
Murphy’s law, the fitness of evolving species, and the limits of software reliability

Preface

This paper reports work done in 1995–6 and first presented at a seminar at the
Isaac Newton Institute, Cambridge, on May 27th 1996. It provides a rigorous ex-
planation, under quite general assumptions, of why the growth in reliability of large
systems in response to testing is often as poor as can possibly be: a software engi-
neer’s version of ‘Murphy’s Law’. It also shows that essentially the same mathe-
matics applies to population biology, where the effect is different: a species adapts
to changes in its environment at minimal cost, that is, with as few early deaths as
necessary. This analogy struck us as fascinating.

We eventually sent the paper off to a conference whose referee noted that a sim-
ilar result on software reliability had been published meanwhile by Bishop and
Bloomfield (‘A Conservative Theory for Long-Term Reliability-Growth Predic-
tion’, IEEE Transactions on Reliabilityv 45 no 4 (Dec 96) pp 550–560).

Bishop and Bloomfield’s result is proved under less general assumptions than
ours; and they do not use arguments from thermodynamics, or develop the parallels
with the mathematics of population biology, which are a cornerstone of our work.
Nonetheless, the overlap between their paper and ours is significant. There has also
been further empirical data published meanwhile with Michael Lyu’s book‘Soft-
ware Reliability Engineering’(IEEE Computer Society Press, 1995, 0-07-039400-
8). So presenting the novel aspects of our work properly requires a new paper.
However, this paper has now been on the web for over two years, so we have de-
cided to issue it herewith as a technical report.

Robert M. Brady
Brady plc
Cambridge Science Park, Milton Road
Cambridge, CB4 0WE, UK
r.brady@bradyplc.co.uk

Ross J. Anderson
University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, UK
rja14@cl.cam.ac.uk

Robin C. Ball
Department of Physics, University of Warwick
Coventry, CV4 7AL, UK
r.c.ball@warwick.ac.uk



Murphy’s law, the fitness of evolving species,
and the limits of software reliability

Robert M. Brady (1), Ross J. Anderson (2), and Robin C. Ball (3)
1: Brady plc, Cambridge;r.brady@bradyplc.co.uk

2: Computer Laboratory, Cambridge;rja14@cl.cam.ac.uk
3: Department of Physics, University of Warwick;r.c.ball@warwick.ac.uk

Abstract

We tackle two problems of interest to the software assurance community.
Firstly, existing models of software development (such as the waterfall and
spiral models) are oriented towards one-off software development projects,
while the growth of mass market computing has led to a world in which
most software consists of packages which follow an evolutionary develop-
ment model. This leads us to ask whether anything interesting and useful may
be said about evolutionary development. We answer in the affirmative. Sec-
ondly, existing reliability growth models emphasise the Poisson distribution
of individual software bugs, while the empirically observed reliability growth
for large systems is asymptotically slower than this. We provide a rigorous
explanation of this phenomenon. Our reliability growth model is inspired by
statistical thermodynamics, but also applies to biological evolution. It is in
close agreement with experimental measurements of the fitness of an evolv-
ing species and the reliability of commercial software products. However,
it shows that there are significant differences between the evolution of soft-
ware and the evolution of species. In particular, we establish maximisation
properties corresponding to Murphy’s law which work to the advantage of a
biological species, but to the detriment of software reliability.

1 Introduction

The traditional models of software development assume a project approach, in
which a large system is developed from scratch. This development may be top down
and driven by successive refinements of a specification (the waterfall model) or,
where the requirements are unclear, may involve a process of iterative prototyping
(the spiral model). But, since these models were developed, the world has changed;
nowadays most software consists of packages. Some of these are general retail
products, such as word processors, spreadsheets and small business accounts, while
others are specialised. For example, the first author’s company sells a package used
by investment banks to track the exposure of a portfolio of investments to changes
in parameters such as interest and exchange rates.



Murphy’s law, the fitness of evolving species, and the limits of software reliability

But whether mass market or specialised, software packages share an evolutionary
model of development. Products are developed by modifying previous versions, and
over the years, they become so complex that they could simply not be developed (or
redeveloped) from scratch. Indeed, Microsoft has tried more than once to rewrite
Word, and has given up each time [1].

