
[For hol98 Taupo-5] October 26, 2000

The HOL System
TUTORIAL

University of Cambridge DSTO SRI International

Preface

This volume contains a tutorial on the HOL system. It is one of three documents making
up the documentation for HOL:

(i) TUTORIAL: a tutorial introduction to HOL.

(ii) DESCRIPTION: a description of higher order logic, the ML programming lan-
guage, and theorem proving methods in the HOL system;

(iii) REFERENCE: the reference documentation of the tools available in HOL.

These three documents will be referred to by the short names (in small slanted capitals)
given above.

This document, TUTORIAL, is intended to be the first item read by new users of HOL.
It provides a self-study introduction to the structure and use of the system. The tu-
torial is intended to give a ‘hands-on’ feel for the way HOL is used, but it does not
systematically explain all the underlying principles (DESCRIPTION, explains these). After
working through TUTORIAL the reader should be capable of using HOL for simple tasks,
and should also be in a position to consult the other two documents.

Getting started

Chapter 1 explains how to get and install HOL. Once this is done, the potential HOL user
should become familiar with the following subjects:

1. The programming meta-language ML, and how to interact with it through an edi-
tor.

2. The formal logic supported by the HOL system (higher order logic) and its manip-
ulation via ML.

3. Forward proof and derived rules of inference.

4. Goal directed proof, tactics and tacticals.

iii

iv Preface

Chapters 1–3 introduce the first two of these topics. Chapter 4 then develops an
extended example (Euclid’s proof of the infinitude of primes) to demonstrate how HOL
is used to prove theorems. This example is intended to demonstrate HOL’s capabilities
and to explain some of the issues at a high level. Chapters 5 and 6 then describe forward
and goal directed proof in much greater detail.

Chapter 7 consists of a worked example: the specification and verification of a simple
sequential parity checker. The intention is to accomplish two things: (i) to present a
complete piece of work with HOL; and (ii) to give an idea of what it is like to use the
HOL system for a tricky proof.

Chapter 8 briefly discusses some of the examples distributed with hol98 in the examples

directory.

TUTORIAL has been kept short so that new users of HOL can get going as fast as possible.
Sometimes details have been simplified. It is recommended that as soon as a topic in
TUTORIAL has been digested, the relevant bits of DESCRIPTION and REFERENCE be studied.

Acknowledgements

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching
lantern’ taken by Avra Cohn (in whose garden the original object resides). John Van
Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documenta-
tion effort, either by providing material, or by sending lists of errors in the first edition.
Thanks to everyone who helped, and thanks to DSTO and SRI for their generous sup-
port.

Later editions

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.
The third edition of all three volumes represents a wide-ranging and still incomplete

revision of material written for HOL88 so that it applies to the hol98 system a decade
later. The third edition has been prepared by Konrad Slind and Michael Norrish.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

v

vi Acknowledgements

Contents

1 Getting and Installing HOL 3
1.1 Getting HOL . 3
1.2 The info-hol mailing list . 3
1.3 Installing HOL . 3

2 Introduction to ML 9
2.1 How to interact with ML . 9

3 The HOL Logic 13
3.1 Overview of higher order logic . 13
3.2 Terms . 15
3.3 Exceptions . 18

4 Euclid’s theorem 21
4.1 Divisibility . 24

4.1.1 Divisibility and factorial . 31
4.1.2 Divisibility and factorial (again!) 37

4.2 Primality . 41
4.3 Existence of prime factors . 41
4.4 Euclid’s theorem . 45
4.5 Turning the script into a theory . 48
4.6 Summary . 51

5 Introduction to Proof with HOL 55
5.1 Forward proof . 57

5.1.1 Derived rules . 59
5.2 Rewriting . 61

6 Goal Oriented Proof: Tactics and Tacticals 63
6.1 Using tactics to prove theorems . 67
6.2 Tacticals . 71

6.2.1 THENL : tactic -> tactic list -> tactic 72
6.2.2 THEN : tactic -> tactic -> tactic 72

vii

Contents 1

6.2.3 ORELSE : tactic -> tactic -> tactic 73
6.2.4 REPEAT : tactic -> tactic . 73

6.3 Some tactics built into HOL . 74
6.3.1 REWRITE TAC : thm list -> tactic 74
6.3.2 CONJ TAC : tactic . 75
6.3.3 EQ TAC : tactic . 75
6.3.4 DISCH TAC : tactic . 76
6.3.5 GEN TAC : tactic . 76
6.3.6 bossLib.PROVE TAC : thm list -> tactic 76
6.3.7 STRIP TAC : tactic . 76
6.3.8 SUBST TAC : thm list -> thm 77
6.3.9 ACCEPT TAC : thm -> tactic 77
6.3.10 ALL TAC : tactic . 77
6.3.11 NO TAC : tactic . 77

7 Example: a simple parity checker 79
7.1 Introduction . 79
7.2 Specification . 80
7.3 Implementation . 83
7.4 Verification . 86
7.5 Exercises . 90

7.5.1 Exercise 1 . 90
7.5.2 Exercise 2 . 91

8 More examples 93

References 95

2 Contents

Chapter 1

Getting and Installing HOL

This chapter describes how to get the HOL system and how to install it. It is generally
assumed that some sort of Unix system is being used, but the instructions that follow
should apply mutatis mutandis to other platforms. Unix is not a pre-requisite for using
the system. HOL may be run on PCs running Windows NT, and we are always interested
in ports to other platforms.

1.1 Getting HOL

The HOL system can be downloaded from http://www.ftp.cl.cam.ac.uk/ftp/hvg/.
This page on the World-wide Web contains a number of sub-directories. The system
discussed in this tutorial is hol98, so the hol98 sub-directory contains the appropriate
source files. The naming scheme for hol98 releases is 〈name〉-〈number〉; the release
described here is Taupo-5.

1.2 The info-hol mailing list

Phil Windley has started a mailing list: info-hol@jaguar.cs.byu.edu which he set up to
serve as a forum for discussing HOL and disseminating news about it. If you wish to be
on this list (which is recommended for all users of HOL), or know of other people who
should be included, email to: info-hol-request@jaguar.cs.byu.edu.

1.3 Installing HOL

It is assumed that the HOL sources have been obtained and the tar file unpacked into
a directory hol98.1 The contents of this directory are likely to change over time, but it
should contain the following:

1You may choose another name if you want; it is not important.

3

4 Chapter 1. Getting and Installing HOL

Principal Files on the HOL Distribution Directory

File name Description File type
README Description of directory hol Text
COPYRIGHT A copyright notice Text
install.txt Installation instructions Text
tools Source code for building the system Directory
bin Directory for HOL executables Directory
sigobj Directory for ML object files Directory
src ML sources of HOL Directory
Manual Files for HOL system documentation Directory
help Help files for HOL system Directory
examples Example source files Directory

The session in the box below shows a typical distribution directory. The HOL distribu-
tion has been placed on a PC running Linux in the directory /local/scratch/mn200/hol98/.

All sessions in this documentation will be displayed in boxes with a number in the
top right hand corner. This number indicates whether the session is a new one (when
the number will be 1) or the continuation of a session started in an earlier box. Con-
secutively numbered boxes are assumed to be part of a single continuous session. The
Unix prompt for the sessions is $, so lines beginning with this prompt were typed by
the user. After entering the HOL system (see below), the user is prompted with - for
an expression or command of the HOL meta-language ML; lines beginning with this are
thus ML expressions or declarations. Lines not beginning with $ or - are system output.
Occasionally, system output will be replaced with a line containing ... when it is of
minimal interest. The meta-language ML is introduced in Chapter 2.

1$ pwd
/local/scratch/mn200/hol98
$ ls -F
COPYRIGHT bin/ examples/ install.txt src/
README doc/ help/ sigobj/ tools/

Now you will need to rebuild HOL from the sources.2

Before beginning you must have a current version of MoscowML. In particular, you
must have version 1.44 or later. MoscowML is available on the web from

http://www.dina.kvl.dk/~sestoft/mosml.html

The first step of the installation process is to edit the file tools/configure.sml. At the
top of the file are the parameters that need to be set.

2It is possible that pre-built systems may soon be available from the web-page mentioned above.

1.3. Installing HOL 5

2$ cd tools/
$ head -30 configure.sml
(*---

HOL98 configuration script

First, edit the following user-settable parameters. Then execute this
file by going

mosml < configure.sml

---*)

(*---
BEGIN user-settable parameters

---*)

val mosmldir = _
val holdir = _
val OS = _ (* Operating system; choices are:

"linux", "solaris", "unix", "winNT" *)

val CC = "gcc"; (* C compiler (for building quote filter) *)
val GNUMAKE = "gnumake"; (* for robdd library *)

val DEPDIR = ".HOLMK"; (* local dir. where Holmake dependencies kept *)
val LN_S = "ln -s"; (* only change if you are a HOL developer. *)

(*---
END user-settable parameters

---*)

The first three parameters must be set to sensible values. The mosmldir value must
be the name of the directory where the MoscowML implementation is on your machine.
The holdir value must be the name of the top-level directory listed in the first ses-
sion above. The OS value should be one of the strings specified in the accompanying
comment. All three strings must be enclosed in double quotes.

The next two values (CC and GNUMAKE) are needed for “optional” components of the
system. The first gives a string suitable for invoking the system’s C compiler, and the
second specifies a make program.

After editing, tools/configure.sml the lines above will look something like:

6 Chapter 1. Getting and Installing HOL

3$ more configure.sml
...

val mosmldir = "/usr/groups/hol/mosml.144";
val holdir = "/local/scratch/mn200/hol98";
val OS = "linux" (* Operating system; choices are:

"linux", "solaris", "unix", "winNT" *)

val CC = "gcc"; (* C compiler (for building quote filter) *)
val GNUMAKE = "gnumake"; (* for robdd library *)

...
$

Now, at either this level (in the tools directory) or at the level above, the configure.sml
script must be piped into the MoscowML interpreter (called mosml). This process cre-
ates a suite of useful tools that will be used to build the full system. In particular, it will
compile Holmake and build and put them in the bin directory.

4$ /usr/groups/hol/mosml.144/bin/mosml < configure.sml
Moscow ML version 1.44 (August 1999)
Enter ‘quit();’ to quit.
- > val mosmldir = "/usr/groups/hol/mosml.144" : string
- > val holdir = "/local/scratch/mn200/hol98" : string
- > val OS = "linux" : string

val CC = "gcc" : string
...

Beginning configuration.
- Making bin/Holmake.
- Making bin/build.
- Making hol98-mode.el (for Emacs)
- Setting up the standard prelude.
- Setting up src/0/Globals.sml.
- Generating bin/hol.
- Attempting to compile quote filter ... successful.
Generating bin/hol.unquote.
- Setting up the robdd library Makefile.
- Setting up the muddy library Makefile.
-
Finished configuration!
-
$

The next step is to run the build program. This should result in a great deal of output as
all of the system code is compiled and the theories built. Eventually, a HOL system3 is
produced in the bin/ directory.

3Two executables are produced: hol and hol.unquote. The latter will be used for most examples in the
TUTORIAL.

1.3. Installing HOL 7

5$../bin/build
...
...

Uploading files to /local/scratch/mn200/Work/hol98/sigobj

Hol built successfully.
$

8 Chapter 1. Getting and Installing HOL

Chapter 2

Introduction to ML

This chapter is a brief introduction to the meta-language ML. The aim is just to give a
feel for what it is like to interact with the language. A more detailed introduction can
be found in numerous textbooks and web-pages; see for example the list of resources
on the MoscowML home-page, or the comp.lang.ml FAQ.

2.1 How to interact with ML

ML is an interactive programming language like Lisp. At top level one can evaluate
expressions and perform declarations. The former results in the expression’s value and
type being printed, the latter in a value being bound to a name.

A standard way to interact with ML is to configure the workstation screen so that
there are two windows:

(i) An editor window into which ML commands are initially typed and recorded.

(ii) A shell window (or non-Unix equivalent) which is used to evaluate the com-
mands.

A common way to achieve this is to work inside Emacs with a text window and a shell
window.

After typing a command into the edit (text) window it can be transferred to the shell
and evaluated in HOL by ‘cut-and-paste’. In Emacs this is done by copying the text into
a buffer and then ‘yanking’ it into the shell. The advantage of working via an editor is
that if the command has an error, then the text can simply be edited and used again;
it also records the commands in a file which can then be used again (via a batch load)
later. In Emacs, the shell window also records the session, including both input from the
user and the system’s response. The sessions in this tutorial were produced this way.
These sessions are split into segments displayed in boxes with a number in their top
right hand corner (to indicate their position in the complete session).

The interactions in these boxes should be understood as occurring in sequence. For
example, variable bindings made in earlier boxes are assumed to persist to later ones.
To enter the HOL system one types hol or hol.unquote to Unix, possibly preceded by path
information if the HOL system’s bin directory is not in one’s path. The HOL system then

9

10 Chapter 2. Introduction to ML

prints a sign-on message and puts one into ML. The ML prompt is -, so lines beginning
with - are typed by the user and other lines are the system’s responses.

Here, as elsewhere in the TUTORIAL, we will be assuming use of hol.unquote.

1$ bin/hol.unquote
Moscow ML version 1.44 (August 1999)
Enter ‘quit();’ to quit.

HOL98 [Taupo 5]

For introductory HOL help, type: help "hol";

[closing file "/local/scratch/mn200/Work/hol98/tools/end-init.sml"]
- 1 :: [2,3,4,5];
> val it = [1, 2, 3, 4, 5] : int list

The ML expression 1 :: [2,3,4,5] has the form e1 op e2 where e1 is the expression 1

(whose value is the integer 1), e2 is the expression [2,3,4,5] (whose value is a list of
four integers) and op is the infixed operator ‘::’ which is like Lisp’s cons function. Other
list processing functions include hd (car in Lisp), tl (cdr in Lisp) and null (null in Lisp).
The semicolon ‘;’ terminates a top-level phrase. The system’s response is shown on the
line starting with the > prompt. It consists of the value of the expression followed, after
a colon, by its type. The ML type checker infers the type of expressions using methods
invented by Robin Milner [7]. The type int list is the type of ‘lists of integers’; list is
a unary type operator. The type system of ML is very similar to the type system of the
HOL logic which is explained in Chapter 3.

The value of the last expression evaluated at top-level in ML is always remembered in
a variable called it.

2- val l = it;
> val l = [1, 2, 3, 4, 5] : int list

- tl l;
> val it = [2, 3, 4, 5] : int list

- hd it;
> val it = 2 : int

- tl(tl(tl(tl(tl l))));
> val it = [] : int list

Following standard λ-calculus usage, the application of a function f to an argument
x can be written without brackets as f x (although the more conventional f(x) is also

2.1. How to interact with ML 11

allowed). The expression f x1 x2 · · · xn abbreviates the less intelligible expression
(· · ·((f x1)x2)· · ·)xn (function application is left associative).

Declarations have the form val x1=e1 and · · · and xn=en and result in the value of
each expression ei being bound to the name xi.

3- val l1 = [1,2,3] and l2 = ["a","b","c"];
> val l1 = [1, 2, 3] : int list

val l2 = ["a", "b", "c"] : string list

ML expressions like "a", "b", "foo" etc. are strings and have type string. Any sequence
of ASCII characters can be written between the quotes.1 The function explode splits a
string into a list of single characters, which are written like single character strings, with
a # character prepended.

4- explode "a b c";
> val it = [#"a", #" ", #"b", #" ", #"c"] : char list

An expression of the form (e1,e2) evaluates to a pair of the values of e1 and e2. If
e1 has type σ1 and e2 has type σ2 then (e1,e2) has type σ1*σ2. The first and second
components of a pair can be extracted with the ML functions #1 and #2 respectively.
If a tuple has more than two components, its n-th component can be extracted with a
function #n.

The values (1,2,3), (1,(2,3)) and ((1,2), 3) are all distinct and have types
int * int * int, int * (int * int) and (int * int) * int respectively.

5- val triple1 = (1,true,"abc");
> val triple1 = (1, true, "abc") : int * bool * string
- #2 triple1;
> val it = true : bool

- val triple2 = (1, (true, "abc"));
> val triple2 = (1, (true, "abc")) : int * (bool * string)
- #2 triple2;;
> val it = (true, "abc") : bool * string

The ML expressions true and false denote the two truth values of type bool.
ML types can contain the type variables ’a, ’b, ’c, etc. Such types are called polymor-

phic. A function with a polymorphic type should be thought of as possessing all the
types obtainable by replacing type variables by types. This is illustrated below with the
function zip.

Functions are defined with declarations of the form fun f v1 . . . vn = e where each vi
is either a variable or a pattern built out of variables.

The function zip, below, converts a pair of lists ([x1,. . .,xn], [y1,. . .,yn]) to a list of
pairs [(x1,y1),. . .,(xn,yn)].

1Newlines must be written as \n, and quotes as \".

12 Chapter 2. Introduction to ML

6- fun zip(l1,l2) =
if null l1 orelse null l2 then []
else (hd l1,hd l2) :: zip(tl l1,tl l2);

> val zip = fn : ’a list * ’b list -> (’a * ’b) list

- zip([1,2,3],["a","b","c"]);
> val it = [(1, "a"), (2, "b"), (3, "c")] : (int * string) list

Functions may be curried, i.e. take their arguments ‘one at a time’ instead of as a
tuple. This is illustrated with the function curried_zip below:

7- fun curried_zip l1 l2 = zip(l1,l2);
> val curried_zip = fn : ’a list -> ’b list -> (’a * ’b) list

- fun zip_num l2 = curried_zip [0,1,2] l2;
> val zip_num = fn : ’a list -> (int * ’a) list

- zip_num ["a","b","c"];
> val it = [(0, "a"), (1, "b"), (2, "c")] : (int * string) list

The evaluation of an expression either succeeds or fails. In the former case, the eval-
uation returns a value; in the latter case the evaluation is aborted and an exception is
raised. This exception passed to whatever invoked the evaluation. This context can
either propagate the failure (this is the default) or it can trap it. These two possibilities
are illustrated below. An exception trap is an expression of the form e1 handle _ => e2.
An expression of this form is evaluated by first evaluating e1. If the evaluation succeeds
(i.e. doesn’t fail) then the value of the whole expression is the value of e1. If the eval-
uation of e1 raises an exception, then the value of the whole is obtained by evaluating
e2.2

8- 3 div 0;
! Uncaught exception:
! Div

- 3 div 0 handle _ => 0;
> val it = 0 : int

The sessions above are enough to give a feel for ML. In the next chapter, the logic
supported by the HOL system (higher order logic) will be introduced, together with the
tools in ML for manipulating it.

