and for proofreading this submission.
We are also grateful to Intel Corporation for supporting the second author during
a visit to Cambridge in September 1997 while much of this work was done; to
Markus Kuhn, for the Ada implementation and further proofreading; to the
Cryptix group [16] for the initial Java implementation; to Craig Clapp for a
discussion on the costs of implementing the key schedule in hardware; and to
Gideon Yuval for suggesting the name of the cipher (see Amos 5.19).

References

1. DG Abraham, GM Dolan, GP Double, JV Stevens, “Transaction Security Sys-
tem”, in IBM Systems Journal v 30 no 2 (1991) pp 206–229

2. RJ Anderson, “UEPS — a Second Generation Electronic Wallet” in Computer
Security — ESORICS 92, Springer LNCS vol 648 pp 411–418

3. RJ Anderson, SJ Bezuidenhoudt, “On the Reliability of Electronic Payment
Systems”, in IEEE Transactions on Software Engineering v 22 no 5 (May 1996)
pp 294–301

4. RJ Anderson, MG Kuhn, “Tamper Resistance — a Cautionary Note”, in The
Second USENIX Workshop on Electronic Commerce Proceedings (Nov 1996)
pp 1–11

5. RJ Anderson, MG Kuhn, “Low Cost Attacks on Tamper Resistant Devices”, in
Security Protocols — Proceedings of the 5th International Workshop, Springer
LNCS v 1361 pp 125–136

6. E Biham, “A Fast New DES Implementation in Software”, in Fast Software
Encryption — 4th International Workshop, FSE ’97, Springer LNCS v 1267
pp 260–271

7. E Biham, “Higher Order Differential Cryptanalysis”, unpublished paper, 1994
8. E Biham, How to Forge DES-Encrypted Messages in 228 Steps, Technical Re-

port CS884, Technion, August 1996
9. E Biham, “New Types of Cryptanalytic Attacks Using Related Keys”, in Jour-

nal of Cryptology v 7 (1994) no 4 pp 229–246

16



10. E Biham, RJ Anderson, LR Knudsen, “Serpent: A New Block Cipher Pro-
posal”, in Fast Software Encryption — FSE 98, Springer LNCS vol 1372 pp
222–238

11. E Biham, A Biryukov, “An Improvement of Davies’ Attack on DES”, in Journal
of Cryptology v 10 no 3 (Summer 97) pp 195–205

12. E Biham, A Shamir, ‘Differential Cryptanalysis of the Data Encryption Stan-
dard’ (Springer 1993)

13. E Biham, A Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”,
in Advances in Cryptology — Crypto 97, Springer LNCS v 1294 pp 513–525

14. D Boneh, RA DeMillo, RJ Lipton, “On the Importance of Checking Cryp-
tographic Protocols for Faults”, in Advances in Cryptology — Eurocrypt 97,
Springer LNCS v 1233 pp 37–51

15. CSK Clapp, “Joint Hardware / Software Design of a Fast Stream Cipher”, in
Fast Software Encryption — FSE 98, Springer LNCS vol 1372 pp 75–92

16. “Cryptix AES Kit”, http://www.t-and-g.fl.net.au/java/cryptix/aes/
17. DW Davies, ‘Investigation of a Potential Weakness in the DES Algorithm’,

private communication (1987)
18. D Davies, S Murphy, “Pairs and Triplets of DES S Boxes”, in Journal of Cryp-

tology v 8 no 1 (1995) pp 1–25
19. C Harpes, JL Massey, “Partitioning Cryptanalysis”, in Fast Software Encryp-

tion — 4th International Workshop, FSE ’97, Springer LNCS v 1267 pp 13–27
20. J Kelsey, B Schneier, D Wagner, “Key-Schedule Cryptanalysis of IDEA, GDES,

GOST, SAFER and Triple-DES”, in Advances in Cryptology — Crypto 96,
Springer LNCS v 1109 pp 237–251