Although there are useful books written by practitioners of evolutionary software
development (e.g., [2]), there is little on the topic in the research literature, and this
led us to ask whether we can say anything that is not just empirically useful but also
scientifically interesting. In particular, can we develop a reliability growth model
that accurately reflects the experience of companies that develop large software
packages?

This led us to confront one of the outstanding puzzles in reliability growth the-
ory. The behaviour of systems which contain a single bug, or a small number of
them, is known to be governed by Poisson survival statistics [3]. For example, the
probabilitypi that a particular defect remains undetected aftert statistically random
tests is given bypi = e−Eit. The quantityEi is sometimes called the ‘virility’ of
the defect, and depends on the proportion of the input space that it affects. Many
systems that adapt to events in their environment can be described quantitatively in
a similar way, and this gives us some hope that a useful analogy might be developed
between software engineering and biological evolution.

The problem is that extensive empirical investigations have shown that in a large
and complex system, the likelihood that thet-th test fails is not proportional to
e−Et but to k/t for some constantk. This was first measured by Adams, who
reviewed the bug history of IBM mainframe operating systems [4]. An equivalent
formulation is that in order for software to have a mean time to failure of (say)
10,000 hours, it must be tested for at least that much time (see, e.g., Butler and
Finelli [5]).

In the rest of this paper, we present a reliability growth model which explains
this apparent discrepancy. We prove that, given reasonable assumptions, thee−Eit

statistics of the individual bugs sum tok/t for the whole system over a wide range
of values oft. Our initial insight was that if we define a ‘temperature’T = 1/t,
then the Poisson statistic becomespi = eEi/T . This is now a thermal (Boltzmann)
distribution, and it suggests that we might be able to use methods inspired by statis-
tical thermodynamics. As we will see below, some of the mathematics goes across,
but the details are different (there is a different normalisation).

This analysis gives a number of interesting results. In addition to explaining the
observed reliability growth ofk/t, we show that under assumptions which are often
reasonable, it is the best possible; that there are fundamental limits on the reliability
gains to be had from re-usable software components such as objects or libraries;
that the failure time measured by a tester depends only on the initial quality of
the program, the scope of the testing, and the number of tests; that each bug’s
contribution to the overall failure rate is independent of whether the code containing
it is executed frequently or rarely (intuitively, code that is executed less is also tested
less); and that it is often more economic for different testers to work on a program



Brady, Anderson, Ball

in parallel rather than in series.
All this leads us to ask to what extent can useful analogies be drawn with biolog-

ical evolution. To answer this, we develop the basics of population genetics using
our techniques. This development is limited, as we cannot take account of benefi-
cial mutations; nonetheless, we can demonstrate useful parallels. For example, it is
known that species evolve quickly under a new environmental pressure to the extent
that they have genic variance: a faster fox will catch the slower rabbits first, leading
to a rapid increase in the rabbit population’s average speed. Analogously, much of
the improvement of large software systems under testing comes from the fact that
some bugs are much more virile than others, and when they are found and removed,
the overall quality of the software increases quickly.

However, our model also gives some caveats against stretching the biological
analogy too far. We prove a version of ‘Murphy’s Law’: that the number of defects
which survive a selection process is maximised. This applies equally to software
and to species; software testing removes the minimum possible number of bugs,
consistent with the tests applied, while biological evolution enables a species to
adapt to a changed environment at a minimum cost in early deaths. However, while
this is an advantage to a biological species — it preserves the maximum amount of
genetic variability — it is a drawback for the software writer, as it leaves intact the
largest possible number of latent bugs, which may be triggered later by a change in
the way that the system is used.

