
[For hol98 Taupo-5] October 26, 2000

The HOL System
DESCRIPTION

University of Cambridge DSTO SRI International

Preface

This volume contains the description of the HOL system. It is one of three volumes
making up the documentation for HOL:

(i) TUTORIAL: a tutorial introduction to HOL, with case studies.

(ii) DESCRIPTION: a description of higher order logic, the ML programming lan-
guage, and theorem proving methods in the HOL system;

(iii) REFERENCE: the reference manual for HOL.

These three documents will be referred to by the short names (in small slanted capitals)
given above.

This document, DESCRIPTION, is intended to serve both as a definition of HOL and as
an advanced guide for users with some prior experience of the system. Beginners should
start with the companion document TUTORIAL.

The HOL system is designed to support interactive theorem proving in higher order
logic (hence the acronym ‘HOL’). To this end, the formal logic is interfaced to a general
purpose programming language (ML, for meta-language) in which terms and theorems
of the logic can be denoted, proof strategies expressed and applied, and logical theories
developed. The version of higher order logic used in HOL is predicate calculus with
terms from the typed lambda calculus (i.e. simple type theory). This was originally
developed as a foundation for mathematics [?]. The primary application area of HOL
was initially intended to be the specification and verification of hardware designs. (The
use of higher order logic for this purpose was first advocated by Keith Hanna [?].)
However, the logic does not restrict applications to hardware; HOL has been applied to
many other areas.

This document presents the HOL logic, and it explains the means by which meta-
language functions can be used to generate proofs in the logic.

The approach to mechanizing formal proof used in HOL is due to Robin Milner [?],
who also headed the team that designed and implemented the language ML. That work
centred on a system called LCF (logic for computable functions), which was intended for
interactive automated reasoning about higher order recursively defined functions. The
interface of the logic to the meta-language was made explicit, using the type structure of
ML, with the intention that other logics eventually be tried in place of the original logic.

iii

iv Preface

The HOL system is a direct descendant of LCF; this is reflected in everything from its
structure and outlook to its incorporation of ML, and even to parts of its implementation.
Thus HOL satisfies the early plan to apply the LCF methodology to other logics.

The original LCF was implemented at Edinburgh in the early 1970’s, and is now re-
ferred to as ‘Edinburgh LCF’. Its code was ported from Stanford Lisp to Franz Lisp by
Gérard Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s
Franz Lisp version of LCF was further developed at Cambridge by Larry Paulson, and
became known as ‘Cambridge LCF’. The HOL system is implemented on top of an early
version of Cambridge LCF and consequently many features of both Edinburgh and Cam-
bridge LCF were inherited by HOL. For example, the axiomatization of higher order logic
used is not the classical one due to Church, but an equivalent formulation influenced
by LCF.

An enhanced and rationalized version of HOL, called HOL88, was released (in 1988),
after the original HOL system had been in use for several years. HOL90 (released in
1990) was a port of HOL88 to SML [?] by Konrad Slind at the University of Calgary. It
has been further developed through the 1990’s. HOL98 is the latest version of HOL, and
is also implemented in SML; it features a number of novelties compared to its predeces-
sors. HOL98 is intended to serve as a stable platform for a number of research projects
and technology transfer activities that are in progress at Cambridge, and elsewhere, at
the time of writing. It is also the supported version of the system for the international
HOL community. The main differences between the various versions and releases of HOL
are described in Appendix ??.

In this document, the acronym ‘HOL’ refers to both the interactive theorem proving
system and to the version of higher order logic that the system supports; where there is
serious ambiguity, the former is called ‘the HOL system’ and the latter ‘the HOL logic’.

Acknowledgements

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching
lantern’ taken by Avra Cohn (in whose garden the original object resides). John Van
Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL documenta-
tion effort, either by providing material, or by sending lists of errors in the first edition.
Thanks to everyone who helped, and thanks to DSTO and SRI for their generous sup-
port.

Later editions

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.
The third edition of all three volumes represents a wide-ranging and still incomplete

revision of material written for HOL88 so that it applies to the hol98 system a decade
later. The third edition has been prepared by Konrad Slind and Michael Norrish.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

v

vi Acknowledgements

Contents

I The HOL Logic 3

1 Syntax and Semantics 5
1.1 Introduction . 5
1.2 Types . 6

1.2.1 Type structures . 8
1.2.2 Semantics of types . 8
1.2.3 Instances and substitution . 10

1.3 Terms . 11
1.3.1 Terms-in-context . 12
1.3.2 Semantics of terms . 13
1.3.3 Substitution . 15

1.4 Standard notions . 17
1.4.1 Standard type structures . 17
1.4.2 Standard signatures . 17

2 Theories 19
2.1 Introduction . 19
2.2 Sequents . 20
2.3 Logic . 21

2.3.1 The HOL deductive system . 21
2.3.2 Soundness theorem . 23

2.4 HOL Theories . 24
2.4.1 The theory MIN . 24
2.4.2 The theory LOG . 25
2.4.3 The theory INIT . 27
2.4.4 Consistency . 28

2.5 Extensions of theories . 28
2.5.1 Extension by constant definition 29
2.5.2 Extension by constant specification 31
2.5.3 Remarks about constants in HOL 33
2.5.4 Extension by type definition . 34
2.5.5 Extension by type specification3 36

vii

viii Contents

II The HOL System 41

3 The HOL Logic in ML 43
3.1 Lexical matters . 43

3.1.1 Identifiers . 44
3.2 Types . 45
3.3 Terms . 45
3.4 Quotation . 47

3.4.1 Overloading . 50
3.4.2 Antiquotation . 50

3.5 Ways to construct types and terms . 51
3.5.1 Derived syntactic forms . 52

3.6 Theorems . 54
3.7 Theories . 56

3.7.1 Primitive ML functions for creating theories 57
3.7.2 Functions for creating definitional extensions 59
3.7.3 ML functions for accessing theories 64