21. LR Knudsen, “Cryptanalysis of LOKI91”, in Advances in Cryptology —
Auscrypt ’92 Springer LNCS v 718 pp 196–208

22. LR Knudsen, “Truncated and Higher-Order Differentials”, in Fast Software
Encryption — 2nd International Workshop, FSE ’94, Springer LNCS v 1008
pp 196–211

23. L.R. Knudsen, Block Ciphers – Analysis, Design and Applications, Ph.D. The-
sis, Århus University, Denmark, 1994.

24. PC Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, in Advances in Cryptology — Crypto 96, Springer LNCS
v 1109 pp 104–113

25. PC Kocher, “Differential Power Analysis”, available online at
http://www.cryptography.com/dpa/

26. XJ Lai, ‘Higher Order Derivative and Differential Cryptanalysis’, private com-
munication, September 30, 1993.

27. M Matsui, “Linear Cryptanalysis Method for DES Cipher”, in Advances in
Cryptology — Eurocrypt 93, Springer LNCS v 765 pp 386–397

28. RSA Data Security Inc., www.rsa.com
29. T Shimoyama, “Quadratic relation of S-box and Application to the Linear

Cryptanalysis of DES”, presented at the rump session of Fast Software En-
cryption 98.

30. PC van Oorschot, MJ Wiener, “Parallel Collision Search with Application to
Hash Functions and Discrete Logarithms”, in Proceedings of the 2nd ACM
Conference on Computer and Communications Security (ACM, Nov 94) pp
210–218

31. S Vaudenay, “An Experiment on DES Statistical Cryptanalysis”, in 3rd ACM
Conference on Computer and Communications Security, March 14-16, 96, New
Delhi, India; proceedings published by ACM pp 139–147

17



32. P Wright, ‘Spycatcher — The Candid Autobiography of a Senior Intelligence
Officer’, William Heinemann Australia, 1987, ISBN 0-85561-098-0

18



A Appendix

A.1 The Initial Permutation IP :

Here, having the value v (say, 32) at position p (say, 1) means that the output
bit at position p (1) comes from the input bit at position v (32).

0 32 64 96 1 33 65 97 2 34 66 98 3 35 67 99
4 36 68 100 5 37 69 101 6 38 70 102 7 39 71 103
8 40 72 104 9 41 73 105 10 42 74 106 11 43 75 107

12 44 76 108 13 45 77 109 14 46 78 110 15 47 79 111
16 48 80 112 17 49 81 113 18 50 82 114 19 51 83 115
20 52 84 116 21 53 85 117 22 54 86 118 23 55 87 119
24 56 88 120 25 57 89 121 26 58 90 122 27 59 91 123
28 60 92 124 29 61 93 125 30 62 94 126 31 63 95 127

A.2 The Final Permutation FP :

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

65 69 73 77 81 85 89 93 97 101 105 109 113 117 121 125
2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

66 70 74 78 82 86 90 94 98 102 106 110 114 118 122 126
3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

67 71 75 79 83 87 91 95 99 103 107 111 115 119 123 127

A.3 The Linear Transformation:

For each output bit of this transformation, we describe the list of input bits
whose parity becomes the output bit. The bits are listed from 0 to 127. (Thus,
for example, output bit 1 is the exclusive-or of input bits 72, 114 and 125.) In each
row we describe four output bits which together make up the input to a single
S-box in the next round. It should be noted that this table is IP(LT(FP(x)))
where LT is the linear transformation as specified in section 3.