In the following section, we solve macroscopically for the entropy, the overall
system reliability, and the distribution of defects; the nub of the argument, which
will be familiar to students of thermodynamics, is that terms contributing less than
O(1/t) can be ignored in the region of interest. The reader who is unfamiliar with
thermodynamics might skim this section on a first reading, noting merely the nota-
tion and the fact that the model’s predictions are in good agreement with measure-
ment. In section 3, we relate our results to previously speculated or apocryphally
known properties in practical software engineering. Section 4 gives a microscopic
definition of the free energy and entropy, and shows from their properties that the
number of defects is a maximum (Murphy’s law). In sections 5 and 6, we apply
the same thermodynamic method to the defects in the DNA of a living organism.
This enables us to develop the analogies that are possible with biology, and show
their limitations. In the conclusion, we suggest other physical systems to which our
techniques might be applied.

2 The reliability of software

Suppose that we have a piece of software that is large enough for statistical as-
sumptions to hold; thatt random tests are used in the de-bugging phase; and that
each test failure is traced to the bug or bugs causing it, which are corrected. Let
there beN(t) bugs left aftert tests (for simplicity, we assume one test per unit
time), and let the probability that a test fails beE(t), where a test failure counts
double if it is caused by two separate bugs. Then the rate at which defects are



Murphy’s law, the fitness of evolving species, and the limits of software reliability

eliminated is equal to the rate at which they are discovered. That is:

dN = −Edt (1)

The thermodynamic entropy is given byS =
∫

dE/T . ThusS =
∫

tdE = Et −
∫

Edt. This can be solved by substituting equation 1 and neglecting the constant of
integration, givingS = N + Et.

The entropyS is a decreasing function oft (sincedS/dt = tdE/dt anddE/dt <
0). Thus bothS andN are bounded by their initial valueN0 (the number of bugs
initially present) and the quantityS − N = Et is bounded by a constantk (with
k < N0), that is:

E ≤ k/t (2)

The quantityS − N = Et vanishes att = 0 and t = W0, whereW0 is the
thermodynamically large number of input states the program can process. It has a
maximum valueEt = k. We now wish to show that this is maximum is attained
over a wide range of values oft in a large system, and indeed thatEt ≈ k for
N0 � t � W0. This will be the region of interest in most real world systems;
although the sizeW0 of the input state space will be far too large to test, we will
certainly do more tests than the initial number of bugsN0, as this will hopefully be
bounded by the number of lines of code.

We will write equation (2) asEt = k − g(t) where0 ≤ g(t) ≤ k. Sinceg(t) is
bounded, we cannot haveg(t) ∼ tx for x > 0. On the other hand, ifg(t) = At−1,
then this makes a contribution toN of − ∫

g(t)dt/t = A/t, which is reduced to
only one bug afterA tests, and this can be ignored asA < k. Indeed, we can ignore
g(t) = At−x unlessx is very small. Finally, ifg(t) varies extremely slowly witht,
such asg(t) = At−x for smallx, then it can be treated as a constant in the region of
interest, namelyN0 � t � W0. In this region, we can subsume the constant and
near-constant terms ofg(t) into k and disregard the rest, giving:

E ≈ k/t (3)

Thus the mean time to failure is1/E ≈ t/k in units where each test takes one
unit of time, andS ≈ N ≈ N0 − k log t. We shall see thatE corresponds to the
energy of a thermal system, while the ‘energy’ of an individual defect is simply its
virility Ei.

Large software systems are very difficult to debug [7, 8], which suggests that
they contain at least some processes with nontrivial values ofk. To make this more
precise, we will now describe the distribution of defects. Let there beρ(ε)dε bugs
initially with failure rates inε to ε+ dε. From equation (1), their number will decay
exponentially with characteristic time1/ε, so thatE =

∫
ερ(ε)e−εtdε ≈ k/t. The

solution to this equation in the region of interest is

ρ(ε) ≈ k/ε (4)



Brady, Anderson, Ball

This solution is valid forN0 � 1/ε � W0, and is the distribution that will be
measured by experiment. It differs from the ab-initio distribution because some
defects will already have been eliminated from a well tested program (those in
energy bands withρ(ε) ∼ εx for x > −1), and other defects are of such low energy
that they will almost never come to light in practical situations (those in energy
bands withρ(ε) ∼ εx for x < −1).