3.8 The theory min . 64
3.9 Primitive rules of inference of the HOL Logic 65

3.9.1 Assumption introduction . 65
3.9.2 Reflexivity . 66
3.9.3 Beta-conversion . 66
3.9.4 Substitution . 66
3.9.5 Abstraction . 67
3.9.6 Type instantiation . 67
3.9.7 Discharging an assumption . 67
3.9.8 Modus Ponens . 68

3.10 Oracles . 68
3.11 The theory bool . 69

4 Commonly-used Theories 73
4.1 Combinators and the theory combin . 74
4.2 The theory relation . 74
4.3 Pairs and the type prod . 75

4.3.1 Paired abstractions . 77
4.3.2 let-terms . 78

4.4 Disjoint sums . 79
4.5 The theory one . 80
4.6 Natural numbers . 80

4.6.1 The theory num . 81

Contents ix

4.6.2 The theory prim rec . 81
4.6.3 The theory arithmetic . 84
4.6.4 The theory numeral . 85

4.7 Integers . 87
4.8 Real numbers and analysis . 88
4.9 The theory list . 89
4.10 Trees . 92

4.10.1 The theory tree . 92
4.10.2 The theory ltree . 93

5 Commonly-used Libraries 95
5.1 A simple proof manager . 95

5.1.1 Starting a goalstack proof . 95
5.1.2 Applying a tactic to a goal . 95
5.1.3 Undo . 96
5.1.4 Viewing the state of the proof manager 96
5.1.5 Switch focus to a different subgoal or proof attempt 97

5.2 The boss library . 97
5.2.1 Datatype definition . 97
5.2.2 Support for high-level proof steps 98
5.2.3 Function definition . 100
5.2.4 Automated reasoners . 104

5.3 Record types . 105
5.3.1 Defining a record type . 106
5.3.2 Specifying record literals . 107
5.3.3 Using the theorems produced by record definition 107

5.4 The meson library . 108
5.5 The simp library . 108
5.6 The num library . 108
5.7 The type definition package . 109

5.7.1 Defining types . 110
5.7.2 Defining recursive functions . 114
5.7.3 Structural induction . 117
5.7.4 Structural induction tactics . 118
5.7.5 Other tools . 120

6 Miscellaneous Features 123
6.1 Help . 123
6.2 Holmake—a tool for maintaining HOL formalizations 124

6.2.1 System Rebuild . 125

x Contents

6.2.2 Theory construction . 125
6.2.3 Making the script separately compilable 125
6.2.4 Summary . 127
6.2.5 What Holmake doesn’t do . 127
6.2.6 Holmake’s command-line arguments 127

6.3 Flags for the HOL logic . 129
6.4 Hiding constants . 129
6.5 Adjusting the pretty-print depth . 130
6.6 Timing and counting theorems . 131
6.7 Quotation preprocessing . 131

III Theorem Proving with HOL 133

7 Syntax 135
7.1 Types . 135
7.2 Terms . 136

7.2.1 Constants . 138
7.2.2 Type constraints . 140
7.2.3 Expanded term grammar . 141

7.3 Changes from older versions . 143
7.3.1 Error messages . 144
7.3.2 Parser tricks and magic . 144

8 Derived Inference Rules 147
8.1 Simple derivations . 147
8.2 Rewriting . 150
8.3 Derivation of the standard rules . 152

8.3.1 Adding an assumption . 153
8.3.2 Undischarging . 154
8.3.3 Symmetry of equality . 154
8.3.4 Transitivity of equality . 154
8.3.5 Application of a term to a theorem 155
8.3.6 Application of a theorem to a term 155
8.3.7 Modus Ponens for equality . 155
8.3.8 Implication from equality . 156
8.3.9 T-Introduction . 156
8.3.10 Equality-with-T elimination . 156
8.3.11 Specialization (∀-elimination) . 157
8.3.12 Equality-with-T introduction . 157
8.3.13 Generalization (∀-introduction) 158

Contents xi

8.3.14 Simple α-conversion . 158
8.3.15 η-conversion . 159
8.3.16 Extensionality . 160
8.3.17 ε-introduction . 160
8.3.18 ε-elimination . 161
8.3.19 ∃-introduction . 161
8.3.20 ∃-elimination . 162
8.3.21 Use of a definition . 162
8.3.22 Use of a definition . 163
8.3.23 ∧-introduction . 163
8.3.24 ∧-elimination . 164
8.3.25 Right ∨-introduction . 164
8.3.26 Left ∨-introduction . 165
8.3.27 ∨-elimination . 165
8.3.28 Classical contradiction rule . 166

9 Conversions 167
9.1 Conversion combining operators . 169
9.2 Writing compound conversions . 173
9.3 Built in conversions . 176

9.3.1 Generalized beta-reduction . 177
9.3.2 Arithmetical conversions . 177
9.3.3 List processing conversions . 178
9.3.4 Simplifying let-terms . 178
9.3.5 Skolemization . 179
9.3.6 Quantifier movement conversions 180

9.4 Rewriting tools . 182

10 Goal Directed Proof: Tactics and Tacticals 185
10.1 Tactics, goals and justifications . 186

10.1.1 Details of proving theorems . 191
10.2 The subgoal package . 192
10.3 Some tactics built into HOL . 195

10.3.1 Acceptance of a theorem . 196
10.3.2 Adding an assumption . 196
10.3.3 Specialization . 196
10.3.4 Conjunction . 197
10.3.5 Discharging an assumption . 197
10.3.6 Combined simple decompositions 197
10.3.7 Substitution . 198

Contents 1

10.3.8 Case analysis on a boolean term 198
10.3.9 Case analysis on a disjunction . 198
10.3.10Rewriting . 199
10.3.11Resolution by Modus Ponens . 199
10.3.12Identity . 200
10.3.13Null . 200
10.3.14Splitting logical equivalences . 201
10.3.15Solving existential goals . 201

10.4 Tacticals . 201
10.4.1 Alternation . 202
10.4.2 First success . 202
10.4.3 Change detection . 202
10.4.4 Sequencing . 202
10.4.5 Selective sequencing . 204
10.4.6 Successive application . 205
10.4.7 Repetition . 205

10.5 Tactics for manipulating assumptions . 205
10.5.1 Theorem continuations with popping 206
10.5.2 Theorem continuations without popping 213

2 Contents

Part I

The HOL Logic

Chapter 1

Syntax and Semantics

1.1 Introduction

This chapter describes the syntax and set-theoretic semantics of the logic supported
by the HOL system, which is a variant of Church’s simple theory of types [?] and will
henceforth be called the HOL logic, or just HOL. The meta-language for this description
will be English, enhanced with various mathematical notations and conventions. The
object language of this description is the HOL logic. Note that there is a ‘meta-language’,
in a different sense, associated with the HOL logic, namely the programming language
ML. This is the language used to manipulate the HOL logic by users of the system. It
is hoped that because of context, no confusion results from these two uses of the word
‘meta-language’. When ML is the object of study (as in [?]), ML is the object language
under consideration—and English is again the meta-language!