2This description of exception handling is actually a gross simplification of the way exceptions can be
handled in ML; consult a proper text for a better explanation.

Chapter 3

The HOL Logic

The HOL system supports higher order logic. This is a version of predicate calculus with
three main extensions:

• Variables can range over functions and predicates (hence ‘higher order’).

• The logic is typed.

• There is no separate syntactic category of formulae (terms of type bool fulfill their
role).

3.1 Overview of higher order logic

It is assumed the reader is familiar with predicate logic. The syntax and semantics of
the particular logical system supported by HOL is described in detail in DESCRIPTION. The
table below summarizes the notation used.

Terms of the HOL Logic

Kind of term HOL notation Standard notation Description

Truth T > true
Falsity F ⊥ false
Negation ~t ¬t not t
Disjunction t1\/t2 t1 ∨ t2 t1 or t2
Conjunction t1/\t2 t1 ∧ t2 t1 and t2
Implication t1==>t2 t1 ⇒ t2 t1 implies t2
Equality t1=t2 t1 = t2 t1 equals t2
∀-quantification !x.t ∀x. t for all x : t
∃-quantification ?x.t ∃x. t for some x : t
ε-term @x.t εx. t an x such that: t
Conditional if t then t1 else t2 (t→ t1, t2) if t then t1 else t2

13

14 Chapter 3. The HOL Logic

Note on HOL example sessions All of the examples below assume that the user is
running hol.unquote, the executable for which is in the bin/ directory along with that
for hol. Further, the user needs to execute the following commands before starting the
sessions below:

0- load "arithmeticTheory";
> val it = () : unit
- load "pairTheory";
> val it = () : unit

These commands load the HOL theories supporting pairs and arithmetic. When HOL
starts up, it only knows about the basic boolean operators and quantifiers, so we aug-
ment it with these two theories to allow us more interesting examples.

Terms of the HOL logic are represented in ML by an abstract type called term. They
are normally input between double back-quote marks. For example, the expression
‘‘x /\ y ==> z‘‘ evaluates in ML to a term representing x∧y⇒z. Terms can be manip-
ulated by various built-in ML functions. For example, the ML function dest_imp with ML
type term -> term * term splits an implication into a pair of terms consisting of its an-
tecedent and consequent, and the ML function dest_conj of type term -> term * term

splits a conjunction into its two conjuncts.

1- ‘‘x /\ y ==> z‘‘;
> val it = ‘‘x /\ y ==> z‘‘ : term

- dest_imp it;
> val it = (‘‘x /\ y‘‘, ‘‘z‘‘) : term * term

- dest_conj(#1 it);
> val it = (‘‘x‘‘, ‘‘y‘‘) : term * term

Terms of the HOL logic are quite similar to ML expressions, and this can at first be
confusing. Indeed, terms of the logic have types similar to those of ML expressions. For
example, ‘‘(1,2)‘‘ is an ML expression with ML type term. The HOL type of this term is
num # num. By contrast, the ML expression (‘‘1‘‘, ‘‘2‘‘) has type term * term.

The types of HOL terms form an ML type called hol_type. Expressions having the
form ‘‘: · · · ‘‘ evaluate to logical types. The built-in function type_of has ML type
term->type and returns the logical type of a term.

3.2. Terms 15

2- ‘‘(1,2)‘‘;
> val it = ‘‘(1,2)‘‘ : term

- type_of it;
> val it = ‘‘:num # num‘‘ : hol_type

- (‘‘1‘‘, ‘‘2‘‘);
> val it = (‘‘1‘‘, ‘‘2‘‘) : term * term

- type_of(#1 it);
> val it = ‘‘:num‘‘ : hol_type

To try to minimise confusion between the logical types of HOL terms and the ML types
of ML expressions, the former will be referred to as object language types and the latter
as meta-language types. For example, ‘‘(1,T)‘‘ is an ML expression that has meta-
language type term and evaluates to a term with object language type ‘‘:num#bool‘‘.

3- ‘‘(1,T)‘‘;
> val it = ‘‘(1,T)‘‘ : term

- type_of it;
> val it = ‘‘:num # bool‘‘ : hol_type

HOL terms can be input using explicit quotation, as above, or they can be constructed
using ML constructor functions. The function mk_var constructs a variable from a string
and a type. In the example below, three variables of type bool are constructed. These
are used later.

4- val x = mk_var("x", ‘‘:bool‘‘)
and y = mk_var("y", ‘‘:bool‘‘)
and z = mk_var("z", ‘‘:bool‘‘);

> val x = ‘‘x‘‘ : term
val y = ‘‘y‘‘ : term
val z = ‘‘z‘‘ : term

The constructors mk_conj and mk_imp construct conjunctions and implications respec-
tively.

5- val t = mk_imp(mk_conj(x,y),z);
> val t = ‘‘x /\ y ==> z‘‘ : term

3.2 Terms

There are only four different kinds of terms:

1. Variables.

16 Chapter 3. The HOL Logic

2. Constants.

3. Function applications: ‘‘t1 t2‘‘.

4. λ-abstractions: ‘‘\x.t‘‘.

Both variables and constants have a name and a type; the difference is that constants
cannot be bound by quantifiers, and their type is fixed when they are declared (see
below). The type checking algorithm uses the types of constants to infer the types of
variables in the same quotation. If there is not enough type information type variables
will be guessed:

6- ‘‘~x‘‘;
val it = ‘‘~x‘‘ : term

- ‘‘x‘‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘‘x‘‘ : Term.term
- type_of it;
> val it = ‘‘:’a‘‘ : hol_type

In the first case, the HOL type checker used the known type bool->bool of ~ to deduce
that the variable x must have type bool. In the second case, it cannot deduce the type
of x. The default ‘scope’ of type information for type checking is a single quotation,
so a type in one quotation cannot affect the type-checking of another. If there is not
enough contextually-determined type information to resolve the types of all variables in
a quotation, then the system will guess different type variables for all the unconstrained
variables. Alternatively, it is possible to explicitly indicate the required types by using
‘‘term:type‘‘ as illustrated below.

7- ‘‘(x,y)‘‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘‘(x,y)‘‘ : term
- type_of it;
> val it = ‘‘:’a # ’b‘‘ : hol_type

- ‘‘x:num‘‘;
> val it = ‘‘x‘‘ : term
- type_of it;
> val it = ‘‘:num‘‘ : hol_type

Functions have types of the form σ1->σ2, where σ1 and σ2 are the types of the domain
and range of the function, respectively.

8- type_of ‘‘$==>‘‘;
> val it = ‘‘:bool -> bool -> bool‘‘ : hol_type

- type_of ‘‘$+‘‘;
> val it = ‘‘:num -> num -> num‘‘ : hol_type

3.2. Terms 17

Both + and ==> are infixes, so their use in contexts where they are not being used as
such requires their prefixing by the $-sign. This is analogous to the way in which op is
used in ML. The session below illustrates the use of these constants as infixes; it also
illustrates object language versus meta-language types.

9- ‘‘(x + 1, t1 ==> t2)‘‘;
> val it = ‘‘(x + 1,t1 ==> t2)‘‘ : term

- type_of it;
> val it = ‘‘:num # bool‘‘ : hol_type

- (‘‘x=1‘‘, ‘‘t1==>t2‘‘);
> val it = (‘‘x = 1‘‘, ‘‘t1 ==> t2‘‘) : term * term

- (type_of (#1 it), type_of (#2 it));
> val it = (‘‘:bool‘‘, ‘‘:bool‘‘) : hol_type * hol_type

The types of constants are declared in theories. This is described later.
An application t1 t2 is badly typed if t1 is not a function:

10- ‘‘1 2‘‘;

Type inference failure: unable to infer a type for the application of

(1 :num)

to

(2 :num)

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR <poly>

or if it is a function, but t2 is not in its domain:

11- ‘‘~1‘‘;

Type inference failure: unable to infer a type for the application of

$~

to

(1 :num)

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR <poly>

18 Chapter 3. The HOL Logic

As before, the dollar in front of ~ indicates that the constant has a special syntactic
status (in this case a non-standard precedence). Putting $ in front of any symbol causes
the parser to ignore any special syntactic status (like being an infix) it might have.

12- ‘‘$==> t1 t2‘‘;
> val it = ‘‘t1 ==> t2‘‘ : term
- ‘‘$/\ t1 t2‘‘;
> val it = ‘‘t1 /\ t2‘‘ : term

Lambda-terms, or λ-terms, denote functions. The symbol ‘\’ is used as an ASCII ap-
proximation to λ. Thus ‘\x.t’ should be read as ‘λx. t’. For example, ‘‘\x. x+1‘‘ is a
term that denotes the function n 7→ n+1.

13- ‘‘\x. x + 1‘‘;
> val it = ‘‘\x. x + 1‘‘ : term

- type_of it;
> val it = ‘‘:num -> num‘‘ : hol_type

Other binding symbols in the logic are its two most important quantifiers: ! and ?, uni-
versal and existential quantifiers. For example, the logical statement that every number
is either even or odd might be phrased as !n. (n MOD 2 = 1) \/ (n MOD 2 = 0), while
a version of Euclid’s result about the infinitude of primes is: !n. ?p. prime p /\ p > n

Binding symbols such as these can be used over multiple symbols thus:
14- ‘‘\x y. (x, y * x)‘‘;

> val it = ‘‘\x y. (x,y * x)‘‘ : term
- type_of it;
> val it = ‘‘:num -> num -> num # num‘‘ : hol_type

- ‘‘!x y. x <= x + y‘‘;
> val it = ‘‘!x y. x <= x + y‘‘ : term

3.3 Exceptions

Almost all of the HOL system’s functions raise special HOL_ERR exceptions to signal ab-
normal or erroneous conditions. These exceptions do not print well by default, so the
special Raise function is provided to make dealing with these exceptions easier:

15- dest_conj ‘‘p ==> q‘‘;
! Uncaught exception:
! HOL_ERR <poly>

- dest_conj ‘‘p ==> q‘‘ handle e => Raise e;

Exception raised at Dsyntax.dest_conj:
not a conj
! Uncaught exception:
! HOL_ERR <poly>

3.3. Exceptions 19

The Raise function passes on all of the exceptions it sees; it does not affect the semantics
of the computation at all. However, when passed a HOL_ERR exception, it prints out some
useful information before passing it on to the next level.

20 Chapter 3. The HOL Logic

Chapter 4

Euclid’s theorem

In this chapter, we prove in hol98 that for every number, there is a prime number that
is larger, i.e., that the prime numbers form an infinite sequence. This proof has been
excerpted and adapted from a much larger example due to John Harrison, in which
he proved the n = 4 case of Fermat’s Last Theorem. The proof development will be
performed using the facilities of bossLib, one of HOL’s many libraries and is intended to
serve as an introduction to performing high-level interactive proofs in hol98. Many of
the details may be difficult to grasp the novice reader; nonetheless, it is recommended
that the example be followed through in order to gain a true taste of using HOL to prove
non-trivial theorems.

Some tutorial descriptions of proof systems show the system performing amazing
feats of automated theorem proving. In this example, we will not take this approach;
instead, we try to show how one actually goes about the business of proving theorems
in hol98: when more than one way to prove something is possible, we will consider the
choices; when a difficulty rears its ugly head, we will attempt to explain how to fight
one’s way clear.

One ‘drives’ hol98 by interacting with the ML top-level loop. In this interaction style,
ML function calls are made to bring in already-established logical context (usually via
load), to define new context (via Hol_datatype and Define from bossLib), and to per-
form proofs using the goalstack interface, and the proof tools from bossLib (or if they
fail to do the job, from lower-level libraries).

First, we start the system. We will use make use of the quotation pre-processor in the
example, so we invoke .../<holdir>/bin/hol.unquote. Then we load and open bossLib.
This library provides high-level support for interactive proof. We also open the theory of
arithmetic, since we will use some of its theorems. Finally, the function by from bossLib

needs to be declared as infix before it can be used as such.

16- load "bossLib";
> ...

- open bossLib arithmeticTheory;
> ...

- infix 8 by;

We specialize the rewriter provided by bossLib to a simplification set that knows about

21

22 Chapter 4. Euclid’s theorem

arithmetic. This is not necessary and only serves to make some of the proofs typeset
more nicely.

17- val ARW_TAC = RW_TAC arith_ss;

> val ARW_TAC =
fn
: Thm.thm list -> Term.term list * Term.term ->

(Term.term list * Term.term) list * (Thm.thm list -> Thm.thm)

The ML type of ARW_TAC is thm list −→ tactic. When ARW_TAC is applied to a list of
theorems, the theorems will be added to arith_ss as rewrite rules. We will see that
ARW_TAC is fairly knowledgeable about arithmetic.1

We now begin the formalization. In order to define the concept of prime number, we
first need to define the divisibility relation:

18- val divides = Define ‘divides a b = ?x. b = a * x‘;

> Definition stored under "divides_def".
> val divides = |- !a b. divides a b = ?x. b = a * x : Thm.thm

The definition is added to the current theory with the name divides_def, and also re-
turned from the invocation of Define. We take advantage of this and make an ML
binding of the name divides to the definition. In the usual way of interacting with
HOL, such an MLbinding is made for each definition and (useful) proved theorem: the
MLenvironment is thus being used as a convenient place to hold definitions and theo-
rems for later reference in the session.

We want to treat divides as a (right associative) infix:

19- set_fixity "divides" (Infixr 450);

Now we can define the property of a number being prime: a number p is prime if and
only if it is not equal to 1 and it has no divisors other than 1 and itself:

20- val prime =
Define ‘prime p = ~(p=1) /\ !x. x divides p ==> (x=1) \/ (x=p)‘;

Definition stored under "prime_def".
> val prime =

|- !p. prime p = ~(p = 1) /\ !x. x divides p ==> (x = 1) \/ (x = p)
: Thm.thm

1Linear arithmetic especially: purely universal statements involving the operators SUC, +, −, numeric
literals, <, ≤, >, ≥, =, and multiplication by numeric literals.

23

That concludes the definitions to be made. Now we “just” have to prove that there are
an infinite number of primes. If we were coming to this problem fresh, then we would
have to go through a not-well-understood and often tremendously difficult process of
finding the right lemmas required to prove our target theorem.2 Fortunately, we are
working from a detailed and accurate source and can devote ourselves to the far simpler
problem of explaining how to prove the required theorems.

The development will illustrate that there is often more than one way to tackle a HOL
proof, even if one has only a single (informal) proof in mind. We often find the proof
using ARW_TAC to unwind definitions and perform basic simplifications, i.e., to reduce the
goal to its essence. Sometimes this proves the goal immediately. Often however, we are
left with a goal that requires some study before one realizes what lemmas are needed
to conclude the proof. Once these lemmas have been proven (or located in ancestor
theories), PROVE_TAC can be invoked with them, with the expectation that it will find
the right instantiations needed to finish the proof. (These two operations do not suffice
to perform all proofs; in particular, our development will also need case analysis and
induction.)

This raises the following question: how does one find the right lemmas to use? This is
quite a problem, especially when the number of theorems in ancestor theories is large.
There are are couple of possibilities: the help system can be used to look up definitions
and theorems, as well as proof procedures; for example, an invocation of

help "arithmeticTheory"

will display all the definitions and theorems that have been stored in the theory of
arithmetic. However, the complete name of the item being searched for must be known
before the help system is useful. Alternatively, the functions in DB are often easier to
use. DB.match allows the use of first order patterns to look for the relevant items, while
DB.find will use fragments of names as keys with which to lookup information.

Once a proof of a proposition has been found, it is customary, although not necessary,
to embark on a process of revision, in which the original sequence of tactics is composed
into a single tactic. Sometimes the resulting tactic is much shorter, and more aestheti-
cally pleasing in some sense. Some users spend a fair bit of time polishing these tactics,
although there doesn’t seem much real benefit in doing so, since they are ad hoc proof
recipes, one for each theorem. In the following, we will show how this is done in a few
cases.

2This is of course a general problem in doing any kind of proof.

24 Chapter 4. Euclid’s theorem

4.1 Divisibility

We start by proving a number of theorems about the divides relation. Each theorem
is proved with a single invocation of PROVE_TAC. Both ARW_TAC and PROVE_TAC are quite
powerful reasoners, and the choice of a reasoner in a particular situation is a matter of
experience. In the following, the major reason that PROVE_TAC has been selected is that
divides is defined by means of an existential quantifier, and PROVE_TAC is quite good
at automatically instantiating existentials in the course of proof. For a simple example,
consider proving ∀x. x divides 0. A new proposition to be proved is entered to the
proof manager via “g”, which starts a fresh goalstack:

21- g ‘!x. x divides 0‘;

> val it =
> Proof manager status: 1 proof.
> 1. Incomplete:
> Initial goal:
> !x. x divides 0
>
> : GoalstackPure.proofs

The proof manager tells us that it has only one proof to manage, and echoes the given
goal. Now we expand the definition of divides. Notice that α-conversion takes place
in order to keep distinct the x of the goal and the x in the definition of divides:

22- e (ARW_TAC [divides]);

> OK..
> 1 subgoal:
> val it =
> ?x’. (x = 0) \/ (x’ = 0)

It is of course quite easy to instantiate the existential quantifier by hand.