Equation (4) is in good agreement with experiment. Extensive measurements of
the distribution of bugs in a large number of commercial software products found
a near-universal distributionρ(ε) over several orders of magnitude inε [4]. The
experimental data is in the form of tables showing measured values ofερ(ε) (and not
simply ρ(ε) as asserted by the author in his interpretation). The data there exhibit
a cross-over from the behaviourρ(ε) ≈ ε−1.5 at higher values ofε to ρ(ε) ≈ ε−1 at
lower values ofε.

3 The engineering of reliable software

As noted above, it is widely accepted that if we need a mean time to failure
of about 10,000 hours for a piece of software, then we need to test it for at least
10,000 hours [5]. This is of importance for public policy, as it impinges on the use
of software in applications where very high mean times to failure are required, such
as nuclear plant control and aircraft flight systems. We shall now show that this is
in fact the best mean time to failure that we can expect given such a level of testing,
and that the reliability will usually be less.

So far we have assumed random (also called operational) testing. In practice,
however, test sequences are focussed; they may be biased towards the expected
use of the programme, or to the areas of knowledge and experience of the tester.
A simple example shows how we may quantify the effect of this. Suppose that a
debugging team performst tests on oneK-th part of a cleanly divisible and uniform
program. The tested part will then be in that same state as if a random test strategy
had been adopted usingKt tests on the whole program, and the value ofE will be
the same in both cases. We conclude that if the quality of the system is initially
uniform and correlations can be neglected, then the constantk in equations (3) and
(4) is proportional to the size of the phase space tested.

So the failure time measured by a tester depends only on the initial quality of the
program, the scope of the testing and the number of tests. The tester’s measure-
ments give virtually no further information about the quality of the program or its
likely performance in a customer’s environment, where the distribution of its input
states may be quite different. This is in accordance with observation: students of
safety-critical systems recognise that test results are often a poor performance in-
dicator [3, 5, 7, 8]. It also accords with the authors’ own experience of software
development: a debugging team usually achieves a rapid improvement in failure
time and quickly reaches the point of diminishing returns, as would be expected
from equation (3). However, when the ‘tested’ software is passed on to another
tester, a number of important bugs are often found quite quickly.



Murphy’s law, the fitness of evolving species, and the limits of software reliability

Mature software developers employ several test stages, designed or operated by
different people, in order to reduce the correlations between tests. Our work sug-
gests that these test stages will be more efficient if performed in parallel rather than
series, as each tester will be finding bugs more frequently. Nonetheless, prolonged
field testing is still very important for engineering dependable systems [9].

A trend in software engineering is to employ re-usable software components (or
‘objects’). If a program is constructed from objectsj that have each been subjected
to a large numbertj of tests and are invoked on average once everynj tests, the total
failure rate isE ≈ ∑

kj/tjnj . This shows that one can improve the reliability of
software by using objects, provided they have been tested more thoroughly than the
rest of the software in which they are deployed; this might be the case if they have
already been extensively field tested in other products, or obtained from a company
with a more thorough test department than one’s own. However, the software’s
overall failure rate will then be dominated by terms that correspond to new code,
and this will limit the achievable reliability gain.

The error correction process is imperfect in practice, so some authors have sug-
gested replacing equation 1 with alternatives, such asdN = −0.85Edt [4]. This
leads to a similar analysis, using the definitionS = N + 0.85Et. However, many
professional software developers now use automated tests that can be repeated at
will [10], so that any new bugs that affect the already-tested phase space can be
quickly removed and equation (1) remains a good approximation.

One must often take account of the severity of the bugs as well as their numbers.
For example, we might only be interested in those bugs which could conceivably
cause loss of life or the leakage of classified information. However the above equa-
tions can be applied to the bugs of any given type, so long as the definition is
consistent and a non-trivial number of bugs fall within it.

But however we define reliability, the difficulty of writing reliable software can
be described in the language of thermodynamics as an equipartition property: each
bug’s contribution to the overall failure rate is independent of whether the compo-
nent containing it is executed often or rarely. Intuitively, code that is executed less
is also tested less; mathematically, a component that is executed on average once
everyn tests hasN ≈ N0 − k log(t/n) and so its failure rate−∂N/∂t is indepen-
dent ofn. Such analogies with statistical thermodynamics bring us to ask whether
we can borrow any deeper insights from that field.