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote respectively certain sets and elements of sets. This set theoretic
interpretation will be developed along side the description of the HOL syntax, and in
the next chapter the HOL proof system will be shown to be sound for reasoning about
properties of the set theoretic model.1 This model is given in terms of a fixed set of
sets U , which will be called the universe and which is assumed to have the following
properties.

Inhab Each element of U is a non-empty set.

Sub If X ∈ U and ∅ 6= Y ⊆ X, then Y ∈ U .

Prod If X ∈ U and Y ∈ U , then X × Y ∈ U . The set X × Y is the cartesian product,
consisting of ordered pairs (x, y) with x ∈ X and y ∈ Y , with the usual set-
theoretic coding of ordered pairs, viz. (x, y) = {{x}, {x, y}}.

Pow If X ∈ U , then the powerset P (X) = {Y : Y ⊆ X} is also an element of U .

Infty U contains a distinguished infinite set I.

1There are other, ‘non-standard’ models of HOL, which will not concern us here.

5

6 Chapter 1. Syntax and Semantics

Choice There is a distinguished element ch ∈ ∏
X∈U X. The elements of the product∏

X∈U X are (dependently typed) functions: thus for all X ∈ U , X is non-empty
by Inhab and ch(X) ∈ X witnesses this.

There are some consequences of these assumptions which will be needed. In set theory
functions are identified with their graphs, which are certain sets of ordered pairs. Thus
the set X→Y of all functions from a set X to a set Y is a subset of P (X ×Y); and it is a
non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that U also
satisfies

Fun If X ∈ U and Y ∈ U , then X→Y ∈ U .

By iterating Prod, one has that the cartesian product of any finite, non-zero number of
sets in U is again in U . U also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in U—Infty
guarantees there is one); for definiteness, a particular one-element set will be singled
out.

Unit U contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty, U contains two-element sets, one of which will be
singled out.

Bool U contains a distinguished two-element set 2 = {0, 1}.

The above assumptions on U are weaker than those imposed on a universe of sets by
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC), principally
because U is not required to satisfy any form of the Axiom of Replacement. Indeed, it is
possible to prove the existence of a set U with the above properties from the axioms of
ZFC. (For example one could take U to consist of all non-empty sets in the von Neumann
cumulative hierarchy formed before stage ω + ω.) Thus, as with many other pieces of
mathematics, it is possible in principal to give a completely formal version within ZFC

set theory of the semantics of the HOL logic to be given below.

1.2 Types

The types of the HOL logic are expressions that denote sets (in the universe U). Fol-
lowing tradition, σ, possibly decorated with subscripts or primes, is used to range over
arbitrary types.

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which α ranges over type variables, c ranges over atomic
types and op ranges over type operators.

1.2. Types 7

σ ::= α

type variables

6
| c

atomic types
6
| (σ1, . . . , σn)op︸ ︷︷ ︸

compound types6

| σ1→σ2︸ ︷︷ ︸
function types

(domain σ1, range σ2)

6

In more detail, the four kinds of types are as follows.

1. Type variables: these stand for arbitrary sets in the universe. In Church’s original
formulation of simple type theory, type variables are part of the meta-language
and are used to range over object language types. Proofs containing type vari-
ables were understood as proof schemes (i.e. families of proofs). To support such
proof schemes within the HOL logic, type variables have been added to the object
language type system.2

2. Atomic types: these denote fixed sets in the universe. Each theory determines
a particular collection of atomic types. For example, the standard atomic types
bool and ind denote, respectively, the distinguished two-element set 2 and the
distinguished infinite set I.

3. Compound types: These have the form (σ1, . . . , σn)op, where σ1, . . ., σn are the
argument types and op is a type operator of arity n. Type operators denote opera-
tions for constructing sets. The type (σ1, . . . , σn)op denotes the set resulting from
applying the operation denoted by op to the sets denoted by σ1, . . ., σn. For ex-
ample, list is a type operator with arity 1. It denotes the operation of forming all
finite lists of elements from a given set. Another example is the type operator prod
of arity 2 which denotes the cartesian product operation. The type (σ1, σ2)prod is
written as σ1 × σ2.

4. Function types: If σ1 and σ2 are types, then σ1→σ2 is the function type with
domain σ1 and range σ2. It denotes the set of all (total) functions from the set
denoted by its domain to the set denoted by its range. (In the literature σ1→σ2 is
written without the arrow and backwards—i.e. as σ2σ1.) Note that syntactically
→ is simply a distinguished type operator of arity 2 written with infix notation. It
is singled out in the definition of HOL types because it will always denote the same
operation in any model of a HOL theory—in contrast to the other type operators
which may be interpreted differently in different models. (See Section 1.2.2.)

It turns out to be convenient to identify atomic types with compound types con-
structed with 0-ary type operators. For example, the atomic type bool of truth-values
can be regarded as being an abbreviation for ()bool. This identification will be made

2This technique was invented by Robin Milner for the object logic PPλ of his LCF system.

8 Chapter 1. Syntax and Semantics

in the technical details that follow, but in the informal presentation atomic types will
continue to be distinguished from compound types, and ()c will still be written as c.