23- e (EXISTS_TAC ‘‘0‘‘);

> OK..
> 1 subgoal:
> val it =
> (x = 0) \/ (0 = 0)

Then a simplification step finishes the proof.

4.1. Divisibility 25

24- e (ARW_TAC []);

> OK..
>
> Goal proved.
> |- (x = 0) \/ (0 = 0)
>
> Goal proved.
> |- ?x’. (x = 0) \/ (x’ = 0)
> val it =
> Initial goal proved.
> |- !x. x divides 0

What just happened here? The application of ARW_TAC to the goal decomposed it to an
empty list of subgoals; in other words the goal was proved by ARW_TAC. Once a goal has
been proved, it is popped off the goalstack, prettyprinted to the output, and the theorem
becomes available for use by the level of the stack. When all the sub-goals required by
that level are proven, the corresponding goal at that level can be proven too. This
‘unwinding’ process continues until the stack is empty, or until it hits a goal with more
than one remaining unproved subgoal. This process may be hard to visualize,3 but that
doesn’t matter, since the goalstack was expressly written to allow the user to ignore
such details.

If the three interactions are joined together with THEN to form a single tactic, we can
try the proof again from the beginning (using the restart function) and this time it will
take just one step:

25- restart();
> ...

- e (ARW_TAC [divides] THEN EXISTS_TAC ‘‘0‘‘ THEN ARW_TAC[]);

> OK..
> val it =
> Initial goal proved.
> |- !x. x divides 0

We have seen one way to prove the theorem. However, there is another: one can let
PROVE_TAC expand the definition of divides and find the required instantiation for x’

from MULT_CLAUSES.

3Perhaps since we have used a stack to implement what is notionally a tree!

26 Chapter 4. Euclid’s theorem

26- restart();
> ...

- e (PROVE_TAC [divides, MULT_CLAUSES]);

> OK..
> Meson search level:
> val it =
> Initial goal proved.
> |- !x. x divides 0

In any case, having done our proof inside the goalstack package, we now want to have
access to the theorem value that we have proved. We use the top_thm function to do
this, and then use drop to dispose of the stack:

27- val DIVIDES_0 = top_thm();

> val DIVIDES_0 = |- !x. x divides 0 : Thm.thm

- drop();
> OK..
> val it = There are currently no proofs. : GoalstackPure.proofs

We have used PROVE_TAC in this way to prove the following collection of theorems
about divides. As mentioned previously, the theorems supplied to PROVE_TAC in the
following proofs did not (usually) come from thin air: in most cases some exploratory
work with ARW_TAC was done to open up definitions and see what lemmas would be
required by PROVE_TAC.

(DIVIDES 0) !x. x divides 0

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES ZERO) !x. 0 divides x = (x = 0)

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES ONE) !x. x divides 1 = (x = 1)

PROVE_TAC [divides, MULT_CLAUSES, MULT_EQ_1]

(DIVIDES REFL) !x. x divides x

PROVE_TAC [divides, MULT_CLAUSES]

(DIVIDES TRANS) !a b c. a divides b /\ b divides c ==> a divides c

PROVE_TAC [divides, MULT_ASSOC]

(DIVIDES ADD) !d a b. d divides a /\ d divides b ==> d divides (a+b)

PROVE_TAC [divides,LEFT_ADD_DISTRIB]

4.1. Divisibility 27

(DIVIDES SUB) !d a b. d divides a /\ d divides b ==> d divides (a-b)

PROVE_TAC [divides, LEFT_SUB_DISTRIB]

(DIVIDES ADDL) !d a b. d divides a /\ d divides (a+b) ==> d divides b

PROVE_TAC [ADD_SUB, ADD_SYM, DIVIDES_SUB]

(DIVIDES LMUL) !d a x. d divides a ==> d divides (x * a)

PROVE_TAC [divides, MULT_ASSOC, MULT_SYM]

(DIVIDES RMUL) !d a x. d divides a ==> d divides (a * x)

PROVE_TAC [MULT_SYM, DIVIDES_LMUL]

We’ll assume that the above proofs have been performed, and that the appropriate ML
names have been given to all of the theorems. Now we encounter a lemma about
divisibility that doesn’t succumb to a single invocation of PROVE_TAC:

(DIVIDES LE) !m n. m divides n ==> m <= n \/ (n = 0)

ARW_TAC [divides]

THEN Cases_on ‘x‘

THEN ARW_TAC [MULT_CLAUSES]

Let’s see how this is proved. The easiest way to start is to simplify with the definition of
divides:

28- g ‘!m n . m divides n ==> m <= n \/ (n = 0)‘;
> ...

- e (ARW_TAC [divides]);

> 1 subgoal:
> val it =
> m <= m * x \/ (m * x = 0)

Considering the goal, we basically have three choices: (1) find a collection of lemmas
that together imply the goal and use PROVE_TAC; (2) do a case split on m; or (3) do a
case split on x. The first doesn’t seem simple, because the goal doesn’t really fit in the
‘shape’ of any pre-proved theorem(s) that the author knows about. Although option
(2) will be rejected in the end, let’s try it anyway. To perform the case split, we use
Cases_on, which stands for “find the given term in the goal and do a case split on the
possible means of building it out of datatype constructors”. Since the occurrence of m
in the goal has type num, the cases considered will be whether m is 0 or a successor.

29- e (Cases_on ‘m‘);

> OK..
> 2 subgoals:
> val it =
> SUC n <= SUC n * x \/ (SUC n * x = 0)
>
> 0 <= 0 * x \/ (0 * x = 0)

28 Chapter 4. Euclid’s theorem

The first subgoal (the last one printed) is trivial:

30- e (ARW_TAC []);

> OK..
>
> Goal proved.
> ...
>
> Remaining subgoals:
> val it =
> SUC n <= SUC n * x \/ (SUC n * x = 0)

Let’s try ARW_TAC again:

31- e (ARW_TAC []);

> OK..
> 1 subgoal:
> val it =
> SUC n <= SUC n * x \/ (x = 0)

The right disjunct has been simplified; however, the left disjunct has failed to expand
the definition of multiplication in the expression SUC n ∗ x, which would have been
convenient. Why not, when arith_ss and hence ARW_TAC is supposed to be expert in
arithmetic? The answer is that the recursive clauses for addition and multiplication
are not in arith_ss because uncontrolled application of them by the rewriter seems, in
general, to make some proofs more complicated, rather than simpler. OK, so let’s add
in the definition of multiplication. This uncovers a new problem: how to locate this
definition. The function

DB.match : string list -> term
-> ((string * string) * (thm * DB.class)) list

is often helpful for such tasks. It takes a list of theory names, and a pattern, and
looks in the list of theories for any theorem, definition, or axiom that has an instance of
the pattern as a subterm. If the list of theory names is empty, then all loaded theories
are included in the search. Let’s look in the theory of arithmetic for the subterm to be
rewritten.

4.1. Divisibility 29

32- DB.match ["arithmetic"] (Term‘SUC n * x‘);

> val it =
> [(("arithmetic", "FACT"),
> (|- (FACT 0 = 1) /\ !n. FACT (SUC n) = SUC n * FACT n, DB.Def)),
> (("arithmetic", "LESS_MULT_MONO"),
> (|- !m i n. SUC n * m < SUC n * i = m < i, DB.Thm)),
> (("arithmetic", "MULT"),
> (|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, DB.Def)),
> (("arithmetic", "MULT_CLAUSES"),
> (|- !m n.
> (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
> (SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), DB.Thm)),
> (("arithmetic", "MULT_LESS_EQ_SUC"),
> (|- !m n p. m <= n = SUC p * m <= SUC p * n, DB.Thm)),
> (("arithmetic", "MULT_MONO_EQ"),
> (|- !m i n. (SUC n * m = SUC n * i) = m = i, DB.Thm)),
> (("arithmetic", "ODD_OR_EVEN"),
> (|- !n. ?m. (n = SUC (SUC 0) * m) \/ (n = SUC (SUC 0) * m + 1), DB.Thm))]

For some, this returns slightly too much information; however, we can focus the
search by stipulating that the pattern look like a rewrite rule:

33- DB.match [] (Term‘SUC n * x = M‘);

> val it =
> [(("arithmetic", "MULT"),
> (|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, DB.Def)),
> (("arithmetic", "MULT_CLAUSES"),
> (|- !m n.
> (0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
> (SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), DB.Thm)),
> (("arithmetic", "MULT_MONO_EQ"),
> (|- !m i n. (SUC n * m = SUC n * i) = m = i, DB.Thm))]

Either arithmeticTheory.MULT or arithmeticTheory.MULT_CLAUSES would be accept-
able; we choose the latter.

34- e (ARW_TAC [MULT_CLAUSES]);

> OK..
> 1 subgoal:
> val it =
> SUC n <= x + n * x \/ (x = 0)

Now we see that, in order to make progress in the proof, we will have to do a case split
on x anyway, and that we should have split on it originally. Hence we backup. We will
have to backup (undo) four times:

30 Chapter 4. Euclid’s theorem

35- b();
> val it =

SUC n <= SUC n * x \/ (x = 0)

- b();
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

- b();
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

0 <= 0 * x \/ (0 * x = 0)

- b();
> val it =

m <= m * x \/ (m * x = 0)

Now we can go forward and do case analysis on x. We will also make a compound tac-
tic invocation, since we already know that we’ll have to invoke ARW_TAC in both branches
of the case split. This can be done using THEN. When t1 THEN t2 is applied to a goal g,
first t1 is applied to g, giving a list of new subgoals, then t2 is applied to each member
of the list. All goals resulting from these applications of t2 are gathered together and
returned.

36- e (Cases_on ‘x‘ THEN ARW_TAC [MULT_CLAUSES]);

> OK..
>
> Goal proved.
> |- m <= m * x \/ (m * x = 0)
> val it =
> Initial goal proved.
> |- !m n. m divides n ==> m <= n \/ (n = 0)

That was easy! Obviously making a case split on x was the right choice. The process of
finding the proof has now finished, and all that remains is for the proof to be packaged
up into the single tactic we saw above. Rather than use top_thm and the goalstack, we
can bypass it and use the store_thm function. This function takes a string, a term and a
tactic and applies the tactic to the term to get a theorem, and then stores the theorem
in the current theory under the given name.

4.1. Divisibility 31

37- val DIVIDES_LE = store_thm (
"DIVIDES_LE",
‘‘!m n. m divides n ==> m <= n \/ (n = 0)‘‘,
ARW_TAC [divides]

THEN Cases_on ‘x‘
THEN ARW_TAC [MULT]);

> val DIVIDES_LE = |- !m n. m divides n ==> m <= n \/ (n = 0) : Thm.thm

Storing theorems in our script record of the session in this style (rather than with the
goalstack) results in a more concise script, and also makes it easier to turn our script
into a theory file, as we do in section 4.5.

4.1.1 Divisibility and factorial

The next lemma, DIVIDES FACT, says that every number greater than 0 and less-than-or-
equal-to n divides the factorial of n. Factorial is found at arithmeticTheory.FACT and
has been defined by primitive recursion:

(FACT) (FACT 0 = 1) /\

(!n. FACT (SUC n) = SUC n * FACT n)

A polished proof of DIVIDES FACT is the following:

(DIVIDES FACT) !m n. 0 < m /\ m <= n ==> m divides (FACT n)

ARW_TAC [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN ARW_TAC [FACT,ADD_CLAUSES]

THENL [Cases_on ‘m‘, ALL_TAC]

THEN PROVE_TAC [FACT, DECIDE ‘!x. ~(x < x)‘,

DIVIDES_RMUL, DIVIDES_LMUL, DIVIDES_REFL]

We will examine this proof in detail, so we should first attempt to understand why
the theorem is true. What’s the underlying intuition? Suppose 0 < m ≤ n, and so
FACT n = 1 ∗ · · · ∗m ∗ · · · ∗ n. To show m divides (FACT n) means exhibiting a q such
that q ∗ m = FACT n. Thus q = FACT n ÷ m. If we were to take this approach to
the proof, we would end up having to find and apply lemmas about ÷. This seems to
take us a little out of our way; isn’t there a proof that doesn’t use division? Well yes,
we can prove the theorem by induction on n − m: in the base case, we will have to
prove n divides (FACT n), which ought to be easy; in the inductive case, the inductive
hypothesis seems like it should give us what we need. This strategy for the inductive
case is a bit vague, because we are trying to mentally picture a slightly complicated
formula, but we can rely on the system to accurately calculate the cases of the induction
for us. If the inductive case turns out to be not what we expect, we will have to re-think
our approach.

32 Chapter 4. Euclid’s theorem

38- g ‘!m n. 0 < m /\ m <= n ==> m divides (FACT n)‘;

> val it =
> Proof manager status: 1 proof.
> 1. Incomplete:
> Initial goal:
> !m n. 0 < m /\ m <= n ==> m divides FACT n

Instead of directly inducting on n −m, we will induct on a witness variable, obtained
by use of the theorem LESS_EQ_EXISTS.

39- LESS_EQ_EXISTS;
> val it = |- !m n. m <= n = (?p. n = m + p) : Thm.thm

- e (ARW_TAC [LESS_EQ_EXISTS]);

> OK..
> 1 subgoal:
> val it =
> m divides FACT (m + p)
> ------------------------------------
> 0 < m

Now we induct on p:

40- e (Induct_on ‘p‘);

> OK..
> 2 subgoals:
> val it =
> m divides FACT (m + SUC p)
> ------------------------------------
> 0. 0 < m
> 1. m divides FACT (m + p)
>
> m divides FACT (m + 0)
> ------------------------------------
> 0 < m

The first goal can obviously be simplified:

41- e (ARW_TAC []);

> OK..
> 1 subgoal:
> val it =
> m divides FACT m
> ------------------------------------
> 0 < m

4.1. Divisibility 33

Now we can do a case analysis on m: if it is 0, we have a trivial goal; if it is a successor,
then we can use the definition of FACT and the theorems DIVIDES_RMUL and DIVIDES_REFL.

42- e (Cases_on ‘m‘);

> OK..
> 2 subgoals:
> val it =
> SUC n divides FACT (SUC n)
> ------------------------------------
> 0 < SUC n
>
> 0 divides FACT 0
> ------------------------------------
> 0 < 0

Here the first sub-goal goal has an assumption that is false. We can demonstrate
this to the system by using the DECIDE function to prove a simple fact about arithmetic
(namely, that no number x is less than itself), and then passing the resulting theorem
to PROVE_TAC, which can combine this with the contradictory assumption.4

43- e (PROVE_TAC [DECIDE ‘!x. ~(x < x)‘]);

> OK..
> Meson search level: ..
>
> Goal proved.
> [.] |- 0 divides FACT 0
>
> Remaining subgoals:
> val it =
> SUC n divides FACT (SUC n)
> ------------------------------------
> 0 < SUC n

Using the theorems identified above, this, the second sub-goal, can be proved with
ARW_TAC.

4Note how the interactive system prints out the proved theorem with [.] before the turnstile. This
notation indicates that a theorem has an assumption (the false 0 < 0 in this case).

34 Chapter 4. Euclid’s theorem

44- e (ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

> OK..
>
> Goal proved. ...
>
> Remaining subgoals:
> val it =
> m divides FACT (m + SUC p)
> ------------------------------------
> 0. 0 < m
> 1. m divides FACT (m + p)

Note that this last step (the invocation of ARW_TAC) could also have been accomplished
with PROVE_TAC:

45- b();

> ...

- e (PROVE_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);
> OK..
>
> Goal proved. ...

Now we have finished the base case of the induction and can move to the step case. An
obvious thing to try is simplification with the definitions of addition and factorial:

46- e (ARW_TAC [FACT, ADD_CLAUSES]);

> OK..
> 1 subgoal:
> val it =
> m divides SUC (m + p) * FACT (m + p)
> ------------------------------------
> 0. 0 < m
> 1. m divides FACT (m + p)

And now, by DIVIDES_LMUL and the inductive hypothesis, we are done:

47- e (PROVE_TAC [DIVIDES_LMUL]);

> OK..
> Meson search level: ...
> Goal proved.
> ...
> val it =
> Initial goal proved.
> |- !m n. 0 < m /\ m <= n ==> m divides FACT n

4.1. Divisibility 35

We have finished the search for the proof, and now turn to the task of making a single
tactic out of the sequence of tactic invocations we have just made. We assume that the
sequence of invocations has been kept track of in a file or a text editor buffer. We would
thus have something like the following:

e (ARW_TAC [LESS_EQ_EXISTS]);
e (Induct_on ‘p‘);
(*1*)
e (ARW_TAC []);
e (Cases_on ‘m‘);
(*1.1*)
e (PROVE_TAC [DECIDE ‘!x. ~(x < x)‘]);
(*1.2*)
e (ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);
(*2*)
e (ARW_TAC [FACT, ADD_CLAUSES]);
e (PROVE_TAC [DIVIDES_LMUL]);

We have added a numbering scheme to keep track of the branches in the proof. We
can stitch the above directly into the following compound tactic:

ARW_TAC [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THENL [ARW_TAC [] THEN Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘!x. ~(x < x)‘],
ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

ARW_TAC [FACT, ADD_CLAUSES] THEN PROVE_TAC [DIVIDES_LMUL]]

This can be tested to see that we have made no errors:

48- restart();

> ...

- e (ARW_TAC [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THENL [ARW_TAC [] THEN Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘!x. ~(x < x)‘],
ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

ARW_TAC [FACT, ADD_CLAUSES] THEN PROVE_TAC [DIVIDES_LMUL]]);
> OK..
> Meson search level: ...
> Meson search level: ..
> val it =
> Initial goal proved.
> |- !m n. 0 < m /\ m <= n ==> m divides FACT n

36 Chapter 4. Euclid’s theorem

For many users, this would be the end of dealing with this proof: the tactic can now
be packaged into an invocation of prove5 or store_thm and that would be the end of it.
However, another class of user would notice that this tactic could be shortened.