4 Free energy and Murphy’s law

Let the probability that thei-th bug survivest tests bepi(t), and let the proportion
of tests that it affects, if it is still present, beEi. Thendpi = −Eipidt and the bugs
obey Poisson survival statisticspi = e−Eit [3]. This distribution is quite general
provided that the statistics of the tests are static. For example, with focussed tests,
the probabilityEi of triggering a particular bug depends on whether it is in the area
of focus, but any static and non-trivial statistics will yield stableEi values and give
Poisson survival statistics.



Brady, Anderson, Ball

Consider the quantityF =
∑

pi(log pi + Eit − 1)/t. This is unaltered if the
distribution is varied by a small amount, since substitutingpi = e−Eit + λvi (for
some arbitraryvi) yields∂F/∂λ = 0 and∂2F/∂λ2 > 0 at λ = 0. This means that
F is minimised for fixedt. Conversely, the basic equation (1) and the exponential
distribution can be derived if we take as an axiom thatF is minimised. In this sense,
the properties ofF mirror those of the free energy in a thermal system.

Macroscopically,E =
∑

Eipi, N =
∑

pi andF = −N/t. So the minimisation
of the free energyF means that the number of defectsN is maximised; that is,
debugging removes the minimum possible number of bugs that must be removed
in order to pass the test sequence. For example, bugs outside the area of test focus
are not removed. This property appears to correspond with the informal principle
called ‘Murphy’s law’.

Consider the quantityS =
∑

pi(1 − log pi). We haveF = E − S/t, so S
is analogous to the entropy of a thermal system. We would expect it to be max-
imised at fixedE, and indeed we find that substitutingpi = e−Eit + λvi yields
∂S/∂λ = t∂E/∂λ and∂2S/∂λ2 < 0 at λ = 0. We also have1/T = t = ∂S/∂E,
which is the formal definition of temperature. This justifies our earlier definition of
the temperatureT of software as1/t; we have a distribution of defects that behaves
statistically as if they were in thermal equilibrium at this temperature [11]. Note
that the distribution is normalised differently from the classical distribution of ex-
citations, which has a denominator(1 + e−Ei/T ), which is why the formulae in this
section have some minor differences from their standard thermal counterparts.

We will now show thatS is approximately proportional to the logarithm of the
number of ways a large system can fail. IfWF − 1 of theW0 distinct input states
are processed incorrectly, then to a good approximationE = WF /W0 and so, from
equations (1) and (3),WF ≈ kW0/t andS ≈ k log WF − C for some constantC.
When there are no bugs left,S = 0 andWF = 1, so we can takeC = 0.

5 Thermodynamic properties of biological adaptation

Previous authors have considered the relationship between entropy and evolution
at the level of flows of free energy in organisms and ecosystems [12]. However,
we may also apply thermodynamic concepts to flows of information, such as the
information in the genetic material itself. In this section, we will show that this
approach can be used to derive a number of known results in population genetics;
in the next section, we will use it to explain a puzzling phenomenon in the dynamics
of viral evolution.

We can think of the defects in the DNA of a living organism as being introduced
by spontaneous mutation and removed by evolutionary selection [13, 14]. We as-
sume that there are a large number of defects of low severity in the genome.

LetEi be the probability that a defect in thei’th base-pair will cause an individual
to fail to reproduce, letpi be the proportion of the population that carries the defect,
and letµ be the probability that a spontaneous mutation arises in any given base-
pair at each conception. Following an asexual genetic line throught generations,



Murphy’s law, the fitness of evolving species, and the limits of software reliability

the microscopic equation of motion is

dpi = (µ − Eipi)dt (5)

The properties we obtain below will be approximate because equation 5 is ap-
proximate. In particular, it does not account adequately for rare favourable muta-
tions, and it neglects base-pairs that have no immediate effect on survival. In fact,
the standard equation used by biologists isdpi = (µ(1 − pi) − Eipi)/(1 − Eipi),
andS is usually used instead ofE for selection; but equation (5) is accurate where
pi is small, as we assume, and will help develop the analogy with our software
engineering model.