1.2.1 Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter ν is used to range over arbitrary members of TyNames, c will continue to be used
to range over the names of atomic types (i.e. 0-ary type constants), and op is used to
range over the names of type operators (i.e. n-ary type constants, where n > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters α, β, . . .,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set Ω of type constants. A type constant is a pair (ν, n) where
ν ∈ TyNames is the name of the constant and n is its arity. Thus Ω ⊆ TyNames×NN (where
NN is the set of natural numbers). It is assumed that no two distinct type constants have
the same name, i.e. whenever (ν, n1) ∈ Ω and (ν, n2) ∈ Ω, then n1 = n2.

The set TypesΩ of types over a structure Ω can now be defined as the smallest set such
that:

• TyVars ⊆ TypesΩ.

• If (ν, 0) ∈ Ω then ()ν ∈ TypesΩ.

• If (ν, n) ∈ Ω and σi ∈ TypesΩ for 1 ≤ i ≤ n, then (σ1, . . . , σn)ν ∈ TypesΩ.

• If σ1 ∈ TypesΩ and σ2 ∈ TypesΩ then σ1→σ2 ∈ TypesΩ.

The type operator→ is assumed to associate to the right, so that

σ1→σ2→ . . .→σn→σ

abbreviates

σ1→(σ2→ . . .→(σn→σ) . . .)

The notation tyvars(σ) is used to denote the set of type variables occurring in σ.

1.2.2 Semantics of types

A model M of a type structure Ω is specified by giving for each type constant (ν, n) an
n-ary function

M(ν) : Un −→ U

1.2. Types 9

Thus given sets X1, . . . , Xn in the universe U , M(ν)(X1, . . . , Xn) is also a set in the
universe. In case n = 0, this amounts to specifying an element M(ν) ∈ U for the atomic
type ν.

Types containing no type variables are called monomorphic, whereas those that do
contain type variables are called polymorphic. What is the meaning of a polymorphic
type? One can only say what set a polymorphic type denotes once one has instantiated
its type variables to particular sets. So its overall meaning is not a single set, but is
rather a set-valued function, Un −→ U , assigning a set for each particular assignment
of sets to the relevant type variables. The arity n corresponds to the number of type
variables involved. It is convenient in this connection to be able to consider a type
variable to be involved in the semantics of a type σ whether or not it actually occurs in
σ, leading to the notion of a type-in-context.

A type context, αs, is simply a finite (possibly empty) list of distinct type variables
α1, . . . , αn. A type-in-context is a pair, written αs.σ, where αs is a type context, σ is a
type (over some given type structure) and all the type variables occurring in σ appear
somewhere in the list αs. The list αs may also contain type variables which do not occur
in σ.

For each σ there are minimal contexts αs for which αs.σ is a type-in-context, which
only differ by the order in which the type variables of σ are listed in αs. In order to select
one such context, let us assume that TyVars comes with a fixed total order and define
the canonical context of the type σ to consist of exactly the type variables it contains,
listed in order.3

Let M be a model of a type structure Ω. For each type-in-context αs.σ over Ω, define
a function

[[αs.σ]]M : Un −→ U

(where n is the length of the context) by induction on the structure of σ as follows.

• If σ is a type variable, it must be αi for some unique i = 1, . . . , n and then [[αs.σ]]M
is the ith projection function, which sends (X1, . . . , Xn) ∈ Un to Xi ∈ U .

• If σ is a function type σ1→σ2, then [[αs.σ]]M sendsXs ∈ Un to the set of all functions
from [[αs.σ1]]M(Xs) to [[αs.σ2]]M(Xs). (This makes use of the property Fun of U .)

• If σ is a compound type (σ1, . . . , σm)ν, then [[αs.σ]]M sends Xs to M(ν)(S1, . . . , Sm)

where each Sj is [[αs.σj]]M(Xs).

One can now define the meaning of a type σ in a model M to be the function

[[σ]]M : Un −→ U

3It is possible to work with unordered contexts, specified by finite sets rather than lists, but we choose
not to do that since it mildly complicates the definition of the semantics to be given below.

10 Chapter 1. Syntax and Semantics

given by [[αs.σ]]M , where αs is the canonical context of σ. If σ is monomorphic, then
n = 0 and [[σ]]M can be identified with the element [[σ]]M() of U . When the particular
model M is clear from the context, [[]]M will be written [[]].

To summarize, given a model in U of a type structure Ω, the semantics interprets
monomorphic types over Ω as sets in U and more generally, interprets polymorphic
types involving n type variables as n-ary functions Un −→ U on the universe. Function
types are interpreted by full function sets.

Examples Suppose that Ω contains a type constant (b, 0) and that the model M assigns
the set 2 to b. Then:

1. [[b→b→b]] = 2→2→2 ∈ U .

2. [[(α→b)→α]] : U −→ U is the function sending X ∈ U to (X→2)→X ∈ U .

3. [[α, β.(α→b)→α]] : U2 −→ U is the function sending (X,Y) ∈ U2 to (X→2)→X ∈
U .

Remark A more traditional approach to the semantics would involve giving meanings
to types in the presence of ‘environments’ assigning sets in U to all type variables. The
use of types-in-contexts is almost the same as using partial environments with finite
domains—it is just that the context ties down the admissible domain to a particular
finite (ordered) set of type variables. At the level of types there is not much to choose
between the two approaches. However for the syntax and semantics of terms to be given
below, where there is a dependency both on type variables and on individual variables,
the approach used here seems best.

1.2.3 Instances and substitution

If σ and τ1, . . . , τn are types over a type structure Ω,

σ[τ1, . . . , τp/β1, . . . , βp]

will denote the type resulting from the simultaneous substitution for each i = 1, . . . , p

of τi for the type variable βi in σ. The resulting type is called an instance of σ. The
following lemma about instances will be useful later; it is proved by induction on the
structure of σ.

Lemma 1 Suppose that σ is a type containing distinct type variables β1, . . . , βp and that
σ′ = σ[τ1, . . . , τn/β1, . . . , βp] is an instance of σ. Then the types τ1, . . . , τp are uniquely
determined by σ and σ′.