To start, both arms of the induction start with an invocation of ARW_TAC, and the
semantics of THEN allow us to merge the occurrences of ARW_TAC above the THENL. The
recast tactic is

ARW_TAC [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN ARW_TAC [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘

THENL [PROVE_TAC [DECIDE ‘!x. ~(x < x)‘],
ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]],

PROVE_TAC [DIVIDES_LMUL]]

(Of course, when a tactic has been revised, it should be tested to see if it still proves
the goal!) Now recall that the use of ARW_TAC in the base case could be replaced by a
call to PROVE_TAC. Thus it seems possible to merge the two sub-cases of the base case
into a single invocation of PROVE_TAC:

ARW_TAC [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN ARW_TAC [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘

THEN PROVE_TAC [DECIDE ‘!x. ~(x < x)‘,
FACT, DIVIDES_RMUL, DIVIDES_REFL],

PROVE_TAC [DIVIDES_LMUL]]

Finally, pushing this dubious revisionism nearly to its limit, we’d like there to be only
a single invocation of PROVE_TAC to finish the proof off. The semantics of THEN and
ALL_TAC come to our rescue: we will split on the construction of m in the base case, as
in the current incarnation of the tactic, but we will let the inductive case pass unaltered
through the THENL. This is achieved by using ALL_TAC, which is a tactic that acts as an
identity function on the goal.

ARW_TAC [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN ARW_TAC [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘, ALL_TAC]
THEN PROVE_TAC [DECIDE ‘!x. ~(x < x)‘, FACT,

DIVIDES_RMUL, DIVIDES_REFL, DIVIDES_LMUL]

The result is that there will be three subgoals emerging from the THENL: the two sub-
cases in the base case and the unaltered step case. Each is proved with a call to
PROVE_TAC. We have now finished our exercise in tactic polishing.

5The prove function takes a term and a tactic and attempts to prove the term using the supplied
tactic. It returns the proved theorem if the tactic succeeds. It doesn’t save the theorem to the developing
theory.

4.1. Divisibility 37

4.1.2 Divisibility and factorial (again!)

In the previous proof, we made an initial simplification step in order to expose a variable
upon which to induct. However, the proof is really by induction on n − m. Can we
express this directly? The answer is a qualified yes: the induction can be naturally
stated, but it leads to somewhat less natural goals.

49- restart();

- e (Induct_on ‘n - m‘);

> OK..
2 subgoals:
> val it =
> !n m. (SUC v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
> ------------------------------------
> !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
>
> !n m. (0 = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

This is slighly hard to read, so we use STRIP_TAC and REPEAT to move the antecedents
of the goals to the assumptions. Use of THEN ensures that the tactic gets applied in both
branches of the induction.

50- b();
...

- e (Induct_on ‘n - m‘ THEN REPEAT STRIP_TAC);

> OK..
> 2 subgoals:
> val it =
> m divides FACT n
> ------------------------------------
> 0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
> 1. SUC v = n - m
> 2. 0 < m
> 3. m <= n
>
> m divides FACT n
> ------------------------------------
> 0. 0 = n - m
> 1. 0 < m
> 2. m <= n

Looking at the first goal, we reason that if 0 = n −m and m ≤ n, then m = n. We can
prove this fact, and add it to the hypotheses by use of the infix operator “by”:

38 Chapter 4. Euclid’s theorem

51- e (‘m = n‘ by DECIDE_TAC);
OK..
1 subgoal:
> val it =

m divides FACT n

0. 0 = n - m
1. 0 < m
2. m <= n
3. m = n

We can now use ARW_TAC to propagate the newly derived equality throughout the goal.

52- e (ARW_TAC []);

> OK..
> 1 subgoal:
> val it =
> m divides FACT m
> ------------------------------------
> 0. 0 = m - m
> 1. 0 < m
> 2. m <= m

At this point in the previous proof we did a case analysis on m. However, we already
have the hypothesis that m is positive. Thus we know that m is the successor of some
number k. We might wish to assert this fact with an invocation of “by” as follows:

‘?k. m = SUC k‘ by <tactic>

But what is the tactic? If we try DECIDE_TAC, it will fail since it doesn’t handle existential
statements. An application of ARW_TAC will also prove to be unsatisfactory. What to do?

When such situations occur, it is often best to start a new proof for the required
lemma. This can be done simply by invoking “g” again. A new goalstack will be created
and stacked upon the current one6 and an overview of the extant proof attempts will be
printed:

6This stacking of proof attempts (goalstacks) is different than the stacking of goals and justifications
inside a particular goalstack.

4.1. Divisibility 39

53- g ‘!m. 0 < m ==> ?k. m = SUC k‘;

> val it =
> Proof manager status: 2 proofs.
> 2. Incomplete:
> Initial goal:
> !m n. 0 < m /\ m <= n ==> m divides FACT n
>
>
> Current goal:
> m divides FACT m
> ------------------------------------
> 0. 0 = m - m
> 1. 0 < m
> 2. m <= m
>
> 1. Incomplete:
> Initial goal:
> !m. 0 < m ==> ?k. m = SUC k

Our new goal can be proved quite quickly. Once we have proved it, we can bind it to an
ML name and use it in the previous proof, by some sleight of hand with the “before”7

function.

54- e (Cases THEN ARW_TAC []);

> OK..
> val it =
> Initial goal proved.
> |- !m. 0 < m ==> ?k. m = SUC k

- val lem = top_thm() before drop();

> OK..
> val lem = |- !m. 0 < m ==> ?k. m = SUC k : Thm.thm

Now we can return to the main thread of the proof. The state of the current sub-goal
of the proof can be displayed using the function “p”.

55- p ();

> val it =
> m divides FACT m
> ------------------------------------
> 0. 0 = m - m
> 1. 0 < m
> 2. m <= m

7An infix version of the K combinator, defined by fun (x before y) = x.

40 Chapter 4. Euclid’s theorem

Now we can use lem in the proof. Somewhat opportunistically, we will tack on the
invocation used in the earlier proof at (roughly) the same point, hoping that it will
solve the goal:

56- e (‘?k. m = SUC k‘ by
PROVE_TAC [lem] THEN ARW_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);

> OK..
> Meson search level: ...
>
> Goal proved. ...
>
> Remaining subgoals:
> val it =
> m divides FACT n
> ------------------------------------
> 0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
> 1. SUC v = n - m
> 2. 0 < m
> 3. m <= n

It does! That takes care of the base case. For the induction step, things look a bit more
difficult than in the earlier proof. However, we can make progress by realizing that the
hypotheses imply that 0 < n and so, again by lem, we can transform n into a successor,
thus enabling the unfolding of FACT, as in the previous proof:

57- e (‘0 < n‘ by DECIDE_TAC THEN ‘?k. n = SUC k‘ by PROVE_TAC [lem]);

> OK..
> Meson search level: ...
> 1 subgoal:
> val it =
> m divides FACT n
> ------------------------------------
> 0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
> 1. SUC v = n - m
> 2. 0 < m
> 3. m <= n
> 4. 0 < n
> 5. n = SUC k

The proof now finishes in much the same manner as the previous one:
58- e (ARW_TAC [FACT, DIVIDES_LMUL]);

> OK..
>
> Goal proved. ...
> val it =
> Initial goal proved.
> |- !m n. 0 < m /\ m <= n ==> m divides FACT n

4.2. Primality 41

We leave the details of stitching the proof together to the interested reader.

4.2 Primality

Now we move on to establish some facts about the primality of the first few numbers: 0

and 1 are not prime, but 2 is. Also, all primes are positive. These are all quite simple to
prove.

(NOT PRIME 0) ~prime 0

ARW_TAC [prime,DIVIDES_0]

(NOT PRIME 1) ~prime 1

ARW_TAC [prime]

(PRIME 2) prime 2

ARW_TAC [prime]

THEN PROVE_TAC [DIVIDES_LE, DIVIDES_ZERO,

DECIDE ‘~(2=1)‘, DECIDE ‘~(2=0)‘,

DECIDE ‘x <= 2 = (x=0) \/ (x=1) \/ (x=2)‘]

(PRIME POS) !p. prime p ==> 0<p

Cases THEN ARW_TAC[NOT_PRIME_0]

4.3 Existence of prime factors

Now we are in position to prove a more substantial lemma: every number other than 1

has a prime factor. The proof proceeds by a complete induction on n. Complete induction
is necessary since a prime factor won’t be the predecessor. After induction, the proof
splits into cases on whether n is prime or not. The first case (n is prime) is trivial. In the
second case, there must be an x that divides n, and x is not 1 or n. By DIVIDES LE, n = 0

or x ≤ n. If n = 0, then 2 is a prime that divides 0. On the other hand, if x ≤ n, there
are two cases: if x < n then we can use the inductive hypothesis and by transitivity of
divides we are done; otherwise, x = n and then we have a contradiction with the fact
that x is not 1 or n. The polished tactic is the following:

(PRIME FACTOR) !n. ~(n = 1) ==> ?p. prime p /\ p divides n

completeInduct_on ‘n‘

THEN ARW_TAC []

THEN Cases ‘prime n‘ THENL

[PROVE_TAC [DIVIDES_REFL],

‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘

by PROVE_TAC[prime]

THEN PROVE_TAC [LESS_OR_EQ, PRIME_2,

DIVIDES_LE,DIVIDES_TRANS,DIVIDES_0]]

42 Chapter 4. Euclid’s theorem

We start by invoking complete induction. This gives us an inductive hypothesis that
holds at every number m strictly smaller than n:

59- g ‘!n. ~(n = 1) ==> ?p. prime p /\ p divides n‘;

- e (completeInduct_on ‘n‘);

> OK..
> 1 subgoal:
> val it =
> ~(n = 1) ==> ?p. prime p /\ p divides n
> ------------------------------------
> !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

We can move the antecedent to the hypotheses and make our case split. Notice that the
term given to Cases_on need not occur in the goal:

60- e (ARW_TAC [] THEN Cases_on ‘prime n‘);
OK..
2 subgoals:
> val it =

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. ~prime n

?p. prime p /\ p divides nnn

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. prime n

As mentioned, the first case is proved with the reflexivity of divisibility:

61- e (PROVE_TAC [DIVIDES_REFL]);

> OK..
> Meson search level: ...
>
> Goal proved. ...

In the second case, we can get a divisor of n that isn’t 1 or n (since n is not prime):

4.3. Existence of prime factors 43

62- e (‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘ by PROVE_TAC [prime]);

> OK..
> Meson search level:
> 1 subgoal:
> val it =
> ?p. prime p /\ p divides n
> ------------------------------------
> 0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
> 1. ~(n = 1)
> 2. ~prime n
> 3. x divides n
> 4. ~(x = 1)
> 5. ~(x = n)

At this point, the polished tactic simply invokes PROVE_TAC with a collection of theorems.
We will attempt a more detailed exposition. Given the hypotheses, and by DIVIDES LE,
we can assert x < n ∨ n = 0 and thus split the proof into two cases:

63- e (‘x < n \/ (n=0)‘ by PROVE_TAC [DIVIDES_LE,LESS_OR_EQ]);

> OK..
> Meson search level:
> 2 subgoals:
> val it =
> ?p. prime p /\ p divides n
> ------------------------------------
> 0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
> 1. ~(n = 1)
> 2. ~prime n
> 3. x divides n
> 4. ~(x = 1)
> 5. ~(x = n)
> 6. n = 0
>
> ?p. prime p /\ p divides n
> ------------------------------------
> 0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
> 1. ~(n = 1)
> 2. ~prime n
> 3. x divides n
> 4. ~(x = 1)
> 5. ~(x = n)
> 6. x < n

In the first subgoal, we can see that the antecedents of the inductive hypothesis are met
and so x has a prime divisor. We can then use the transitivity of divisibility to get the
fact that this divisor of x is also a divisor of n, thus finishing this branch of the proof:

44 Chapter 4. Euclid’s theorem

64- e (PROVE_TAC [DIVIDES_TRANS]);

> OK..
> Meson search level:
> Goal proved.

The remaining goal can be clarified by simplification:

65- e (ARW_TAC []);

> OK..
> 1 subgoal:
> val it =
> ?p. prime p /\ p divides 0
> ------------------------------------
> 0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m
> 1. ~(0 = 1)
> 2. ~prime 0
> 3. x divides 0
> 4. ~(x = 1)
> 5. ~(x = 0)

- DIVIDES_0;

> val it = |- !x. x divides 0 : Thm.thm

- e (ARW_TAC [it]);

> OK..
> 1 subgoal:
> val it =
> ?p. prime p
> ------------------------------------
> 0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m
> 1. ~(0 = 1)
> 2. ~prime 0
> 3. x divides 0
> 4. ~(x = 1)
> 5. ~(x = 0)

The two steps of exploratory simplification have led us to a state where all we have to
do is exhibit a prime. And we already have one to hand:

4.4. Euclid’s theorem 45

66- e (PROVE_TAC [PRIME_2]);

> OK..
> Meson search level: ..
>
> Goal proved. ...
> val it =
> Initial goal proved.
> |- !n. ~(n = 1) ==> ?p. prime p /\ p divides n

Again, work now needs to be done to compose and perhaps polish a single tactic from
the individual proof steps, but we will not describe it. Instead we move forward, because
our ultimate goal is in reach.

4.4 Euclid’s theorem

Theorem. Every number has a prime greater than it.
Informal proof.
Suppose the opposite; then there’s an n such that all p greater than n are not prime.
Consider FACT(n) + 1: it’s not equal to 1 so, by PRIME FACTOR, there’s a prime p that
divides it. Note that p also divides FACT(n) because p ≤ n. By DIVIDES ADDL, we have
p = 1. But then p is not prime, which is a contradiction.
End of proof.

A HOL rendition of the proof may be given as follows:

(EUCLID) !n. ?p. n < p /\ prime p

SPOSE_NOT_THEN STRIP_ASSUME_TAC

THEN MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR)

THEN ARW_TAC [FACT_LESS, DECIDE ‘~(x=0) = 0<x‘]

THEN PROVE_TAC [NOT_PRIME_1, NOT_LESS, PRIME_POS,

DIVIDES_FACT, DIVIDES_ADDL, DIVIDES_ONE]

Let’s prise this apart and look at it in some detail. A proof by contradiction can be started
by using the bossLib function SPOSE_NOT_THEN. With it, one assumes the negation of the
current goal and then uses that in an attempt to prove falsity (F). The assumed negation
¬(∀n. ∃p. n < p ∧ prime p) is simplified a bit into ∃n. ∀p. n < p ⊃ ¬ prime p and then is
passed to the tactic STRIP_ASSUME_TAC. This moves its argument to the assumption list
of the goal after eliminating the existential quantification on n.

46 Chapter 4. Euclid’s theorem

67- g ‘!n. ?p. n < p /\ prime p‘;

- e (SPOSE_NOT_THEN STRIP_ASSUME_TAC);

> OK..
> 1 subgoal:
> val it =
> F
> ------------------------------------
> !p. n < p ==> ~prime p

Thus we have the hypothesis that all p beyond a certain unspecified n are not prime,
and our task is to show that this cannot be. At this point we take advantage of Euclid’s
great inspiration and we build an explicit term from n. In the informal proof we are
asked to ‘consider’ the term FACT n + 1.8 This term will have certain properties (i.e., it
has a prime factor) that lead to contradiction. Question: how do we ‘consider’ this term
in the formal HOL proof? Answer: by instantiating a lemma with it and bringing the
lemma into the proof. The lemma and its instantiation are:9

68- PRIME_FACTOR;

> val it = |- !n. ~(n = 1) ==> (?p. prime p /\ p divides n) : Thm.thm

- val th = SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR;

> val th =
> |- ~(FACT n + 1 = 1) ==> (?p. prime p /\ p divides FACT n + 1)

It is evident that the antecedent of th can be eliminated. In hol98, one could do this in a
so-called forward proof style (by proving ` ¬(FACT n+ 1 = 1) and then applying modus
ponens, the result of which can then be used in the proof), or one could bring th into
the proof and simplify it in situ. We choose the latter approach.

69- e (MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR));

> OK..
> 1 subgoal:
> val it =
> (~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F
> ------------------------------------
> !p. n < p ==> ~prime p

The invocation MP_TAC (`M) applied to a goal (∆, g) returns the goal (∆,M ⊃ g). Now
we simplify:

8The HOL parser thinks FACT n+ 1 is equivalent to (FACT n) + 1.
9The function SPEC implements the rule of universal specialization.

4.4. Euclid’s theorem 47

70- e (ARW_TAC []);

> OK..
> 2 subgoals:
> val it =
> ~(p divides FACT n + 1)
> ------------------------------------
> 0. !p. n < p ==> ~prime p
> 1. prime p
>
> ~(FACT n = 0)
> ------------------------------------
> !p. n < p ==> ~prime p

We recall that zero is less than every factorial, a fact found in arithmeticTheory under
the name FACT_LESS. Thus we can solve the top goal by simplification:

71- e (ARW_TAC [FACT_LESS, DECIDE ‘!x. ~(x=0) = 0 < x‘]);

> OK..
> Goal proved. ...