{16 52 56 70 83 94 105} {72 114 125} { 2 9 15 30 76 84 126} {36 90 103}

{20 56 60 74 87 98 109} { 1 76 118} { 2 6 13 19 34 80 88} {40 94 107}

{24 60 64 78 91 102 113} { 5 80 122} { 6 10 17 23 38 84 92} {44 98 111}

{28 64 68 82 95 106 117} { 9 84 126} {10 14 21 27 42 88 96} {48 102 115}

{32 68 72 86 99 110 121} { 2 13 88} {14 18 25 31 46 92 100} {52 106 119}

{36 72 76 90 103 114 125} { 6 17 92} {18 22 29 35 50 96 104} {56 110 123}

{ 1 40 76 80 94 107 118} {10 21 96} {22 26 33 39 54 100 108} {60 114 127}

{ 5 44 80 84 98 111 122} {14 25 100} {26 30 37 43 58 104 112} { 3 118 }

{ 9 48 84 88 102 115 126} {18 29 104} {30 34 41 47 62 108 116} { 7 122 }

{ 2 13 52 88 92 106 119} {22 33 108} {34 38 45 51 66 112 120} {11 126 }

19



{ 6 17 56 92 96 110 123} {26 37 112} {38 42 49 55 70 116 124} { 2 15 76}

{10 21 60 96 100 114 127} {30 41 116} { 0 42 46 53 59 74 120} { 6 19 80}

{ 3 14 25 100 104 118 } {34 45 120} { 4 46 50 57 63 78 124} {10 23 84}

{ 7 18 29 104 108 122 } {38 49 124} { 0 8 50 54 61 67 82} {14 27 88}

{11 22 33 108 112 126 } { 0 42 53} { 4 12 54 58 65 71 86} {18 31 92}

{ 2 15 26 37 76 112 116} { 4 46 57} { 8 16 58 62 69 75 90} {22 35 96}

{ 6 19 30 41 80 116 120} { 8 50 61} {12 20 62 66 73 79 94} {26 39 100}

{10 23 34 45 84 120 124} {12 54 65} {16 24 66 70 77 83 98} {30 43 104}

{ 0 14 27 38 49 88 124} {16 58 69} {20 28 70 74 81 87 102} {34 47 108}

{ 0 4 18 31 42 53 92} {20 62 73} {24 32 74 78 85 91 106} {38 51 112}

{ 4 8 22 35 46 57 96} {24 66 77} {28 36 78 82 89 95 110} {42 55 116}

{ 8 12 26 39 50 61 100} {28 70 81} {32 40 82 86 93 99 114} {46 59 120}

{12 16 30 43 54 65 104} {32 74 85} {36 90 103 118 } {50 63 124}

{16 20 34 47 58 69 108} {36 78 89} {40 94 107 122 } { 0 54 67}

{20 24 38 51 62 73 112} {40 82 93} {44 98 111 126 } { 4 58 71}

{24 28 42 55 66 77 116} {44 86 97} { 2 48 102 115 } { 8 62 75}

{28 32 46 59 70 81 120} {48 90 101} { 6 52 106 119 } {12 66 79}

{32 36 50 63 74 85 124} {52 94 105} {10 56 110 123 } {16 70 83}

{ 0 36 40 54 67 78 89} {56 98 109} {14 60 114 127 } {20 74 87}

{ 4 40 44 58 71 82 93} {60 102 113} { 3 18 72 114 118 125 } {24 78 91}

{ 8 44 48 62 75 86 97} {64 106 117} { 1 7 22 76 118 122 } {28 82 95}

{12 48 52 66 79 90 101} {68 110 121} { 5 11 26 80 122 126 } {32 86 99}

A.4 The Inverse Linear Transformation:

Here we provide the inverse of the above linear transformation, which is used
when implementing a non-bitslice version of decryption.