We also need to know how the semantics of types behaves with respect to substitution:

1.3. Terms 11

Lemma 2 Given types-in-context βs.σ and αs.τi (i = 1, . . . , p, where p is the length of βs),
let σ′ be the instance σ[τs/βs]. Then αs.σ′ is also a type-in-context and its meaning in any
model M is related to that of βs.σ as follows. For all Xs ∈ Un (where n is the length of αs)

[[αs.σ′]](Xs) = [[βs.σ]]([[αs.τ1]](Xs), . . . , [[αs.τp]](Xs))

Once again, the lemma can be proved by induction on the structure of σ.

1.3 Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted
by types. The meta-variable t is used to range over arbitrary terms, possibly decorated
with subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately
by the following BNF grammar, in which x ranges over variables and c ranges over
constants.

t ::= x

variables

6
| c

constants
6
| t t′︸︷︷︸

function applications
(function t, argument t′)

6

| λx. t︸ ︷︷ ︸
λ-abstractions

6

Informally, a λ-term λx. t denotes a function v 7→ t[v/x], where t[v/x] denotes the
result of substituting v for x in t. An application t t′ denotes the result of applying the
function denoted by t to the value denoted by t′. This will be made more precise below.

The BNF grammar just given omits mention of types. In fact, each term in the HOL
logic is associated with a unique type. The notation tσ is traditionally used to range
over terms of type σ. A more accurate grammar of terms is:

tσ ::= xσ | cσ | (tσ′→σ t
′
σ′)σ | (λxσ1 . tσ2)σ1→σ2

In fact, just as the definition of types was relative to a particular type structure Ω,
the formal definition of terms is relative to a given collection of typed constants over Ω.
Assume that an infinite set Names of names is given. A constant over Ω is a pair (c, σ),
where c ∈ Names and σ ∈ TypesΩ. A signature over Ω is just a set ΣΩ of such constants.

The set TermsΣΩ
of terms over ΣΩ is defined to be the smallest set closed under the

following rules of formation:

1. Constants: If (c, σ) ∈ ΣΩ and σ′ ∈ TypesΩ is an instance of σ, then (c, σ′) ∈
TermsΣΩ

. Terms formed in this way are called constants and are written cσ′.

12 Chapter 1. Syntax and Semantics

2. Variables: If x ∈ Names and σ ∈ TypesΩ, then var xσ ∈ TermsΣΩ
. Terms formed

in this way are called variables. The marker var is purely a device to distinguish
variables from constants with the same name. A variable var xσ will usually be
written as xσ, if it is clear from the context that x is a variable rather than a
constant.

3. Function applications: If tσ′→σ ∈ TermsΣΩ
and t′σ′ ∈ TermsΣΩ

, then (tσ′→σ t
′
σ′)σ ∈

TermsΣΩ
. (Terms formed in this way are sometimes called combinations.)

4. λ-Abstractions: If var xσ1 ∈ TermsΣΩ
and tσ2 ∈ TermsΣΩ

, then (λxσ1 . tσ2)σ1→σ2 ∈
TermsΣΩ

.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that t t1 t2 . . . tn abbrevi-
ates (. . . ((t t1) t2) . . . tn).

The notation λx1 x2 · · · xn. t abbreviates λx1. (λx2. · · · (λxn. t) · · ·).
A term is called polymorphic if it contains a type variable. Otherwise it is called

monomorphic. Note that a term tσ may be polymorphic even though σ is monomorphic—
for example, (fα→b xα)b, where b is an atomic type. The expression tyvars(tσ) denotes
the set of type variables occurring in tσ.

An occurrence of a variable xσ is called bound if it occurs within the scope of a textu-
ally enclosing λxσ, otherwise the occurrence is called free. Note that λxσ does not bind
xσ′ if σ 6= σ′. A term in which all occurrences of variables are bound is called closed.

1.3.1 Terms-in-context

A context αs,xs consists of a type context αs together with a list xs = x1, . . . , xm of distinct
variables whose types only contain type variables from the list αs.

The condition that xs contains distinct variables needs some comment. Since a vari-
able is specified by both a name and a type, it is permitted for xs to contain repeated
names, so long as different types are attached to the names. This aspect of the syntax
means that one has to proceed with caution when defining the meaning of type variable
instantiation, since instantiation may cause variables to become equal ‘accidentally’: see
Section 1.3.3.

A term-in-context αs,xs.t consists of a context together with a term t satisfying the
following conditions.

• αs contains any type variable that occurs in xs and t.

1.3. Terms 13

• xs contains any variable that occurs freely in t.

• xs does not contain any variable that occurs bound in t.

The context αs,xs may contain (type) variables which do not appear in t. Note that the
combination of the second and third conditions implies that a variable cannot have both
free and bound occurrences in t. For an arbitrary term, there is always an α-equivalent
term which satisfies this condition, obtained by renaming the bound variables as nec-
essary.4 In the semantics of terms to be given below we will restrict attention to such
terms. Then the meaning of an arbitrary term is taken to be the meaning of some
α-variant of it having no variable both free and bound. (The semantics will equate α-
variants, so it does not matter which is chosen.) Evidently for such a term there is a
minimal context αs,xs, unique up to the order in which variables are listed, for which
αs,xs.t is a term-in-context. As for type variables, we will assume given a fixed total
order on variables. Then the unique minimal context with variables listed in order will
be called the canonical context of the term t.

1.3.2 Semantics of terms

Let ΣΩ be a signature over a type structure Ω (see Section 1.3). A model M of ΣΩ is
specified by a model of the type structure plus for each constant (c, σ) ∈ ΣΩ an element

M(c, σ) ∈
∏

Xs∈Un
[[σ]]M(Xs)

of the indicated cartesian product, where n is the number of type variables occurring in
σ. In other words M(c, σ) is a (dependently typed) function assigning to each Xs ∈ Un
an element of [[σ]]M(Xs). In the case that n = 0 (so that σ is monomorphic), [[σ]]M was
identified with a set in U and then M(c, σ) can be identified with an element of that set.