Multiplying equation 5 byEi, and summing over theA active base-pairs pro-
duces∂E/∂t = C − A < E2

i > whereC is a constant. In a period of rapid evolu-
tionary change, whenC can be neglected, this is Fisher’s fundamental theorem of
natural selection, published in 1930, that ‘the rate of increase in the fitness of any
organism at any time is equal to its genetic variance in fitness at that time’ [6, 15].
During periods of stability,∂E/∂t = 0 andA < E2

i >= C, so a better description
(also noted by Fisher but not incorporated into his fundamental theorem) would
be, ‘the rate of increase in the fitness of any organism is proportional to its genic
variance in fitness at that time, minus the steady-state variance in fitness’.

Equation 5 lets us establish general maximisation properties. We shall sketch the
analysis, which is similar to that given above. The macroscopic equation of motion
isdN = (Aµ−E)dt; the entropy isS =

∫
tdE = Et−∫

Edt = N+(E−Aµ)t−C ′

for some constantC ′; and the free energy isF = E − S/t = Aµ + (C ′ − N)/t.
Since the free energy is minimised at constantt, it follows thatN is maximised.

In other words, a species adapts to its environment at minimal cost by removing
as few defects as necessary and with as few early deaths as necessary. In this sense,
natural selection is an optimal process. It is also a consequence of the maximi-
sation property that any subsequent change in the environment will trigger defects
that have not been selected out. This is in accordance with the observation that most
environmental changes have a negative effect on fitness [6]. Finally, the maximisa-
tion of N means that there is an optimally large pool of genetic diversity to form
the basis of future evolution — subject to limits set by population size via genetic
drift.

Introducing sex makes the situation slightly more complicated, but introduces no
fundamental problems; Fisher’s theorem can again be shown to hold in appropriate
circumstances [15].

6 When biological and software evolution are similar

During a period of rapid evolutionary change, such as after an environmental
catastrophe, we can neglect the mutation rate, soµ in equation 5 becomes zero and
the dynamics of biological evolution will mirror those of software development,
giving E = k/t at t generations after the start of the period. On the other hand,



Brady, Anderson, Ball

during periods of stability,∂pi/∂t = 0. Solving equation 5 yields an equipartition
property:piEi |steady−state= µ for all i, and summing over the A active base-pairs
this becomesE = Aµ. Therefore

E ≈ k/t + Aµ (6)

This is in good agreement with experiment. Recently, the fitness of a large popu-
lation of the bacterium E. Coli was measured for 10,000 generations after an envi-
ronmental change [16]. The mean fitness was reported to followy = x0+at/(b+t),
wherex0, a andb are constants. WritingE − Aµ = x0 + a − y andk = ab, this
becomesE − Aµ = k/t(1 + b/t). Each population in the experiment was founded
from a single cell of an asexual clone, rather than from a diverse population, and so
we might expect the denominator(1+ b/t) to arise if it took an initialb generations
to build up genetic diversity.

In a small system, with only a few defects, we would expect the failure rate
to follow the underlying Poisson survival statistics of the defect with the largest
Ei (the so-called strong law of rare events) and decrease exponentially. In very
recent measurements [17] the effect of defects in the genome of an RNA virus were
found to decrease exponentially with time. The agreement with experiment may
be fortuitous because our simplified analysis does not include the effects of rare
favourable mutations.

7 Conclusion

We have shown how to apply the concepts of entropy and free energy to the infor-
mation content of complex adaptive systems. Our method applies generally to large
systems that are governed or bounded by a superposition of Poisson survival statis-
tics. We have shown in detail how it applies to two specific types of evolutionary
system: software under testing, and a biological species under evolutionary pres-
sure. Our mathematical model is in good agreement with the observed behaviour
of both such systems, and explains a previously puzzling inconsistency between
thee−kt reliability growth of small systems and thek/t reliability growth of large
ones. We have also proved a version of Murphy’s law — that such evolutionary
processes are asymptotically efficient, in that software testing removes the small-
est possible number of bugs consistent with the regime of testing, while biological
evolution removes the smallest possible number of unfit individuals consistent with
the applied selective pressure. However, while Murphy’s law is good news for an
evolving species, it is rather bad news for the software developer.