Notice the ‘on-the-fly’ use of DECIDE to provide an ad hoc rewrite. Looking at the re-
maining goal, one might think that our aim, to prove falsity, has been lost. But this
is not so: a goal ¬M is equivalent to M ⊃ F. We can quickly proceed to show that
p divides (FACT n), and thus that p = 1, hence that p is not prime, at which point we
are done. This can all be packaged into a single invocation of PROVE_TAC:

72- e (PROVE_TAC [PRIME_POS, NOT_LESS, DIVIDES_FACT,
DIVIDES_ADDL, DIVIDES_ONE, NOT_PRIME_1]);

> OK..
> Meson search level:
>
> Goal proved.
> [..] |- ~(p divides FACT n + 1)
>
> Goal proved.
> [.]
> |- (~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F
>
> Goal proved.
> [.] |- F
> val it =
> Initial goal proved.
> |- !n. ?p. n < p /\ prime p

Euclid’s theorem is now proved, and we can rest. However, this presentation of the final
proof will be unsatisfactory to some, because the proof is completely hidden in the invo-
cation of the automated reasoner. Well then, let’s try another proof, this time employing

48 Chapter 4. Euclid’s theorem

the so-called ‘assertional’ style. When used uniformly, this can allow a readable linear
presentation that mirrors the informal proof. The following proves Euclid’s theorem in
the assertional style. We think it is fairly readable, certainly much more so than the
standard tactic proof just given.10

(AGAIN) !n. ?p. n < p /\ prime p

CCONTR_TAC THEN

‘?n. !p. n < p ==> ~prime p‘ by PROVE_TAC [] THEN

‘~(FACT n + 1 = 1)‘ by ARW_TAC [FACT_LESS,

DECIDE‘~(x=0)=0<x‘] THEN

‘?p. prime p /\

p divides (FACT n + 1)‘ by PROVE_TAC [PRIME_FACTOR] THEN

‘0 < p‘ by PROVE_TAC [PRIME_POS] THEN

‘p <= n‘ by PROVE_TAC [NOT_LESS] THEN

‘p divides FACT n‘ by PROVE_TAC [DIVIDES_FACT] THEN

‘p divides 1‘ by PROVE_TAC [DIVIDES_ADDL] THEN

‘p = 1‘ by PROVE_TAC [DIVIDES_ONE] THEN

‘~prime p‘ by PROVE_TAC [NOT_PRIME_1] THEN

PROVE_TAC []

4.5 Turning the script into a theory

Having proved our result, we probably want to package it up in a way that makes it
available to future sessions, but which doesn’t require us to go all through the theorem-
proving effort again. Even having a complete script from which it would be possible to
cut-and-paste is an error-prone solution.

In order to do this we need to create a file with the name xScript.sml, where x is
the name of the theory we wish to export. This file then needs to be compiled. In fact,
we really do use the Moscow ML compiler, carefully augmented with the appropriate
logical context. However, the language accepted by the compiler is not quite the same
as that accepted by the interactive system, so we will need to do a little work to massage
the original script into the correct form.

We’ll give an illustration of converting to a form that can be compiled using the script

<holdir>/examples/euclid.sml

as our base-line. This file is already close to being in the right form. It has all of the
proofs of the theorems in “sewn-up” form so that when run, it does not involve the
goal-stack at all. In its given form, it can be run as input to hol.unquote thus:

10Note that CCONTR TAC, which is used to start the proof, initiates a proof by contradiction by negating
the goal and placing it on the hypotheses, leaving F as the new goal.

4.5. Turning the script into a theory 49

1$ cd examples/
$../bin/hol.unquote < euclid.sml
Moscow ML version 1.44 (August 1999)
Enter ‘quit();’ to quit.
For HOL help, type: help "hol";

...

> val EUCLID_AGAIN = |- !n. ?p. n < p /\ prime p : Thm.thm
- Theory: scratch

...

Theorems:
DIVIDES_0 |- !x. x divides 0
DIVIDES_ZERO |- !x. 0 divides x = x = 0
DIVIDES_ONE |- !x. x divides 1 = x = 1

...
PRIME_POS |- !p. prime p ==> 0 < p
PRIME_FACTOR |- !n. ~(n = 1) ==> ?p. prime p /\ p divides n
EUCLID |- !n. ?p. n < p /\ prime p

Theory "scratch" is inconsistent with disk.
-

However, we now want to create a euclidTheory that we can load in other interactive
sessions, just as we loaded arithmeticTheory in the development above. So, our first
step is to create a file euclidScript.sml, and to copy the body of euclid.sml into it. The
first (non-comment) line of our new script is

load "bossLib";

This is necessary in the interactive system, but is redundant when creating compiled
code as the compiler detects the dependency on bossLib itself (it needs to open it in the
very next line). This line should be deleted.

The following line opens arithmeticTheory and bossLib. However, when writing for
the compiler, we need to explicitly mention the other HOL modules that we depend on.
We must add

open HolKernel basicHol90Lib Parse

Further, while hol (and hol.unquote) know that THEN and THENL are infixes, the compiler
doesn’t, so we must also add

infix THEN THENL

The next line that poses a difficulty is

set_fixity "divides" (Infixr 450);

50 Chapter 4. Euclid’s theorem

While it is legitimate to type expressions directly into the interactive system, the com-
piler requires that every top-level phrase be a declaration. We satisfy this requirement
by altering this line into a “do nothing” declaration that does not record the result of
the expression:

val _ = set_fixity "divides" (Infixr 450)

The only extra changes are to bracket the rest of the script file text with calls to new_theory

and export_theory. So, before the definition of divides, we add:

val _ = new_theory "euclid";

and at the end of the file:

val _ = export_theory();

Now, we can compile the script we have created using the Holmake tool. To keep
things a little tidier, we first move our script into a new directory.

2$ mkdir euclid
$ mv euclidScript.sml euclid
$ cd euclid
$../../bin/Holmake
Analysing euclidScript.sml
Trying to create directory .HOLMK for dependency files
Compiling euclidScript.sml
Linking euclidScript.uo to produce theory building executable
<<HOL message: inventing new type variable names: ’a, ’b.>>
<<HOL message: Created theory "euclid".>>
Definition stored under "divides_def".
Definition stored under "prime_def".
Meson search level:
Meson search level:
...
Theory "euclid" is inconsistent with disk.
Exporting theory ... done.
Analysing euclidTheory.sml
Analysing euclidTheory.sig
Compiling euclidTheory.sig
Compiling euclidTheory.sml

Now we have created four new files, various forms of euclidTheory with four different
suffixes. Only euclidTheory.sig is really suitable for human consumption. While still in
the euclid directory that we created, we can demonstrate:

4.6. Summary 51

3$../../bin/hol.unquote
[...]

[closing file "/local/scratch/mn200/Work/hol98/tools/end-init.sml"]
- load "euclidTheory";
> val it = () : unit
- open euclidTheory;
> type thm = Thm.thm

val DIVIDES_TRANS =
|- !a b c. a divides b / b divides c ==> a divides c
: Thm.thm

...
val DIVIDES_REFL = |- !x. x divides x : Thm.thm
val DIVIDES_0 = |- !x. x divides 0 : Thm.thm

4.6 Summary

The reader has now seen an interesting theorem proved, in great detail, in hol98. The
discussion illustrated the high-level tools provided in bossLib and touched on issues
including tool selection, undo, ‘tactic polishing’, exploratory simplification, and the
‘forking-off’ of new proof attempts. We also attempted to give a flavour of the thought
processes a user would employ. Following is a more-or-less random collection of other
observations.

• Even though the proof of Euclid’s theorem is short and easy to understand when
presented informally, a perhaps surprising amount of support development was
required to set the stage for Euclid’s classic argument.

• The proof support offered by bossLib (RW_TAC, PROVE_TAC, DECIDE_TAC, DECIDE,
Cases_on, Induct_on, and the “by” construct) was nearly complete for this exam-
ple: it was rarely necessary to resort to lower-level tactics.

• Simplification is a workhorse tactic; even when an automated reasoner like PROVE_TAC

is used, its application has often been set up by some exploratory simplifications.
It therefore pays to become familiar with the strengths and weaknesses of the
simplifier.

• A common problem with interactive proof systems is dealing with hypotheses. Of-
ten PROVE_TAC and the “by” construct allow the use of hypotheses without directly
resorting to indexing into them (or naming them, which amounts to the same
thing). This is desirable, since the hypotheses are notionally a set, and moreover,
experience has shown that profligate indexing into hypotheses results in hard-to-
maintain proof scripts. However, it can be clumsy to work with a large set of
hypotheses, in which case the following approaches may be useful.

52 Chapter 4. Euclid’s theorem

One can directly refer to hypotheses by using UNDISCH_TAC (makes the designated
hypothesis the antecedent to the goal), ASSUM_LIST (gives the entire hypothesis list
to a tactic), POP_ASSUM (gives the top hypothesis to a tactic), and PAT_ASSUM (gives
the first matching hypothesis to a tactic). (See the REFERENCE for further details
on all of these.) The numbers attached to hypotheses by the proof manager could
likely be used to access hypotheses (it would be quite simple to write such a tactic).
However, starting a new proof is sometimes the most clarifying thing to do.

In some cases, it is useful to be able to delete a hypothesis. This can be accom-
plished by passing the hypothesis to a tactic that ignores it. For example, to discard
the top hypothesis, one could invoke POP_ASSUM (K ALL_TAC).

• In the example, we didn’t use the more advanced features of bossLib, largely
because they do not, as yet, provide much more functionality than the simple
sequencing of simplification, decision procedures, and automated first order rea-
soning. The THEN tactical has thus served as an adequate replacement. In the
future, these entrypoints should become more powerful.

• It is almost always necessary to have an idea of the informal proof in order to
be successful when doing a formal proof. However, all too often the following
strategy is adopted by novices: (1) rewrite the goal with a few relevant definitions,
and then (2) rely on the syntax of the resulting goal to guide subsequent tactic
selection. Such an approach constitutes a clear case of the tail wagging the dog,
and is a poor strategy to adopt. Insight into the high-level structure of the proof is
one of the most important factors in successful verification exercises.

The author has noticed that many of the most successful verification experts work
using a sheet of paper to keep track of the main steps that need to be made.
Perhaps looking away to the paper helps break the mesmerizing effect of the com-
puter screen.

On the other hand, one of the advantages of having a mechanized logic is that the
machine can be used as a formal expression calculator, and thus the user can use
it to quickly and accurately explore various proof possibilities.

• High powered tools like PROVE_TAC, DECIDE_TAC, and RW_TAC are the principal way
of advancing a proof in bossLib. In many cases, they do exactly what is desired,
or even manage to surprise the user with their power. In the formalization of
Euclid’s theorem, the tools performed fairly well. However, sometimes they are
overly aggressive, or they simply flounder. In such cases, more specialized proof
tools need to be used, or even written, and hence the support underlying bossLib

must eventually be learned.

4.6. Summary 53

• Having a good knowledge of the available lemmas, and where they are located, is
an essential part of being successful. Often powerful tools can replace lemmas in a
restricted domain, but in general, one has to know what has already been proved.
We have found that the entrypoints in DB help in quickly finding lemmas.

54 Chapter 4. Euclid’s theorem

Chapter 5

Introduction to Proof with HOL

Preliminaries This chapter discusses the nature of proof in HOL in more detail. The
previous chapter has provided a broad overview of how proof is done in HOL, while here
the emphasis is on attaining a more thorough grounding in the material. As before, we
are using hol.unquote and we require the following command to be entered as a first
step:

0- app load ["arithmeticTheory", "pairTheory"];
> val it = () : unit

For a logician, a formal proof is a sequence, each of whose elements is either an axiom
or follows from earlier members of the sequence by a rule of inference. A theorem is the
last element of a proof.

Theorems are represented in HOL by values of an abstract type thm. The only way
to create theorems is by generating a proof. In HOL (following LCF), this consists in
applying ML functions representing rules of inference to axioms or previously generated
theorems. The sequence of such applications directly corresponds to a logician’s proof.

There are five axioms of the HOL logic and eight primitive inference rules. The axioms
are bound to ML names. For example, the Law of Excluded Middle is bound to the ML
name BOOL_CASES_AX:

1- BOOL_CASES_AX;
> val it = |- !t. (t = T) \/ (t = F) : thm

Theorems are printed with a preceding turnstile |- as illustrated above; the symbol
‘!’ is the universal quantifier ‘∀’. Rules of inference are ML functions that return values
of type thm. An example of a rule of inference is specialization (or ∀-elimination). In
standard ‘natural deduction’ notation this is:

Γ ` ∀x. t
Γ ` t[t′/x]

• t[t′/x] denotes the result of substituting t′ for free occurrences of x in t, with the
restriction that no free variables in t′ become bound after substitution.

55

56 Chapter 5. Introduction to Proof with HOL

This rule is represented in ML by a function SPEC,1 which takes as arguments a term
‘‘a‘‘ and a theorem |- !x.t[x] and returns the theorem |- t[a], the result of substitut-
ing a for x in t[x].

2- val Th1 = BOOL_CASES_AX;
> val Th1 = |- !t. (t = T) \/ (t = F) : thm

- val Th2 = SPEC ‘‘1 = 2‘‘ Th1;
> val Th2 = |- ((1 = 2) = T) \/ ((1 = 2) = F) : thm

This session consists of a proof of two steps: using an axiom and applying the rule
SPEC; it interactively performs the following proof:

1. ` ∀t. t = > ∨ t = ⊥ [Axiom BOOL_CASES_AX]

2. ` (1=2) = > ∨ (1=2) = ⊥ [Specializing line 1 to ‘1=2’]

If the argument to an ML function representing a rule of inference is of the wrong
kind, or violates a condition of the rule, then the application fails. For example, SPEC t th
will fail if th is not of the form |- !x. · · · or if it is of this form but the type of t is not
the same as the type of x, or if the free variable restriction is not met. When one of the
standard HOL_ERR exceptions is raised, more information about the failure can often be
gained by using the Raise function.

3- SPEC ‘‘1=2‘‘ Th2;
! Uncaught exception:
! HOL_ERR <poly>

- SPEC ‘‘1 = 2‘‘ Th2 handle e => Raise e;

Exception raised at Thm.SPEC:

! Uncaught exception:
! HOL_ERR <poly>

However, as this session illustrates, the failure token does not always indicate the exact
reason for failure. The failure conditions for rules of inference are given in REFERENCE.

A proof in the HOL system is constructed by repeatedly applying inference rules to
axioms or to previously proved theorems. Since proofs may consist of millions of steps,
it is necessary to provide tools to make proof construction easier for the user. The proof
generating tools in the HOL system are just those of LCF, and are described later.

The general form of a theorem is t1, . . . , tn |- t, where t1, . . . , tn are boolean terms
called the assumptions and t is a boolean term called the conclusion. Such a theorem

1SPEC is not a primitive rule of inference in the HOL logic, but is a derived rule. Derived rules are
described in Section 5.1.

5.1. Forward proof 57

asserts that if its assumptions are true then so is its conclusion. Its truth conditions
are thus the same as those for the single term (t1/\. . ./\tn)==>t. Theorems with no
assumptions are printed out in the form |- t.

The five axioms and eight primitive inference rules of the HOL logic are described
in detail in the document DESCRIPTION. Every value of type thm in the HOL system can
be obtained by repeatedly applying primitive inference rules to axioms. When the HOL
system is built, the eight primitive rules of inference are defined and the five axioms
are bound to their ML names, all other predefined theorems are proved using rules of
inference as the system is made.2 This is one of the reasons why building hol takes so
long.

In the rest of this chapter, the process of forward proof, which has just been sketched,
is described in more detail. In Chapter 6 goal directed proof is described, including the
important notions of tactics and tacticals, due to Robin Milner.

5.1 Forward proof

Three of the primitive inference rules of the HOL logic are ASSUME (assumption introduc-
tion), DISCH (discharging or assumption elimination) and MP (Modus Ponens). These
rules will be used to illustrate forward proof and the writing of derived rules.

The inference rule ASSUME generates theorems of the form t |- t. Note, however, that
the ML printer prints each assumption as a dot (but this default can be changed; see
below). The function dest_thm decomposes a theorem into a pair consisting of list of
assumptions and the conclusion. The ML type goal abbreviates (term)list # term, this
is motivated in Section 6.

4- val Th3 = ASSUME ‘‘t1==>t2‘‘;;
> val Th3 = [.] |- t1 ==> t2 : thm

- dest_thm Th3;
> val it = ([‘‘t1 ==> t2‘‘], ‘‘t1 ==> t2‘‘) : term list * term

A sort of dual to ASSUME is the primitive inference rule DISCH (discharging, assumption
elimination) which infers from a theorem of the form · · · t1 · · · |- t2 the new theorem
· · · · · · |- t1==>t2. DISCH takes as arguments the term to be discharged (i.e. t1) and the
theorem from whose assumptions it is to be discharged and returns the result of the
discharging. The following session illustrates this:

5- val Th4 = DISCH ‘‘t1==>t2‘‘ Th3;
> val Th4 = |- (t1 ==> t2) ==> t1 ==> t2 : thm

2This is a slight over-simplification.

58 Chapter 5. Introduction to Proof with HOL

Note that the term being discharged need not be in the assumptions; in this case they
will be unchanged.

6- DISCH ‘‘1=2‘‘ Th3;
> val it = [.] |- (1 = 2) ==> t1 ==> t2 : thm

- dest_thm it;
> val it = ([‘‘t1 ==> t2‘‘], ‘‘(1 = 2) ==> t1 ==> t2‘‘) : term list * term

In HOL the rule MP of Modus Ponens is specified in conventional notation by:

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

The ML function MP takes argument theorems of the form · · · |- t1 ==> t2 and · · · |- t1

and returns · · · |- t2. The next session illustrates the use of MP and also a common error,
namely not supplying the HOL logic type checker with enough information.

7- val Th5 = ASSUME ‘‘t1‘‘;
<<HOL message: inventing new type variable names: ’a.>>
! Uncaught exception:
! HOL_ERR <poly>
- val Th5 = ASSUME ‘‘t1‘‘ handle e => Raise e;
<<HOL message: inventing new type variable names: ’a.>>

Exception raised at Thm.ASSUME:
not a proposition
! Uncaught exception:
! HOL_ERR <poly>

- val Th5 = ASSUME ‘‘t1:bool‘‘;
> val Th5 = [.] |- t1 : thm

- val Th6 = MP Th3 Th5;
> val Th6 = [..] |- t2 : thm

The hypotheses of Th6 can be inspected with the ML function hyp, which returns the
list of assumptions of a theorem (the conclusion is returned by concl).

8- hyp Th6;
> val it = [‘‘t1 ==> t2‘‘, ‘‘t1‘‘] : term list

HOL can be made to print out hypotheses of theorems explicitly by setting the global
flag show_assums to true.