The meaning of HOL terms in such a model will now be described. The semantics
interprets closed terms involving no type variables as elements of sets in U (the partic-
ular set involved being derived from the type of the term as in Section 1.2.2). More
generally, if the closed term involves n type variables then it is interpreted as an ele-
ment of a product

∏
Xs∈Un Y (Xs), where the function Y : Un −→ U is derived from the

type of the term (in a type context derived from the term). Thus the meaning of the
term is a (dependently typed) function which, when applied to any meanings chosen
for the type variables in the term, yields a meaning for the term as an element of a set
in U . On the other hand, if the term involves m free variables but no type variables,
then it is interpreted as a function Y1 × · · · × Ym→Y where the sets Y1, . . . , Ym in U are
the interpretations of the types of the free variables in the term and the set Y ∈ U is

4Recall that two terms are said to be α-equivalent if they differ only in the names of their bound
variables.

14 Chapter 1. Syntax and Semantics

the interpretation of the type of the term; thus the meaning of the term is a function
which, when applied to any meanings chosen for the free variables in the term, yields
a meaning for the term. Finally, the most general case is of a term involving n type
variables and m free variables: it is interpreted as an element of a product

∏
Xs∈Un

Y1(Xs)× · · · × Ym(Xs)→ Y (Xs)

where the functions Y1, . . . , Ym, Y : Un −→ U are determined by the types of the free
variables and the type of the term (in a type context derived from the term).

More precisely, given a term-in-context αs,xs.t over ΣΩ suppose

• t has type τ

• xs = x1, . . . , xm and each xj has type σj

• αs = α1, . . . , αn.

Then since αs,xs.t is a term-in-context, αs.τ and αs.σj are types-in-context, and hence
give rise to functions [[αs.τ]]M and [[αs.σj]]M from Un to U as in section 1.2.2. The mean-
ing of αs,xs.t in the model M will be given by an element

[[αs,xs.t]]M ∈
∏

Xs∈Un

 m∏
j=1

[[αs.σj]]M(Xs)

→[[αs.τ]]M(Xs).

In other words, given

Xs = (X1, . . . , Xn) ∈ Un

ys = (y1, . . . , ym) ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σm]]M(Xs)

one gets an element [[αs,xs.t]]M(Xs)(ys) of [[αs.τ]]M(Xs). The definition of [[αs,xs.t]]M pro-
ceeds by induction on the structure of the term t, as follows. (As before, the subscript
M will be dropped from the semantic brackets [[]] when the particular model involved
is clear from the context.)

• If t is a variable, it must be xj for some unique j = 1, . . . ,m, so τ = σj and then
[[αs,xs.t]](Xs)(ys) is defined to be yj.

• Suppose t is a constant cσ′, where (c, σ) ∈ ΣΩ and σ′ is an instance of σ. Then
by Lemma 1 of 1.2.3, σ′ = σ[τ1, . . . , τp/β1, . . . , βp] for uniquely determined types
τ1, . . . , τp (where β1, . . . , βp are the type variables occurring in σ). Then define
[[αs,xs.t]](Xs)(ys) to be M(c, σ)([[αs.τ1]](Xs), . . . , [[αs.τp]](Xs)), which is an element
of [[αs.τ]](Xs) by Lemma 2 of 1.2.3 (since τ is σ′).

1.3. Terms 15

• Suppose t is a function application term (t1 t2) where t1 is of type τ ′→τ and t2 is
of type τ ′. Then f = [[αs,xs.t1]](Xs)(ys), being an element of [[αs.τ ′→τ]](Xs), is a
function from the set [[αs.τ ′]](Xs) to the set [[αs.τ]](Xs) which one can apply to the
element y = [[αs,xs.t2]](Xs)(ys). Define [[αs,xs.t]](Xs)(ys) to be f(y).

• Suppose t is the abstraction term λx.t2where x is of type τ1 and t2 of type τ2.
Thus τ = τ1→τ2 and [[αs.τ]](Xs) is the function set [[αs.τ1]](Xs)→[[αs.τ2]](Xs). Define
[[αs,xs.t]](Xs)(ys) to be the element of this set which is the function sending y ∈
[[αs.τ1]](Xs) to [[αs,xs,x.t2]](Xs)(ys, y). (Note that since αs,xs.t is a term-in-context,
by convention the bound variable x does not occur in xs and thus αs,xs,x.t2 is also
a term-in-context.)

Now define the meaning of a term tτ in a model M to be the dependently typed function

[[tτ]] ∈
∏

Xs∈Un

 m∏
j=1

[[αs.σj]](Xs)

→[[αs.τ]](Xs)

given by [[αs,xs.tτ]], where αs,xs is the canonical context of tτ . So n is the number of type
variables in tτ , αs is a list of those type variables, m is the number of ordinary variables
occurring freely in tτ (assumed to be distinct from the bound variables of tτ) and the σj
are the types of those variables. (It is important to note that the list αs, which is part of
the canonical context of t, may be strictly bigger than the canonical type contexts of σj
or τ . So it would not make sense to write just [[σj]] or [[τ]] in the above definition.)

If tτ is a closed term, then m = 0 and for each Xs ∈ Un one can identify [[tτ]] with the
element [[tτ]](Xs)() ∈ [[αs.τ]](Xs). So for closed terms one gets

[[tτ]] ∈
∏

Xs∈Un
[[αs.τ]](Xs)

where αs is the list of type variables occurring in tτ and n is the length of that list. If
moreover, no type variables occur in tτ , then n = 0 and [[tτ]] can be identified with the
element [[tτ]]() of the set [[τ]] ∈ U .

The semantics of terms appears somewhat complicated because of the possible de-
pendency of a term upon both type variables and ordinary variables. Examples of how
the definition of the semantics works in practice can be found in Section 2.4.2, where
the meaning of several terms denoting logical constants is given.

1.3.3 Substitution

Since terms may involve both type variables and ordinary variables, there are two dif-
ferent operations of substitution on terms which have to be considered—substitution of
types for type variables and substitution of terms for variables.