We believe that our methods may be applicable to many other complex adaptive
systems. Candidates include the extinction of species in an ecosystem under pres-
sure, the response of the immune system to a new antigen, the evolution of medical
practice in the light of studies of clinical outcomes, the history of processes within
a company or an economy, learning in the brain, the defects in the corpus of scien-
tific laws and mathematical proofs, and, presumably, any defects remaining in this
article.



Murphy’s law, the fitness of evolving species, and the limits of software reliability

Acknowledgements:We wish to thank J Bennett, J Brookfield, D Coxell, AWF
Edwards, NG Leveson, B Littlewood, J Knightley, J McMeekin, JR Partington and
W Atmar for helpful discussions, and the Isaac Newton Institute for hospitality to
the second author while the first draft of this paper was being written.

References

[1] Needham R. M.,personal communication

[2] Maguire S.,Debugging the Development Process, Microsoft Press, ISBN
1-55615-650-2 p 50 (1994)

[3] Littlewood B.,Predicting software reliability, Philosophical Transactions of
the Royal Society of LondonA327, pp 513–527 (1989)

[4] Adams E. N.,Optimising preventive maintenance of software products, lBM
Journal of Research & Development, Vol. 28, issue 1 pp 2–14 (1984)

[5] Butler R. W., Finelli G. B.The infeasibility of experimental quantification of
life-critical software reliability, ACM Symposium on Software for Critical
Systems, New Orleans ISBN 0-89791-455-4 pp 66–76 (Dec 1991)

[6] Fisher R. A.,The Genetical Theory of Natural Selection, Clarendon Press,
Oxford (1930); 2nd ed. Dover Publications, NY (1958)

[7] Leveson N. G.,Safeware: System Safety and Computers, Addison Wesley.
ISBN 0-201-11972-2. pp 26–38 (1995)

[8] Littlewood B., Strigini L.,The risks of software, Scientific American special
edition ‘The Computer in the 21st Century’ pp 180–185 (1995)

[9] Anderson R. J., Bezuidenhout S. J.,Cryptographic Credit Control in Pre-
Payment Metering Systems, IEEE Symposium on Security and Privacy,
Oakland ISBN 0-8186-7015-0 (1995) pp 15–23

[10] Automator QA , software published by Direct Technology, Grove House, 551
London Road, lsleworth, Middx. TW7 4D5, UK.

[11] Feynman R. P., Leighton R. B., Sands M.The Feynman Lectures on Physics,
ISBN 0-201-02116-1 Chapters 39–46 (1963)

[12] Schneider E. D.,Thermodynamics, Ecological Succession, and Natural Se-
lection: A Common Thread, Entropy, Information and Evolution , Weber B.
H., Depew D. J., Smith J. D. (editors), MIT Press ISBN 0-262-23132-8 pp
107–137 (1988)

[13] Brookfield J. F.,Evolving Darwinism, Nature vol. 376 pp 551–552 (17th Au-
gust 1995)



Brady, Anderson, Ball

[14] Burt A., The evolution of fitness, Evolution vol. 49 pp 1–8 (1995)

[15] Edwards A. W. F.,The fundamental theorem of natural selection, Biological
Reviewsvol. 60 pp 443–474 (1994)

[16] Lenski R. E., Travisano M.,Dynamics of adaptation and diversification: a
10,000-generation experiment with bacterial populations, Proceedings of the
National Academy of Sciences of the USAvol. 91 pp 6806–6814 (July 1994)

[17] Novella I. S., Duarte E. A., Elena S. F., Moya A., Domingo E., Holland J.,
Exponential increase in virus fitness during large population transmissions,
Proceedings of the National Academy of Sciences of the USAvol. 92 pp
5841–5844 (June 1995)