{ 53 55 72} { 1 5 20 90 } { 15 102} { 3 31 90 }

{ 57 59 76} { 5 9 24 94 } { 19 106} { 7 35 94 }

{ 61 63 80} { 9 13 28 98 } { 23 110} {11 39 98 }

{ 65 67 84} {13 17 32 102 } { 27 114} { 1 3 15 20 43 102 }

{ 69 71 88} {17 21 36 106 } { 1 31 118} { 5 7 19 24 47 106 }

{ 73 75 92} {21 25 40 110 } { 5 35 122} { 9 11 23 28 51 110 }

{ 77 79 96} {25 29 44 114 } { 9 39 126} {13 15 27 32 55 114 }

{ 81 83 100} { 1 29 33 48 118} { 2 13 43} { 1 17 19 31 36 59 118}

{ 85 87 104} { 5 33 37 52 122} { 6 17 47} { 5 21 23 35 40 63 122}

{ 89 91 108} { 9 37 41 56 126} {10 21 51} { 9 25 27 39 44 67 126}

{ 93 95 112} { 2 13 41 45 60} {14 25 55} { 2 13 29 31 43 48 71}

{ 97 99 116} { 6 17 45 49 64} {18 29 59} { 6 17 33 35 47 52 75}

{101 103 120} {10 21 49 53 68} {22 33 63} {10 21 37 39 51 56 79}

{105 107 124} {14 25 53 57 72} {26 37 67} {14 25 41 43 55 60 83}

{ 0 109 111} {18 29 57 61 76} {30 41 71} {18 29 45 47 59 64 87}

{ 4 113 115} {22 33 61 65 80} {34 45 75} {22 33 49 51 63 68 91}

{ 8 117 119} {26 37 65 69 84} {38 49 79} {26 37 53 55 67 72 95}

{ 12 121 123} {30 41 69 73 88} {42 53 83} {30 41 57 59 71 76 99}

{ 16 125 127} {34 45 73 77 92} {46 57 87} {34 45 61 63 75 80 103}

{ 1 3 20} {38 49 77 81 96} {50 61 91} {38 49 65 67 79 84 107}

{ 5 7 24} {42 53 81 85 100} {54 65 95} {42 53 69 71 83 88 111}

{ 9 11 28} {46 57 85 89 104} {58 69 99} {46 57 73 75 87 92 115}

20



{ 13 15 32} {50 61 89 93 108} {62 73 103} {50 61 77 79 91 96 119}

{ 17 19 36} {54 65 93 97 112} {66 77 107} {54 65 81 83 95 100 123}

{ 21 23 40} {58 69 97 101 116} {70 81 111} {58 69 85 87 99 104 127}

{ 25 27 44} {62 73 101 105 120} {74 85 115} { 3 62 73 89 91 103 108}

{ 29 31 48} {66 77 105 109 124} {78 89 119} { 7 66 77 93 95 107 112}

{ 33 35 52} { 0 70 81 109 113} {82 93 123} {11 70 81 97 99 111 116}

{ 37 39 56} { 4 74 85 113 117} {86 97 127} {15 74 85 101 103 115 120}

{ 41 43 60} { 8 78 89 117 121} { 3 90} {19 78 89 105 107 119 124}

{ 45 47 64} {12 82 93 121 125} { 7 94} { 0 23 82 93 109 111 123}

{ 49 51 68} { 1 16 86 97 125} { 11 98} { 4 27 86 97 113 115 127}

A.5 S-Boxes

Here are the S-boxes S0 through S7:

S0: 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12
S1: 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4
S2: 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2
S3: 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14
S4: 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13
S5: 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1
S6: 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0
S7: 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

Here are the inverse S-boxes for use in decryption:

InvS0: 13 3 11 0 10 6 5 12 1 14 4 7 15 9 8 2
InvS1: 5 8 2 14 15 6 12 3 11 4 7 9 1 13 10 0
InvS2: 12 9 15 4 11 14 1 2 0 3 6 13 5 8 10 7
InvS3: 0 9 10 7 11 14 6 13 3 5 12 2 4 8 15 1
InvS4: 5 0 8 3 10 9 7 14 2 12 11 6 4 15 13 1
InvS5: 8 15 2 9 4 1 13 14 11 6 5 3 7 12 10 0
InvS6: 15 10 1 13 5 3 6 0 4 9 14 7 2 12 8 11
InvS7: 3 0 6 13 9 14 15 8 5 12 11 7 10 1 4 2

A.6 Lists of Relevant Instructions on Various Processors

The relevant instructions on the following processors are:

Pentium: AND, OR, XOR, NOT, rotate
MMX: AND, OR, XOR, NOT, ANDN, only shifts
Alpha: AND, OR, XOR, NOT, ANDN, ORN, XORN, only shifts

where the ANDN operation on x and y is x∧(¬y), the ORN operation is x∨(¬y),
and the XORN operation is x⊕ (¬y) (or equivalently ¬(x⊕ y)).