16 Chapter 1. Syntax and Semantics

Substituting types for type variables in terms

Suppose t is a term, with canonical context αs,xs say, where αs = α1, . . . , αn, xs =

x1, . . . , xm and where for j = 1, . . . ,m the type of the variable xj is σj. If αs′.τi (i =

1, . . . , n) are types-in-context, then substituting the types τi for the type variables αi in
the list xs, one obtains a new list of variables xs′. Thus the jth entry of xs′ has type
σ′j = σj[τs/αs]. Only substitutions with the following property will be considered.

In instantiating the type variables αs with the types τs, no two distinct vari-
ables in the list xs become equal in the list xs′.5

This condition ensures that αs′, xs′ really is a context. Then one obtains a new term-in-
context αs′,xs′.t′ by substituting the types τs = τ1, . . . , τn for the type variables αs in t

(with suitable renaming of bound occurrences of variables to make them distinct from
the variables in xs′). The notation

t[τs/αs]

is used for the term t′.

Lemma 3 The meaning of αs′,xs′.t′ in a model is related to that of t as follows. For all
Xs′ ∈ Un′ (where n′ is the length of αs′)

[[αs′,xs′.t′]](Xs′) = [[t]]([[αs′.τ1]](Xs′), . . . , [[αs′.τn]](Xs′)).

Lemma 2 in 1.2.3 is needed to see that both sides of the above equation are elements
of the same set of functions. The validity of the equation is proved by induction on the
structure of the term t.

Substituting terms for variables in terms

Suppose t is a term, with canonical context αs,xs say, where αs = α1, . . . , αn, xs =

x1, . . . , xm and where for j = 1, . . . ,m the type of the variable xj is σj. If one has terms-
in-context αs,xs′.tj for j = 1, . . . ,m with tj of the same type as xj, say σj, then one
obtains a new term-in-context αs,xs′.t′′ by substituting the terms ts = t1, . . . , tm for the
variables xs in t (with suitable renaming of bound occurrences of variables to prevent
the free variables of the tj becoming bound after substitution). The notation

t[ts/xs]

is used for the term t′′.

5Such an identification of variables could occur if the variables had the same name component and
their types became equal on instantiation.

1.4. Standard notions 17

Lemma 4 The meaning of αs,xs′.t′′ in a model is related to that of t as follows. For all
Xs ∈ Un and all ys′ ∈ [[αs.σ′1]]× · · · × [[αs.σ′m′]] (where σ′j is the type of x′j)

[[αs,xs′.t′′]](Xs)(ys′) = [[t]](Xs)([[αs,xs′.t1]](Xs)(ys′), . . . , [[αs,xs′.tm]](Xs)(ys′))

Once again, this result is proved by induction on the structure of the term t.

1.4 Standard notions

Up to now the syntax of types and terms has been very general. To represent the
standard formulas of logic it is necessary to impose some specific structure. In particular,
every type structure must contain an atomic type bool which is intended to denote the
distinguished two-element set 2 ∈ U , regarded as a set of truth-values. Logical formulas
are then identified with terms of type bool. In addition, various logical constants are
assumed to be in all signatures. These requirements are formalized by defining the
notion of a standard signature.

1.4.1 Standard type structures

A type structure Ω is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). (In the literature, the symbol o is often used instead of
bool and ι instead of ind.)

A model M of Ω is standard if M(bool) and M(ind) are respectively the distinguished
sets 2 and I in the universe U .

It will be assumed from now on that type structures and their models are standard.

1.4.2 Standard signatures

A signature ΣΩ is standard if it contains the following three primitive constants:

⇒bool→bool→bool

=α→α→bool

ε(α→bool)→α

The intended interpretation of these constants is that⇒ denotes implication, =σ→σ→bool

denotes equality on the set denoted by σ, and ε(σ→bool)→σ denotes a choice function on
the set denoted by σ. More precisely, a model M of ΣΩ will be called standard if

18 Chapter 1. Syntax and Semantics

• M(⇒, bool→bool→bool) ∈ (2→2→2) is the standard implication function, sending
b, b′ ∈ 2 to

(b⇒ b′) =

{
0 if b = 1 and b′ = 0
1 otherwise

• M(=, α→α→bool) ∈ ∏X∈U .X→X→2 is the function assigning to each X ∈ U the
equality test function, sending x, x′ ∈ X to

(x =X x′) =

{
1 if x = x′

0 otherwise

• M(ε, (α→bool)→α) ∈ ∏X∈U .(X→2)→X is the function assigning to each X ∈ U
the choice function sending f ∈ (X→2) to

chX(f) =

{
ch(f−1{1}) if f−1{1} 6= ∅
ch(X) otherwise

where f−1{1} = {x ∈ X : f(x) = 1}. (Note that f−1{1} is in U when it is non-
empty, by the property Sub of the universe U given in Section 1.1. The function
ch is given by property Choice.)

It will be assumed from now on that signatures and their models are standard.

Remark This particular choice of primitive constants is arbitrary. The standard collec-
tion of logical constants includes T (‘true’), F (‘false’), ⇒ (‘implies’), ∧ (‘and’), ∨ (‘or’),
¬ (‘not’), ∀ (‘for all’), ∃ (‘there exists’), = (‘equals’), ι (‘the’), and ε (‘a’). This set is
redundant, since it can be defined (in a sense explained in Section 2.5.1) from various
subsets. In practice, it is necessary to work with the full set of logical constants, and the
particular subset taken as primitive is not important. The interested reader can explore
this topic further by reading Andrews’ book [?] and the references it contains.

Terms of type bool are called formulas.
The following notational abbreviations are used:

Notation Meaning
tσ = t′σ =σ→σ→bool tσ t

′
σ

t⇒ t′ ⇒bool→bool→bool tbool t
′
bool

εxσ. t ε(σ→bool)→σ(λxσ. t)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder (see Section 3.5.1).