5.1. Forward proof 59

9- show_assums := true;
> val it = () : unit

- Th5;
> val it = [t1] |- t1 : thm

- Th6;
> val it = [t1 ==> t2, t1] |- t2 : thm

Discharging Th6 twice establishes the theorem |- t1 ==> (t1==>t2) ==> t2.

10- val Th7 = DISCH ‘‘t1==>t2‘‘ Th6;
> val Th7 = [t1] |- (t1 ==> t2) ==> t2 : thm

- val Th8 = DISCH ‘‘t1:bool‘‘ Th7;
> val Th8 = |- t1 ==> (t1 ==> t2) ==> t2 : thm

The sequence of theorems: Th3, Th5, Th6, Th7, Th8 constitutes a proof in HOL of the
theorem |- t1 ==> (t1 ==> t2) ==> t2. In standard logical notation this proof could
be written:

1. t1 ⇒ t2 ` t1 ⇒ t2 [Assumption introduction]

2. t1 ` t1 [Assumption introduction]

3. t1 ⇒ t2, t1 ` t2 [Modus Ponens applied to lines 1 and 2]

4. t1 ` (t1 ⇒ t2)⇒ t2 [Discharging the first assumption of line 3]

5. ` t1 ⇒ (t1 ⇒ t2)⇒ t2 [Discharging the only assumption of line 4]

5.1.1 Derived rules

A proof from hypothesis th1, . . . , thn is a sequence each of whose elements is either an
axiom, or one of the hypotheses thi, or follows from earlier elements by a rule of infer-
ence.

For example, a proof of Γ, t′ ` t from the hypothesis Γ ` t is:

1. t′ ` t′ [Assumption introduction]

2. Γ ` t [Hypothesis]

3. Γ ` t′ ⇒ t [Discharge t′ from line 2]

4. Γ, t′ ` t [Modus Ponens applied to lines 3 and 1]

60 Chapter 5. Introduction to Proof with HOL

This proof works for any hypothesis of the form Γ ` t and any boolean term t′ and
shows that the result of adding an arbitrary hypothesis to a theorem is another theorem
(because the four lines above can be added to any proof of Γ ` t to get a proof of
Γ, t′ ` t).3 For example, the next session uses this proof to add the hypothesis ‘‘t3‘‘

to Th6.

11- val Th9 = ASSUME ‘‘t3:bool‘‘;
> val Th9 = [t3] |- t3 : thm

- val Th10 = DISCH ‘‘t3:bool‘‘ Th6;
> val Th10 = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- val Th11 = MP Th10 Th9;
> val Th11 = [t1 ==> t2, t1, t3] |- t2 : thm

A derived rule is an ML procedure that generates a proof from given hypotheses each
time it is invoked. The hypotheses are the arguments of the rule. To illustrate this, a
rule, called ADD_ASSUM, will now be defined as an ML procedure that carries out the proof
above. In standard notation this would be described by:

Γ ` t

Γ, t′ ` t

The ML definition is:

12- fun ADD_ASSUM t th = let
val th9 = ASSUME t
val th10 = DISCH t th

in
MP th10 th9

end;
> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM ‘‘t3:bool‘‘ Th6;
> val it = [t1, t1 ==> t2, t3] |- t2 : thm

The body of ADD_ASSUM has been coded to mirror the proof done in session 10 above, so
as to show how an interactive proof can be generalized into a procedure. But ADD_ASSUM
can be written much more concisely as:

13- fun ADD_ASSUM t th = MP (DISCH t th) (ASSUME t);
> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM t3 Th6;
val it = [t1 ==> t2, t1, t3] |- t2 : thm

3This property of the logic is called monotonicity.

5.2. Rewriting 61

Another example of a derived inference rule is UNDISCH; this moves the antecedent of
an implication to the assumptions.

Γ ` t1 ⇒ t2
Γ, t1 ` t2

An ML derived rule that implements this is:

14- fun UNDISCH th = MP th (ASSUME(#1(dest_imp(concl th))));
> val UNDISCH = fn : thm -> thm

- Th10;
> val it = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- UNDISCH Th10;
> val it = [t1, t1 ==> t2, t3] |- t2 : thm

Each time UNDISCH Γ ` t1 ⇒ t2 is executed, the following proof is performed:

1. t1 ` t1 [Assumption introduction]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ, t1 ` t2 [Modus Ponens applied to lines 2 and 1]

The rules ADD_ASSUM and UNDISCH are the first derived rules defined when the HOL
system is built. For a description of the main rules see the section on derived rules in
DESCRIPTION.

5.2 Rewriting

An important derived rule is REWRITE_RULE. This takes a list of conjunctions of equations,
i.e. a list of theorems of the form:

Γ ` (u1 = v1) ∧ (u2 = v2) ∧ . . . ∧ (un = vn)

and a theorem ∆ ` t and repeatedly replaces instances of ui in t by the corresponding
instance of vi until no further change occurs. The result is a theorem Γ ∪ ∆ ` t′

where t′ is the result of rewriting t in this way. The session below illustrates the use of
REWRITE_RULE. In it the list of equations is a list rewrite_list containing the pre-proved
theorems ADD_CLAUSES and MULT_CLAUSES. These theorems autoload from the theory
arithmetic, so we must use a fully qualified name with the name of the theory as the
first component to refer to them. (Alternatively, we could, as in the Euclid example of
chapter 4, use open to bring declare all of the values in the theory at the top level.)

62 Chapter 5. Introduction to Proof with HOL

15- val rewrite_list = [arithmeticTheory.ADD_CLAUSES,
arithmeticTheory.MULT_CLAUSES];

> val rewrite_list =
[[]
|- (0 + m = m) /\ (m + 0 = m) /\ (SUC m + n = SUC (m + n)) /\

(m + SUC n = SUC (m + n)),
[]
|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n)]

: Thm.thm list

16- REWRITE_RULE rewrite_list (ASSUME ‘‘(m+0)<(1*n)+(SUC 0)‘‘);
> val it = [m + 0 < 1 * n + SUC 0] |- m < SUC n : thm

This can then be rewritten using another pre-proved theorem LESS_THM, this one from
the theory prim_rec:

17- REWRITE_RULE [prim_recTheory.LESS_THM] it;
> val it = [m + 0 < 1 * n + SUC 0] |- (m = n) \/ m < n : thm

REWRITE_RULE is not a primitive in HOL, but is a derived rule. It is inherited from Cam-
bridge LCF and was implemented by Larry Paulson (see his paper [9] for details). In
addition to the supplied equations, REWRITE_RULE has some built in standard simplifica-
tions:

18- REWRITE_RULE [] (ASSUME ‘‘(T /\ x) \/ F ==> F‘‘);
> val it = [T /\ x \/ F ==> F] |- ~x : thm

There are elaborate facilities in HOL for producing customized rewriting tools which
scan through terms in user programmed orders; REWRITE_RULE is the tip of an iceberg,
see DESCRIPTION for more details.

Chapter 6

Goal Oriented Proof: Tactics and
Tacticals

The style of forward proof described in the previous chapter is unnatural and too ‘low
level’ for many applications. An important advance in proof generating methodology
was made by Robin Milner in the early 1970s when he invented the notion of tactics. A
tactic is a function that does two things.

(i) Splits a ‘goal’ into ‘subgoals’.

(ii) Keeps track of the reason why solving the subgoals will solve the goal.

Consider, for example, the rule of ∧-introduction1 shown below:

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

In HOL, ∧-introduction is represented by the ML function CONJ:

CONJ (Γ1 ` t1) (Γ2 ` t2) → (Γ1 ∪ Γ2 ` t1 ∧ t2)

This is illustrated in the following new session (note that the session number has been
reset to 1, but we’ll assume that the same setup (from the previous chapter’s session 0,
has been invoked):

1- show_assums := true;
val it = () : unit

- val Th1 = ASSUME ‘‘A:bool‘‘ and Th2 = ASSUME ‘‘B:bool‘‘;
> val Th1 = [A] |- A : thm

val Th2 = [B] |- B : thm

- val Th3 = CONJ Th1 Th2;
> val Th3 = [A, B] |- A /\ B : thm

Suppose the goal is to prove A ∧ B, then this rule says that it is sufficient to prove
the two subgoals A and B, because from ` A and ` B the theorem ` A ∧ B can be
deduced. Thus:

1In higher order logic this is a derived rule; in first order logic it is usually primitive. In HOL the rule
is called CONJ and its derivation is given in DESCRIPTION.

63

64 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

(i) To prove ` A ∧ B it is sufficient to prove ` A and ` B.

(ii) The justification for the reduction of the goal ` A ∧ B to the two subgoals
` A and ` B is the rule of ∧-introduction.

A goal in HOL is a pair ([t1;...;tn],t) of ML type term list * term. An achievement
of such a goal is a theorem t1,. . .,tn |- t. A tactic is an ML function that when applied
to a goal generates subgoals together with a justification function or validation, which
will be an ML derived inference rule, that can be used to infer an achievement of the
original goal from achievements of the subgoals.

If T is a tactic (i.e. an ML function of type goal -> (goal list * (thm list -> thm)))
and g is a goal, then applying T to g (i.e. evaluating the ML expression T g) will result
in an object which is a pair whose first component is a list of goals and whose second
component is a justification function, i.e. a value with ML type thm list -> thm.

An example tactic is CONJ_TAC which implements (i) and (ii) above. For example,
consider the utterly trivial goal of showing T /\ T, where T is a constant that stands for
true:

2- val goal1 =([]:term list, ‘‘T /\ T‘‘);
> val goal1 = ([], ‘‘T /\ T‘‘) : term list * term

- CONJ_TAC goal1;
> val it =

([([], ‘‘T‘‘), ([], ‘‘T‘‘)], fn)
: (term list * term) list * (thm list -> thm)

- val (goal_list,just_fn) = it;
> val goal_list =

[([], ‘‘T‘‘), ([], ‘‘T‘‘)]
: (term list * term) list

val just_fn = fn : thm list -> thm

CONJ_TAC has produced a goal list consisting of two identical subgoals of just showing
([],"T"). Now, there is a preproved theorem in HOL, called TRUTH, that achieves this
goal:

3- TRUTH;
> val it = [] |- T : thm

Applying the justification function just_fn to a list of theorems achieving the goals in
goal_list results in a theorem achieving the original goal:

4- just_fn [TRUTH,TRUTH];
> val it = [] |- T /\ T : thm

65

Although this example is trivial, it does illustrate the essential idea of tactics. Note
that tactics are not special theorem-proving primitives; they are just ML functions. For
example, the definition of CONJ_TAC is simply:

fun CONJ_TAC (asl,w) = let
val (l,r) = dest_conj w

in
([(asl,l), (asl,r)], fn [th1,th2] => CONJ th1 th2)

end

The ML function dest_conj splits a conjunction into its two conjuncts: If (asl,‘‘t1/\t2‘‘)
is a goal, then CONJ_TAC splits it into the list of two subgoals (asl,t1) and (asl,t2). The
justification function, fn [th1,th2] => CONJ th1 th2 takes a list [th1,th2] of theorems
and applies the rule CONJ to th1 and th2.

To summarize: if T is a tactic and g is a goal, then applying T to g will result in a pair
whose first component is a list of goals and whose second component is a justification
function, with ML type thm list -> thm.

Suppose T g = ([g1,. . .,gn],p). The idea is that g1 , . . . , gn are subgoals and p is
a ‘justification’ of the reduction of goal g to subgoals g1 , . . . , gn. Suppose further
that the subgoals g1 , . . . , gn have been solved. This would mean that theorems th1 ,
. . . , thn had been proved such that each thi (1 ≤ i ≤ n) ‘achieves’ the goal gi. The
justification p (produced by applying T to g) is an ML function which when applied to
the list [th1,. . .,thn] returns a theorem, th, which ‘achieves’ the original goal g. Thus p
is a function for converting a solution of the subgoals to a solution of the original goal.
If p does this successfully, then the tactic T is called valid. Invalid tactics cannot result
in the proof of invalid theorems; the worst they can do is result in insolvable goals or
unintended theorems being proved. If T were invalid and were used to reduce goal g
to subgoals g1 , . . . , gn, then effort might be spent proving theorems th1 , . . . , thn to
achieve the subgoals g1 , . . . , gn, only to find out after the work is done that this is a
blind alley because p[th1,. . .,thn] doesn’t achieve g (i.e. it fails, or else it achieves some
other goal).

A theorem achieves a goal if the assumptions of the theorem are included in the as-
sumptions of the goal and if the conclusion of the theorems is equal (up to the renaming
of bound variables) to the conclusion of the goal. More precisely, a theorem

t1, . . ., tm |- t

achieves a goal

([u1,. . .,un],u)

if and only if {t1, . . . , tm} is a subset of {u1, . . . , un} and t is equal to u (up to renaming
of bound variables). For example, the goal ([‘‘x=y‘‘, ‘‘y=z‘‘, ‘‘z=w‘‘], ‘‘x=z‘‘) is
achieved by the theorem [x=y, y=z] |- x=z (the assumption ‘‘z=w‘‘ is not needed).

66 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T
solves g if T g = ([],p). If this is the case and if T is valid, then p[] will evaluate to a
theorem achieving g. Thus if T solves g then the ML expression snd(T g)[] evaluates to
a theorem achieving g.

Tactics are specified using the following notation:

goal

goal1 goal2 · · · goaln

For example, a tactic called CONJ_TAC is described by

t1 /\ t2

t1 t2

Thus CONJ_TAC reduces a goal of the form (Γ,‘‘t1/\t2‘‘) to subgoals (Γ,‘‘t1‘‘) and
(Γ,‘‘t2‘‘). The fact that the assumptions of the top-level goal are propagated un-
changed to the two subgoals is indicated by the absence of assumptions in the notation.

Another example is numLib.INDUCT_TAC, the tactic for doing mathematical induction
on the natural numbers:

!n.t[n]

t[0] {t[n]} t[SUC n]

INDUCT_TAC reduces a goal (Γ,‘‘!n.t[n]‘‘) to a basis subgoal (Γ,‘‘t[0]‘‘) and an
induction step subgoal (Γ ∪ {‘‘t[n]‘‘},‘‘t[SUC n]‘‘). The extra induction assumption
‘‘t[n]‘‘ is indicated in the tactic notation with set brackets.

5- numLib.INDUCT_TAC([], ‘‘!m n. m+n = n+m‘‘);
> val it =

([([], ‘‘!n. 0 + n = n + 0‘‘),
([‘‘!n. m + n = n + m‘‘], ‘‘!n. SUC m + n = n + SUC m‘‘)], fn)

: (term list * term) list * (thm list -> thm)

The first subgoal is the basis case and the second subgoal is the step case.
Tactics generally fail (in the ML sense, i.e. raise an exception) if they are applied to

inappropriate goals. For example, CONJ_TAC will fail if it is applied to a goal whose
conclusion is not a conjunction. Some tactics never fail, for example ALL_TAC

t

t

is the ‘identity tactic’; it reduces a goal (Γ,t) to the single subgoal (Γ,t)—i.e. it has no
effect. ALL_TAC is useful for writing complex tactics using tacticals.

6.1. Using tactics to prove theorems 67

6.1 Using tactics to prove theorems

Suppose goal g is to be solved. If g is simple it might be possible to immediately think
up a tactic, T say, which reduces it to the empty list of subgoals. If this is the case then
executing:

val (gl,p) = T g

will bind p to a function which when applied to the empty list of theorems yields a
theorem th achieving g. (The declaration above will also bind gl to the empty list of
goals.) Thus a theorem achieving g can be computed by executing:

val th = p[]

This will be illustrated using REWRITE_TAC which takes a list of equations (empty in
the example that follows) and tries to prove a goal by rewriting with these equations
together with basic_rewrites:

6- val goal2 = ([]:term list, ‘‘T /\ x ==> x \/ (y /\ F)‘‘);
> val goal2 = ([], ‘‘T /\ x ==> x \/ y /\ F‘‘) : (term list # term)

- REWRITE_TAC [] goal2;
> val it = ([], -) : (term list * term) list * (thm list -> thm)

- #2 it [];
> val it = [] |- T /\ x ==> x \/ y /\ F : thm

Proved theorems are usually stored in the current theory so that they can be used in
subsequent sessions.

The built-in function store_thm of ML type (string * term * tactic) -> thm facili-
tates the use of tactics: store_thm("foo",t,T) proves the goal ([],t) (i.e. the goal with
no assumptions and conclusion t) using tactic T and saves the resulting theorem with
name foo on the current theory.

If the theorem is not to be saved, the function prove of type (term * tactic) -> thm

can be used. Evaluating prove(t,T) proves the goal ([],t) using T and returns the
result without saving it. In both cases the evaluation fails if T does not solve the goal
([],t).

When conducting a proof that involves many subgoals and tactics, it is necessary to
keep track of all the justification functions and compose them in the correct order. While
this is feasible even in large proofs, it is tedious. HOL provides a package for building
and traversing the tree of subgoals, stacking the justification functions and applying
them properly; this package was originally implemented for LCF by Larry Paulson.

The subgoal package implements a simple framework for interactive proof. A proof
tree is created and traversed top-down. The current goal can be expanded into subgoals
using a tactic; the subgoals are pushed onto a goal stack and the justification function
onto a proof stack. Subgoals can be considered in any order. If the tactic solves a subgoal

68 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

(i.e. returns an empty subgoal list), then the package proceeds to the next subgoal in
the tree.

The function set_goal of type goal -> void initializes the subgoal package with a
new goal. Usually top-level goals have no assumptions; the function g is useful in this
case.

To illustrate the subgoal package the trivial theorem ` ∀m. m+ 0 = m will be proved
from the definition of addition (we first open the theory of arithmetic and numLib, to
bring the theorems and INDUCT_TAC to the top level):

7- open arithmeticTheory numLib;
> ...
- ADD;
> val it = |- (!n. 0 + n = n) /\ (!m n. (SUC m) + n = SUC(m + n)) : thm

Notice that ADD specifies 0 +m = m but not m+ 0 = m. Of course, ∀m n. m+n = n+m

is true, but the first step of the proof is to show ∀m. m + 0 = m from the definition of
addition. Notice that the function g does not take a term as an argument, but rather a
quotation, with only one set of back-quotes.