On MMX a rotate takes four instructions, while on an Alpha it takes three.
On Pentium and MMX it might be necessary to copy some of the registers before

21



use, as instructions have only two arguments; but some instructions can refer
directly to memory. The Alpha instructions have 3 arguments (src1, src2 and
destination), but cannot refer directly to memory.

A.7 Historical Remarks

Here we describe some design history. In our first design, the linear transforma-
tions were just bit permutations, which were applied as rotations of the 32-bit
words in the bitslice implementation. In order to ensure maximal avalanche, the
idea was to choose these rotations in a way that ensured maximal avalanche in
the fewest number of rounds. Thus, we chose three rotations at each round: we
used (0, 1, 3, 7) for the even rounds and (0, 5, 13, 22) for the odd rounds. The
reason for this was that (a) rotating all four words is useless (b) a single set of
rotations did not suffice for full avalanche (c) these sets of rotations have the
property that no difference of pairs in either of them coincides with a difference
either in the same set or the other set.

However, we felt that the avalanche was still slow, as each bit affected only
one bit in the next round, and thus one active S-box affected only 2–4 out of
the 32 S-boxes in the next round. As a result, we had to use 64 rounds, and the
cipher was only slightly faster than triple-DES. So we moved to a more complex
linear transformation; this improved the avalanche, and analysis showed that we
could now reduce the number of rounds to 32. We believe that the final result
is a faster and yet more secure cipher.

We also considered replacing the XOR operations by seemingly more complex
operations, such as additions. We did not do this for two major reasons: (1) Our
analysis takes advantage of the independence of the bits in the XOR operation,
as it allows us to describe the cipher in a standard way, and use the known kinds
of analysis. This would not hold if the XOR operations were replaced; (2) in
some other ciphers the replacement of XORs by additions (or other operations)
has turned out to weaken the cipher, rather than strengthening it.

As noted above, the first published version of Serpent reused the S-boxes from
DES. After this was presented at Fast Software Encryption 98 [10], we studied a
number of other linear transformations and S-boxes. We found that it was easy
to construct S-boxes that gave much greater security. We were aware that any
improvement might come at the expense of the public confidence generated by
reusing the DES S-boxes. However, the possible improvement in security was
simply too great to forego. We therefore decided to counter the fear of trapdoors
by generating the new S-boxes in a simple deterministic way.

Having decided not to use the full set of DES S-boxes, we were also free to
change from 32 S-boxes to 8, which greatly reduces the complexity of hardware
and microcontroller firmware implementations.

After the first version of Serpent was published, some people commented that
the key schedule seemed overdesigned. On reflection we agreed; it was partic-
ularly heavy for hardware implementation. Much of the complexity came from
using the S-boxes to operate on distant rather than consecutive words of the
prekey, in order to ‘minimize the key leakage in the event of a differential attack

22



on the last few rounds of the cipher’, as we put it in [10]. But given the enor-
mous safety margins against differential attack provided by the new S-boxes,
we decided that it was safe to discard this feature. Using consecutive inputs to
the key schedule S-boxes means that round keys can be computed ‘on the fly’
in hardware without any significant memory overhead. This further reduces the
gate complexity of hardware implementations.

Finally, we considered making available cognate algorithms with the same
structure as Serpent but with block sizes of (say) 64, 256 and 512 bits. In the end
we decided not include these in our submission for a number of reasons, of which
by far the most important was that we used the available time to concentrate on
the main algorithm. We did not have the resources to test variants with other
block lengths with the thoroughness that would have been appropriate. We do
not however foresee any great difficulty in developing such variants should they
be required at a later date.

23