1- g ‘!m. m+0=m‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m. m + 0 = m

This sets up the goal. Next the goal is split into a basis and step case with INDUCT_TAC.
To do this the function e (or, equivalently, expand) is used. This applies a tactic to the
top goal on the stack, then pushes the resulting subgoals onto the goal stack, then prints
the resulting subgoals. If there are no subgoals, the justification function is applied to
the theorems solving the subgoals that have been proved and the resulting theorems
are printed.

2- e INDUCT_TAC;;
OK..
2 subgoals:
> val it =

SUC m + 0 = SUC m

m + 0 = m

0 + 0 = 0

The top of the goal stack is printed last. The basis case is an instance of the definition
of addition, so is solved by rewriting with ADD.

6.1. Using tactics to prove theorems 69

3- e(REWRITE_TAC[ADD]);
OK..

Goal proved.
[] |- 0 + 0 = 0

Remaining subgoals:
> val it =

SUC m + 0 = SUC m

m + 0 = m

The basis is solved and the goal stack popped so that its top is now the step case, namely
showing that (SUC m) + 0 = SUC m under the assumption m + 0 = m. This goal can be
solved by rewriting first with the definition of addition:

4- e(REWRITE_TAC[ADD]);
OK..
1 subgoal:
> val it =

SUC (m + 0) = SUC m

m + 0 = m

and then with the assumption m+0=m. The tactic ASM_REWRITE_TAC is used to rewrite with
the assumptions of a goal. It is just like REWRITE_TAC except that it adds the assumptions
to the list of equations used for rewriting. For the example here no equations besides
the assumptions are needed, so ASM_REWRITE_TAC is given the empty list of equations.

5- e(ASM_REWRITE_TAC[]);
OK..

Goal proved.
[m + 0 = m] |- SUC (m + 0) = SUC m

Goal proved.
[m + 0 = m] |- SUC m + 0 = SUC m
> val it =

Initial goal proved.
[] |- !m. m + 0 = m
: GoalstackPure.goalstack

The top goal is solved, hence the preceding goal (the step case) is solved too, and since
the basis is already solved, the main goal is solved.

The theorem achieving the goal can be extracted from the subgoal package with
top_thm:

70 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

6- top_thm();
val it = [] |- !m. m + 0 = m : thm

The proof just done can be ‘optimized’. For example, instead of first rewriting with
ADD (box 4) and then with the assumptions (box 5), a single rewriting with ADD and the
assumptions would suffice. To illustrate, the last two steps of the proof will be ‘undone’
using the function backup (also, b) which restores the previous state of the goal and
theorem stacks.

7- b();
> val it =

SUC (m + 0) = SUC m

m + 0 = m

- b();
> val it =

SUC m + 0 = SUC m

m + 0 = m

The proof can now be completed in one step instead of two:

8- e(ASM_REWRITE_TAC[ADD]);
OK..

Goal proved.
[m + 0 = m] |- SUC m + 0 = SUC m
> val it =

Initial goal proved.
[] |- !m. m + 0 = m
: GoalstackPure.goalstack

The order in which goals are attacked can be adjusted using rotate n (alterna-
tively, r) which rotates the goal stack by n. For example:

6.2. Tacticals 71

9- b(); b();
> ...

> val it =
SUC m + 0 = SUC m

m + 0 = m

0 + 0 = 0

- r 1;
> val it =

0 + 0 = 0

SUC m + 0 = SUC m

m + 0 = m

The top goal is now the step case not the basis case, so expanding with a tactic will
apply the tactic to the step case.

10- e(ASM_REWRITE_TAC[ADD]);
OK..

Goal proved.
[m + 0 = m] |- SUC m + 0 = SUC m

Remaining subgoals:
> val it =

0 + 0 = 0

It is possible to do the whole proof in one step, but this requires a compound tac-
tic built using the tactical2 THENL. Tacticals are higher order operations for combining
tactics.

6.2 Tacticals

A tactical is an ML function that returns a tactic (or tactics) as result. Tacticals may take
various parameters; this is reflected in the various ML types that the built-in tacticals
have. Some important tacticals in the HOL system are listed below.

2This word was invented by Robin Milner: ‘tactical’ is to ‘tactic‘ as ‘functional’ is to ‘function’.

72 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

6.2.1 THENL : tactic -> tactic list -> tactic

If tactic T produces n subgoals and T1, . . . , Tn are tactics then T THENL [T1;. . .;Tn] is a
tactic which first applies T and then applies Ti to the ith subgoal produced by T . The
tactical THENL is useful if one wants to do different things to different subgoals.
THENL can be illustrated by doing the proof of ` ∀m. m+ 0 = m in one step.

1- g ‘!m. m + 0 = m‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m. m + 0 = m

- e(INDUCT_TAC THENL [REWRITE_TAC[ADD], ASM_REWRITE_TAC[ADD]]);
OK..
> val it =

Initial goal proved.
[] |- !m. m + 0 = m

The compound tactic INDUCT_TAC THENL [REWRITE_TAC[ADD];ASM_REWRITE_TAC[ADD]] first
applies INDUCT_TAC and then applies REWRITE_TAC[ADD] to the first subgoal (the basis)
and ASM_REWRITE_TAC[ADD] to the second subgoal (the step).

The tactical THENL is useful for doing different things to different subgoals. The tactical
THEN can be used to apply the same tactic to all subgoals.

6.2.2 THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T1 and T2 are tactics, then the ML expression
T1 THEN T2 evaluates to a tactic which first applies T1 and then applies T2 to all the
subgoals produced by T1.

In fact, ASM_REWRITE_TAC[ADD] will solve the basis as well as the step case of the in-
duction for ∀m. m + 0 = m, so there is an even simpler one-step proof than the one
above:

1- g ‘!m. m+0 = m‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m. m + 0 = m

- e(INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);
OK..
> val it =

Initial goal proved.
[] |- !m. m + 0 = m

6.2. Tacticals 73

This is typical: it is common to use a single tactic for several goals. Here, for example,
are the first four consequences of the definition ADD of addition that are pre-proved
when the built-in theory arithmetic HOL is made.

val ADD_0 = prove (
‘‘!m. m + 0 = m‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_SUC = prove (
‘‘!m n. SUC(m + n) = m + SUC n‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_CLAUSES = prove (
‘‘(0 + m = m) /\

(m + 0 = m) /\
(SUC m + n = SUC(m + n)) /\
(m + SUC n = SUC(m + n))‘‘,

REWRITE_TAC[ADD, ADD_0, ADD_SUC]);

val ADD_COMM = prove (
‘‘!m n. m + n = n + m‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_0, ADD, ADD_SUC]);

These proofs are performed when the HOL system is made and the theorems are saved
in the theory arithmetic. The complete list of proofs for this built-in theory can be
found in the file src/num/arithmeticScript.sml.

6.2.3 ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If T1 and T2 are tactics, then T1 ORELSE T2 evaluates
to a tactic which applies T1 unless that fails; if it fails, it applies T2. ORELSE is defined in
ML as a curried infix by3

(T1 ORELSE T2) g = T1 g handle _ => T2 g

6.2.4 REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until it fails. This
can be illustrated in conjunction with GEN_TAC, which is specified by:

!x.t[x]

t[x′]

3This is a minor simplification.

74 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

• Where x′ is a variant of x not free in the goal or the assumptions.

GEN_TAC strips off one quantifier; REPEAT GEN_TAC strips off all quantifiers:

2- g ‘!x y z. x+(y+z) = (x+y)+z‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!x y z. x + (y + z) = x + y + z

- e GEN_TAC;
OK..
1 subgoal:
> val it =

!y z. x + (y + z) = x + y + z

- e(REPEAT GEN_TAC);
OK..
1 subgoal:
> val it =

x + (y + z) = x + y + z

6.3 Some tactics built into HOL

This section contains a summary of some of the tactics built into the HOL system (in-
cluding those already discussed). The tactics given here are those that are used in the
parity checking example.

Before beginning, allow the ML type thm_tactic to abbreviate thm->tactic, and the
type conv4 to abbreviate term->thm.

6.3.1 REWRITE TAC : thm list -> tactic

• Summary: REWRITE_TAC[th1,. . .,thn] simplifies the goal by rewriting it with the
explicitly given theorems th1, . . . , thn, and various built-in rewriting rules.

{t1, . . . , tm}t
{t1, . . . , tm}t′

where t′ is obtained from t by rewriting with

1. th1, . . . , thn and

4The type conv comes from Larry Paulson’s theory of conversions [9].

6.3. Some tactics built into HOL 75

2. the standard rewrites held in the ML variable basic_rewrites.

• Uses: Simplifying goals using previously proved theorems.

• Other rewriting tactics:

1. ASM_REWRITE_TAC adds the assumptions of the goal to the list of theorems used
for rewriting.

2. PURE_REWRITE_TAC uses neither the assumptions nor the built-in rewrites.

3. bossLib.RW_TAC of type simpLib.simpset -> thm list -> tactic. A simpset

is a special collection of rewriting theorems and other theorem-proving func-
tionality. Values defined by HOL include bossLib.base_ss, which has basic
knowledge of the boolean connectives, bossLib.arith_ss which “knows” all
about arithmetic, and HOLSimps.hol_ss, which includes theorems appropri-
ate for lists, pairs, and arithmetic. Additional theorems for rewriting can be
added using the second argument of RW_TAC.

6.3.2 CONJ TAC : tactic

• Summary: Splits a goal ‘‘t1/\t2‘‘ into two subgoals ‘‘t1‘‘ and ‘‘t2‘‘.

t1 /\ t2

t1 t2

• Uses: Solving conjunctive goals. CONJ_TAC is invoked by STRIP_TAC (see below).

6.3.3 EQ TAC : tactic

• Summary: EQ_TAC splits an equational goal into two implications (the ‘if-case’ and
the ‘only-if’ case):

u = v

u ==> v v ==> u

• Use: Proving logical equivalences, i.e. goals of the form “u=v” where u and v are
boolean terms.

76 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

6.3.4 DISCH TAC : tactic

• Summary: Moves the antecedent of an implicative goal into the assumptions.

u ==> v

{u}v

• Uses: Solving goals of the form ‘‘u ==> v‘‘ by assuming ‘‘u‘‘ and then solving
‘‘v‘‘. STRIP_TAC (see below) will invoke DISCH_TAC on implicative goals.

6.3.5 GEN TAC : tactic

• Summary: Strips off one universal quantifier.

!x.t[x]

t[x′]

Where x′ is a variant of x not free in the goal or the assumptions.

• Uses: Solving universally quantified goals. REPEAT GEN_TAC strips off all universal
quantifiers and is often the first thing one does in a proof. STRIP_TAC (see below)
applies GEN_TAC to universally quantified goals.

6.3.6 bossLib.PROVE TAC : thm list -> tactic

• Summary: Used to do first order reasoning, solving the goal completely if suc-
cessful, failing otherwise. Using the provided theorems and the assumptions of
the goal, PROVE_TAC does a search for possible proofs of the goal. Eventually fails
if the search fails to find a proof shorter than a reasonable depth.

• Uses: To finish a goal off when it is clear that it is a consequence of the assump-
tions and the provided theorems.

6.3.7 STRIP TAC : tactic

• Summary: Breaks a goal apart. STRIP_TAC removes one outer connective from the
goal, using CONJ_TAC, DISCH_TAC, GEN_TAC, etc. If the goal is t1/\· · ·/\tn ==> t then
STRIP_TAC makes each ti into a separate assumption.

• Uses: Useful for splitting a goal up into manageable pieces. Often the best thing
to do first is REPEAT STRIP_TAC.

6.3. Some tactics built into HOL 77

6.3.8 SUBST TAC : thm list -> thm

• Summary: SUBST_TAC[|-u1=v1,. . .,|-un=vn] converts a goal t[u1, . . . , un] to the
subgoal form t[v1, . . . , vn].

• Uses: To make replacements for terms in situations in which REWRITE_TAC is too
general or would loop.

6.3.9 ACCEPT TAC : thm -> tactic

• Summary: ACCEPT_TAC th is a tactic that solves any goal that is achieved by th.

• Use: Incorporating forward proofs, or theorems already proved, into goal directed
proofs. For example, one might reduce a goal g to subgoals g1, . . ., gn using a
tactic T and then prove theorems th1 , . . ., thn respectively achieving these goals
by forward proof. The tactic

T THENL[ACCEPT_TAC th1, . . . ,ACCEPT_TAC thn]

would then solve g, where THENL is the tactical that applies the respective elements
of the tactic list to the subgoals produced by T.

6.3.10 ALL TAC : tactic

• Summary: Identity tactic for the tactical THEN (see DESCRIPTION).

• Uses:

1. Writing tacticals (see description of REPEAT in DESCRIPTION).

2. With THENL; for example, if tactic T produces two subgoals and we want to
apply T1 to the first one but to do nothing to the second, then the tactic to
use is T THENL[T1;ALL_TAC].

6.3.11 NO TAC : tactic

• Summary: Tactic that always fails.

• Uses: Writing tacticals.

78 Chapter 6. Goal Oriented Proof: Tactics and Tacticals

Chapter 7

Example: a simple parity checker

This chapter consists of a worked example: the specification and verification of a simple
sequential parity checker. The intention is to accomplish two things:

(i) To present a complete piece of work with HOL.

(ii) To give a flavour of what it is like to use the HOL system for a tricky proof.

Concerning (ii), note that although the theorems proved are, in fact, rather simple,
the way they are proved illustrates the kind of intricate ‘proof engineering’ that is typ-
ical. The proofs could be done more elegantly, but presenting them that way would
defeat the purpose of illustrating various features of HOL. It is hoped that the small
example here will give the reader a feel for what it is like to do a big one.

Readers who are not interested in hardware verification should be able to learn some-
thing about the HOL system even if they do not wish to penetrate the details of the
parity-checking example used here. The specification and verification of a slightly more
complex parity checker is set as an exercise (a solution is provided).

7.1 Introduction

This case study is supported by three files in the HOL distribution directory. These files
are:

examples/parity/PARITY.sml
examples/parity/RESET_REG.sml
examples/parity/RESET_PARITY.sml

The file PARITY.sml contains the HOL sessions in this chapter; the files RESET_REG.sml
and RESET_PARITY.sml contain the solutions to the exercises described in Section 7.5.

The goal of the case study is to illustrate detailed ‘proof hacking’ on a small and fairly
simple example.

The sessions of this example comprise the specification and verification of a device
that computes the parity of a sequence of bits. More specifically, a detailed verification
is given of a device with an input in, an output out and the specification that the nth

79

80 Chapter 7. Example: a simple parity checker

output on out is T if and only if there have been an even number of T’s input on in. A the-
ory named PARITY is constructed; this contains the specification and verification of the
device. All the ML input in the boxes below can be found in the file parity/PARITY.sml.
It is suggested that the reader interactively input this to get a ‘hands on’ feel for the
example.

7.2 Specification

The first step is to start up the HOL system. We will again use hol.unquote and start by
loading and opening bossLib. The ML prompt is -, so lines beginning with - are typed
by the user and other lines are the system’s response.

1% hol.unquote
Moscow ML version 1.44 (August 1999)

...
[closing file "/local/scratch/mn200/Work/hol98/tools/unquote-init.sml"]
- load "bossLib";
> val it = () : unit
- open bossLib;

To specify the device, a primitive recursive function PARITY is defined so that for n > 0,
PARITY nf is true if the number of T’s in the sequence f(1), . . . , f(n) is even.

2- val PARITY_def = Define‘
(PARITY 0 f = T) /\
(PARITY(SUC n)f = if f(SUC n) then ~(PARITY n f) else PARITY n f)‘;

Definition stored under "PARITY_def".
> val PARITY_def =

|- (!f. PARITY 0 f = T) /\
!n f. PARITY (SUC n) f =

(if f (SUC n) then ~PARITY n f else PARITY n f)
: thm

The effect of our call to Define is to store the definition of PARITY on the current the-
ory with name PARITY_def and to bind the defining theorem to the ML variable with
the same name. Notice that there are two name spaces being written into: the names
of constants in theories and the names of variables in ML. The user is generally free to
manage these names however he or she wishes (subject to the various lexical require-
ments), but a common convention is (as here) to give the definition of a constant CON
the name CON_def in the theory and also in ML. Another commonly-used convention is
to use just CON for the theory and ML name of the definition of a constant CON. Unfortu-
nately, the HOL system does not use a uniform convention, but users are recommended
to adopt one. In this case Define has made one of the choices for us, but there are other
scenarios where we have to choose the name used in the theory file.

The specification of the parity checking device can now be given as:

7.2. Specification 81

!t. out t = PARITY t inp

It is intuitively clear that this specification will be satisfied if the signal1 functions inp

and out satisfy2:

out(0) = T

and

!t. out(t+1) = (if inp(t+1) then ~(out t) else out t)

This can be verified formally in HOL by proving the following lemma:

!in out.
(out 0 = T) /\ (!t. out(SUC t) = (if inp(SUC t) then ~(out t) else out t))
==>
(!t. out t = PARITY t inp)

The proof of this is done by Mathematical Induction and, although trivial, is a good
illustration of how such proofs are done. The lemma is proved interactively using HOL’s
subgoal package. The proof is started by putting the goal to be proved on a goal stack
using the function g which takes a goal as argument.

3- g ‘!inp out.
(out 0 = T) /\
(!t. out(SUC t) = (if inp(SUC t) then ~(out t) else out t)) ==>
(!t. out t = PARITY t inp)‘;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!inp out.

(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

The subgoal package prints out the goal on the top of the goal stack. The top goal is
expanded by stripping off the universal quantifier (with GEN_TAC) and then making the
two conjuncts of the antecedent of the implication into assumptions of the goal (with
STRIP_TAC). The ML function expand takes a tactic and applies it to the top goal; the
resulting subgoals are pushed on to the goal stack. The message ‘OK..’ is printed out
just before the tactic is applied. The resulting subgoal is then printed.

1Signals are modelled as functions from numbers, representing times, to booleans.
2We’d like to use in as one of our variable names, but this is a reserved word for let-expressions.

82 Chapter 7. Example: a simple parity checker

4- expand(REPEAT GEN_TAC THEN STRIP_TAC);
OK..
1 subgoal:
> val it =

!t. out t = PARITY t inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

Next induction on t is done using Induct, which does induction on the outermost uni-
versally quantified variable.

5- expand Induct;
OK..
2 subgoals:
> val it =

out (SUC t) = PARITY (SUC t) inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
2. out t = PARITY t inp

out 0 = PARITY 0 inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The assumptions of the two subgoals are shown numbered underneath the horizontal
lines of hyphens. The last goal printed is the one on the top of the stack, which is the
basis case. This is solved by rewriting with its assumptions and the definition of PARITY.

6- expand(ASM_REWRITE_TAC[PARITY_def]);
OK..

Goal proved.
[.] |- out 0 = PARITY 0 inp

Remaining subgoals:
> val it =

out (SUC t) = PARITY (SUC t) inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
2. out t = PARITY t inp

The top goal is proved, so the system pops it from the goal stack (and puts the proved
theorem on a stack of theorems). The new top goal is the step case of the induction.
This goal is also solved by rewriting.

7.3. Implementation 83

7- expand(ASM_REWRITE_TAC[PARITY_def]);
OK..

Goal proved.
[..] |- out (SUC t) = PARITY (SUC t) inp

Goal proved.
[..] |- !t. out t = PARITY t inp
> val it =

Initial goal proved.
|- !inp out.

(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

The goal is proved, i.e. the empty list of subgoals is produced. The system now applies
the justification functions produced by the tactics to the lists of theorems achieving the
subgoals (starting with the empty list). These theorems are printed out in the order in
which they are generated (note that assumptions of theorems are printed as dots).

The ML function

top_thm : unit -> thm

returns the theorem just proved (i.e. on the top of the theorem stack) in the current
theory, and we bind this to the ML name UNIQUENESS_LEMMA.

8- val UNIQUENESS_LEMMA = top_thm();
> val UNIQUENESS_LEMMA =

|- !inp out.
(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

: thm

7.3 Implementation

The lemma just proved suggests that the parity checker can be implemented by hold-
ing the parity value in a register and then complementing the contents of the register
whenever T is input. To make the implementation more interesting, it will be assumed
that registers ‘power up’ storing F. Thus the output at time 0 cannot be taken directly
from a register, because the output of the parity checker at time 0 is specified to be T.
Another tricky thing to notice is that if t>0, then the output of the parity checker at time
t is a function of the input at time t. Thus there must be a combinational path from the
input to the output.

84 Chapter 7. Example: a simple parity checker

The schematic diagram below shows the design of a device that is intended to imple-
ment this specification. (The leftmost input to MUX is the selector.) This works by storing
the parity of the sequence input so far in the lower of the two registers. Each time T is
input at in, this stored value is complemented. Registers are assumed to ‘power up’ in a
state in which they are storing F. The second register (connected to ONE) initially outputs
F and then outputs T forever. Its role is just to ensure that the device works during the
first cycle by connecting the output out to the device ONE via the lower multiplexer. For
all subsequent cycles out is connected to l3 and so either carries the stored parity value
(if the current input is F) or the complement of this value (if the current input is T).

NOT

MUXONE

REG

MUX

REG

in

out

l1 l2

l3 l4

l5

•

•

•

The devices making up this schematic will be modelled with predicates [4]. For ex-
ample, the predicate ONE is true of a signal out if for all times t the value of out is
T.

7.3. Implementation 85

9- val ONE_def = Define ‘ONE(out:num->bool) = !t. out t = T‘;
Definition stored under "ONE_def".
> val ONE_def = |- !out. ONE out = !t. out t = T : thm

Note that, as discussed above, ‘ONE_def’ is used both as an ML variable and as the name
of the definition in the theory. Note also how ‘:num->bool’ has been added to resolve
type ambiguities; without this (or some other type information) the typechecker would
not be able to infer that t is to have type num.

The binary predicate NOT is true of a pair of signals (inp,out) if the value of out is
always the negation of the value of inp. Inverters are thus modelled as having no delay.
This is appropriate for a register-transfer level model, but not at a lower level.

10- val NOT_def = Define‘NOT(inp, out:num->bool) = !t. out t = ~(inp t)‘;
Definition stored under "NOT_def".
> val NOT_def = |- !inp out. NOT (inp,out) = !t. out t = ~inp t : Thm.thm

The final combinational device needed is a multiplexer. This is a ‘hardware conditional’;
the input sw selects which of the other two inputs are to be connected to the output out.

11- val MUX_def = Define‘
MUX(sw,in1,in2,out:num->bool) =

!t. out t = if sw t then in1 t else in2 t‘;
Definition stored under "MUX_def".
> val MUX_def =

|- !sw in1 in2 out.
MUX (sw,in1,in2,out) = !t. out t = (if sw t then in1 t else in2 t)

: thm

The remaining devices in the schematic are registers. These are unit-delay elements;
the values output at time t+1 are the values input at the preceding time t, except at
time 0 when the register outputs F.3

12- val REG_def =
Define ‘REG(inp,out:num->bool) =

!t. out t = if (t=0) then F else inp(t-1)‘;
Definition stored under "REG_def".
> val REG_def =

|- !inp out. REG (inp,out) = !t. out t =
(if t = 0 then F else inp (t - 1))

: thm

The schematic diagram above can be represented as a predicate by conjoining the
relations holding between the various signals and then existentially quantifying the
internal lines. This technique is explained elsewhere (e.g. see [3, 4]).

3Time 0 represents when the device is switched on.

86 Chapter 7. Example: a simple parity checker

13- val PARITY_IMP_def = Define
‘PARITY_IMP(inp,out) =

?l1 l2 l3 l4 l5.
NOT(l2,l1) /\ MUX(inp,l1,l2,l3) /\ REG(out,l2) /\
ONE l4 /\ REG(l4,l5) /\ MUX(l5,l3,l4,out)‘;

Definition stored under "PARITY_IMP_def".
> val PARITY_IMP_def =

|- !inp out.
PARITY_IMP (inp,out) =
?l1 l2 l3 l4 l5.

NOT (l2,l1) /\ MUX (inp,l1,l2,l3) /\ REG (out,l2) /\ ONE l4 /\
REG (l4,l5) /\ MUX (l5,l3,l4,out)

: thm

7.4 Verification

The following theorem will eventually be proved:

|- !inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)

This states that if inp and out are related as in the schematic diagram (i.e. as in the
definition of PARITY_IMP), then the pair of signals (inp,out) satisfies the specification.

First, the following lemma is proved; the correctness of the parity checker follows
from this and UNIQUENESS_LEMMA by the transitivity of ==>.

14- g ‘!inp out.
PARITY_IMP(inp,out) ==>
(out 0 = T) /\
!t. out(SUC t) = if inp(SUC t) then ~(out t) else out t‘;

> val it =
Proof manager status: 2 proofs.
2. Completed: ...
1. Incomplete:

Initial goal:
!inp out.

PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The first step in proving this goal is to rewrite with definitions followed by a decom-
position of the resulting goal using STRIP_TAC. The rewriting tactic PURE_REWRITE_TAC is
used; this does no built-in simplifications, only the ones explicitly given in the list of the-
orems supplied as an argument. One of the built-in simplifications used by REWRITE_TAC

is |- (x = T) = x. PURE_REWRITE_TAC is used to prevent rewriting with this being done.

7.4. Verification 87

15- expand(PURE_REWRITE_TAC
[PARITY_IMP_def, ONE_def, NOT_def, MUX_def, REG_def] THEN

REPEAT STRIP_TAC);
OK..
2 subgoals:
> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

out 0 = T

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

The top goal is the one printed last; its conclusion is out 0 = T and its assumptions
are equations relating the values on the lines in the circuit. The natural next step would
be to expand the top goal by rewriting with the assumptions. However, if this were
done the system would go into an infinite loop because the equations for out, l2 and
l3 are mutually recursive. Instead we use the first-order reasoner PROVE_TAC to do the
work:

16- expand(PROVE_TAC []);
OK..
Meson search level:

Goal proved.
[......] |- out 0 = T

Remaining subgoals:
> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

88 Chapter 7. Example: a simple parity checker

The first of the two subgoals is proved. Inspecting the remaining goal it can be seen
that it will be solved if its left hand side, out(SUC t), is expanded using the assumption:

!t. out t = if l5 t then l3 t else l4 t

However, if this assumption is used for rewriting, then all the subterms of the form
out t will also be expanded. To prevent this, we really want to rewrite with a formula
that is specifically about out (SUC t). We want to somehow pull the assumption that
we do have out of the list and rewrite with a specialised version of it. We can do just this
using PAT_ASSUM. This tactic is of type term -> thm -> tactic. It selects an assumption
that is of the form given by its term argument, and passes it to the second argument, a
function which expects a theorem and returns a tactic. Here it is in action:

17- e (PAT_ASSUM ‘‘!t. out t = X t‘‘
(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]))

<<HOL message: inventing new type variable names: ’a, ’b.>>
OK..
1 subgoal:
> val it =

(if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =
(if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

The pattern used here exploited something called higher order matching. The actual
assumption that was taken off the assumption stack did not have a RHS that looked like
the application of a function (X in the pattern) to the t parameter, but the RHS could
nonetheless be seen as equal to the application of some function to the t parameter. In
fact, the value that matched X was ‘‘\x. if l5 x then l3 x else l4 x‘‘.

Inspecting the goal above, it can be seen that the next step is to unwind the equations
for the remaining lines of the circuit. We do this using the arith_ss simpset that comes
with bossLib to help with the arithmetic embodied by the subtractions and SUC terms.

7.4. Verification 89

18- e (RW_TAC arith_ss []);
OK..

Goal proved.
[.....]
|- (if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =

(if inp (SUC t) then ~out t else out t)

Goal proved.
[......] |- out (SUC t) = (if inp (SUC t) then ~out t else out t)
> val it =

Initial goal proved.
|- !inp out.

PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The theorem just proved is named PARITY_LEMMA and saved in the current theory.

19- val PARITY_LEMMA = top_thm ();
> val PARITY_LEMMA =

|- !inp out.
PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

PARITY_LEMMA could have been proved in one step with a single compound tactic. Our
initial goal can be expanded with a single tactic corresponding to the sequence of tactics
that were used interactively:

20- restart()
> ...
- e (PURE_REWRITE_TAC [PARITY_IMP_def, ONE_def, NOT_def,

MUX_def, REG_def] THEN
REPEAT STRIP_TAC THENL [

PROVE_TAC [],
PAT_ASSUM ‘‘!t. out t = X t‘‘

(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]) THEN
RW_TAC arith_ss []

]);
<<HOL message: inventing new type variable names: ’a, ’b.>>
OK..
Meson search level:
> val it =

Initial goal proved.
|- !inp out.

PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

90 Chapter 7. Example: a simple parity checker

Armed with PARITY_LEMMA, the final theorem is easily proved. This will be done in one
step using the ML function prove.

21- val PARITY_CORRECT = prove(
‘‘!inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)‘‘,
REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIQUENESS_LEMMA THEN
MATCH_MP_TAC PARITY_LEMMA THEN ASM_REWRITE_TAC []);

> val PARITY_CORRECT =
|- !inp out. PARITY_IMP (inp,out) ==> !t. out t = PARITY t inp

This completes the proof of the parity checking device.

7.5 Exercises

Two exercises are given in this section: Exercise 1 is straightforward, but Exercise 2
is quite tricky and might take a beginner several days to solve. The solutions to these
exercises should be in the files:

hol/examples/parity/RESET_REG.sml
hol/examples/parity/RESET_PARITY.sml

7.5.1 Exercise 1

Using only the devices ONE, NOT, MUX and REG defined in Section 7.3, design and verify a
register RESET_REG with an input in, reset line reset, output out and behaviour specified
as follows.

• If reset is T at time t, then the value at out at time t is also T.

• If reset is T at time t or t+1, then the value output at out at time t+1 is T, otherwise
it is equal to the value input at time t on inp.

This is formalized in HOL by the definition:

RESET_REG(reset,inp,out) =
(!t. reset t ==> (out t = T)) /\
(!t. out(t+1) = ((reset t \/ reset(t+1)) => T | inp t))

Note that this specification is only partial; it doesn’t specify the output at time 0 in the
case that there is no reset.

The solution to the exercise should be a definition of a predicate RESET_REG_IMP as
an existential quantification of a conjunction of applications of ONE, NOT, MUX and REG to
suitable line names,4 together with a proof of:

RESET_REG_IMP(reset,inp,out) ==> RESET_REG(reset,inp,out)

4i.e. a definition of the same form as that of PARITY IMP on page 86.

7.5. Exercises 91

7.5.2 Exercise 2

1. Formally specify a resetable parity checker that has two boolean inputs reset and
inp, and one boolean output out with the following behaviour:

The value at out is T if and only if there have been an even number of Ts
input at inp since the last time that T was input at reset.

2. Design an implementation of this specification built using only the devices ONE,
NOT, MUX and REG defined in Section 7.3.

3. Verify the correctness of your implementation in HOL.

92 Chapter 7. Example: a simple parity checker

Chapter 8

More examples

In addition to the examples already covered in this text, the hol98 distribution comes
with a variety of instructive examples in the examples directory. There the following
examples (among others) are to be found:

autopilot.sml This example is a hol98 rendition (by Mark Staples) of a PVS example
due to Ricky Butler of NASA. The example shows the use of the record-definition
package, as well as illustrating some aspects of the automation available in hol98.

bmark In this directory, there is a standard HOL benchmark: the proof of correctness of
a multiplier circuit, due to Mike Gordon.

euclid.sml This example is the same as that covered in chapter 4: a proof of Euclid’s
theorem on the infinitude of the prime numbers, extracted and modified from a
much larger development due to John Harrison. It illustrates the automation of
HOL on a classic proof.

ind def This directory contains some examples of an inductive definition package in
action. Featured are an operational semantics for a small imperative programming
language, a small process algebra, and combinatory logic with its type system.
The files were originally developed by Tom Melham and Juanito Camilleri and are
extensively commented.

Most of the proofs in these theories can now be done much more easily by using
some of the recently developed proof tools, namely the simplifier and the first
order prover.

fol.sml This file illustrates John Harrison’s implementation of a model-elimination
style first order prover.

lambda This directory develops theories of a ”de Bruijn” style lambda calculus, and also
a name-carrying version. (Both are untyped.) The development is a revision of
the proofs underlying the paper ”5 Axioms of Alpha Conversion”, Andy Gordon and
Tom Melham, Proceedings of TPHOLs’96, Springer LNCS 1125.

parity This sub-directory contains the files used in the parity example of chapter 7.

93

94 Chapter 8. More examples

MLsyntax This sub-directory contains an extended example of a facility for defining
mutually recursive types, due to Elsa Gunter of Bell Labs. In the example, the type
of abstract syntax for a small but not totally unrealistic subset of ML is defined,
along with a simple mutually recursive function over the syntax.

Thery.sml A very short example due to Laurent Thery, demonstrating a cute inductive
proof.

RSA This directory develops some of the mathematics underlying the RSA cryptography
scheme. The theories have been produced by Laurent Thery of INRIA Sophia-
Antipolis.

References

[1] S.F. Allen, R.L. Constable, D.J. Howe and W.E. Aitken, ‘The Semantics of Reflected
Proof’, Proceedings of the 5th IEEE Symposium on Logic in Computer Science, pp.
95–105, 1990.

[2] R.S. Boyer and J S. Moore, ‘Metafunctions: Proving Them Correct and Using Them
Efficiently as New Proof Procedures’, in: The Correctness Problem in Computer
Science, edited by R.S. Boyer and J S. Moore, Academic Press, New York, 1981.

[3] A.J. Camilleri, T.F. Melham and M.J.C. Gordon, ‘Hardware Verification using
Higher-Order Logic’, in: From HDL Descriptions to Guaranteed Correct Circuit De-
signs: Proceedings of the IFIP WG 10.2 Working Conference, Grenoble, September
1986, edited by D. Borrione (North-Holland, 1987), pp. 43–67.

[4] M. Gordon, ‘Why higher-order Logic is a good formalism for specifying and verify-
ing hardware’, in: Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh
Workshop on VLSI, edited by G. Milne and P.A. Subrahmanyam (North-Holland,
1986), pp. 153–177.

[5] Donald. E. Knuth. The Art of Computer Programming. Volume 1/Fundamental Al-
gorithms. Addison-Wesley, second edition, 1973.

[6] Saunders Mac Lane and Garrett Birkhoff. Algebra. Collier-MacMillan Limited, Lon-
don, 1967.

[7] R. Milner, ‘A Theory of Type Polymorphism in Programming’, Journal of Computer
and System Sciences, Vol. 17 (1978), pp. 348–375.

[8] George D. Mostow, Joseph H. Sampson, and Jean-Pierre Meyer. Fundamental
Structures of Algebra. McGraw-Hill Book Company, 1963.

[9] L. Paulson, ‘A Higher-Order Implementation of Rewriting’, Science of Computer
Programming, Vol. 3, (1983), pp. 119–149.

[10] L. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cam-
bridge Tracts in Theoretical Computer Science 2 (Cambridge University Press,
1987).

95

96 References

[11] R.E. Weyhrauch, ‘Prolegomena to a theory of mechanized formal reasoning’, Arti-
ficial Intelligence 3(1), 1980, pp. 133–170.

[12] A.N. Whitehead and B. Russell, Principia Mathematica, 3 volumes (Cambridge
University Press, 1910–3).