Chapter 2

Theories

2.1 Introduction

The result, if any, of a session with the HOL system is an object called a theory. This
object is closely related to what a logician would call a theory, but there are some dif-
ferences arising from the needs of mechanical proof. A HOL theory, like a logician’s
theory, contains sets of types, constants, definitions and axioms. In addition, however, a
HOL theory, at any point in time, contains an explicit list of theorems that have already
been proved from the axioms and definitions. Logicians have no need to distinguish
theorems actually proved from those merely provable; hence they do not normally con-
sider sets of proven theorems as part of a theory; rather, they take the theorems of a
theory to be the (often infinite) set of all consequences of the axioms and definitions. A
related difference between logicians’ theories and HOL theories is that for logicians, the-
ories are static objects, but in HOL they can be thought of as potentially extendable. For
example, the HOL system provides tools for adding to theories and combining theories.
A typical interaction with HOL consists in combining some existing theories, making
some definitions, proving some theorems and then saving the new results.

The purpose of the HOL system is to provide tools to enable well-formed theories
to be constructed. The HOL logic is typed: each theory specifies a signature of type
and individual constants; these then determine the sets of types and terms as in the
previous chapter. All the theorems of such theories are logical consequences of the
definitions and axioms of the theory. The HOL system ensures that only well-formed
theories can be constructed by allowing theorems to be created only by formal proof.
Explicating this involves defining what it means to be a theorem, which leads to the
description of the proof system of HOL, to be given below. It is shown to be sound for
the set theoretic semantics of HOL described in the previous chapter. This means that a
theorem is satisfied by a model if it has a formal proof from axioms which are themselves
satisfied by the model. Since a logical contradiction is not satisfied by any model, this
guarantees in particular that a theory possessing a model is necessarily consistent, i.e.
a logical contradiction cannot be formally proved from its axioms.

This chapter also describes the various mechanisms by which HOL theories can be
extended to new theories. Each mechanism is shown to preserve the property of pos-
sessing a model. Thus theories built up from the initial HOL theory (which does possess

19

20 Chapter 2. Theories

a model) using these mechanisms are guaranteed to be consistent.

2.2 Sequents

The HOL logic is phrased in terms of hypothetical assertions called sequents. Fixing a
(standard) signature ΣΩ, a sequent is a pair (Γ, t) where Γ is a finite set of formulas over
ΣΩ and t is a single formula over ΣΩ.1 The set of formulas Γ forming the first component
of a sequent is called its set of assumptions and the term t forming the second component
is called its conclusion. When it is not ambiguous to do so, a sequent ({}, t) is written as
just t.

Intuitively, a model M of ΣΩ satisfies a sequent (Γ, t) if any interpretation of relevant
free variables as elements of M making the formulas in Γ true, also makes the formula
t true. To make this more precise, suppose Γ = {t1, . . . , tp} and let αs,xs be a context
containing all the type variables and all the free variables occurring in the formulas
t, t1, . . . , tp. Suppose that αs has length n, that xs = x1, . . . , xm and that the type of xj is
σj. Since formulas are terms of type bool, the semantics of terms defined in the previous
chapter gives rise to elements [[αs,xs.t]]M and [[αs,xs.tk]]M (k = 1, . . . , p) in

∏
Xs∈Un

 m∏
j=1

[[αs.σj]]M(Xs)

→ 2

Say that the model M satisfies the sequent (Γ, t) and write

Γ |=M t

if for all Xs ∈ Un and all ys ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σm]]M(Xs) with

[[αs,xs.tk]]M(Xs)(ys) = 1

for all k = 1, . . . , p, it is also the case that

[[αs,xs.t]]M(Xs)(ys) = 1.

(Recall that 2 is the set {0, 1}.)
In the case p = 0, the satisfaction of ({}, t) by M will be written |=M t. Thus |=M t

means that the dependently typed function

[[t]]M ∈
∏

Xs∈Un

 m∏
j=1

[[αs.σj]]M(Xs)

→ 2

is constant with value 1 ∈ 2.

1Note that the type subscript is omitted from terms when it is clear from the context that they are
formulas, i.e. have type bool.

2.3. Logic 21

2.3 Logic

A deductive system D is a set of pairs (L, (Γ, t)) where L is a (possibly empty) list of
sequents and (Γ, t) is a sequent.

A sequent (Γ, t) follows from a set of sequents ∆ by a deductive system D if and only
if there exist sequents (Γ1, t1), . . . , (Γn, tn) such that:

1. (Γ, t) = (Γn, tn), and

2. for all i such that 1 ≤ i ≤ n

(a) either (Γi, ti) ∈ ∆ or

(b) (Li, (Γi, ti)) ∈ D for some list Li of members of ∆ ∪ {(Γ1, t1), . . . , (Γi−1, ti−1)}
.

The sequence (Γ1, t1), · · · , (Γn, tn) is called a proof of (Γ, t) from ∆ with respect to D.
Note that if (Γ, t) follows from ∆, then (Γ, t) also follows from any ∆′ such that

∆ ⊆ ∆′. This property is called monotonicity.
The notation t1, . . . , tn `D,∆ t means that the sequent ({t1, . . . , tn}, t) follows from ∆

by D. If either D or ∆ is clear from the context then it may be omitted. In the case that
there are no hypotheses (i.e. n = 0), just ` t is written.

In practice, a particular deductive system is usually specified by a number of (schematic)
rules of inference, which take the form

Γ1 ` t1 · · · Γn ` tn
Γ ` t

The sequents above the line are called the hypotheses of the rule and the sequent be-
low the line is called its conclusion. Such a rule is schematic because it may contain
metavariables standing for arbitrary terms of the appropriate types. Instantiating these
metavariables with actual terms, one gets a list of sequents above the line and a single
sequent below the line which together constitute a particular element of the deductive
system. The instantiations allowed for a particular rule may be restricted by imposing a
side condition on the rule.

2.3.1 The HOL deductive system

The deductive system of the HOL logic is specified by eight rules of inference, given
below. The first three rules have no hypotheses; their conclusions can always be de-
duced. The identifiers in square brackets are the names of the ML functions in the HOL
system that implement the corresponding inference rules (See Section 3.9). Any side
conditions restricting the scope of a rule are given immediately below it.

22 Chapter 2. Theories

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (λx. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

Γ1 ` t1 = t′1 · · · Γn ` tn = t′n Γ ` t[t1, . . . , tn]

Γ1 ∪ · · · ∪ Γn ∪ Γ ` t[t′1, . . . , t
′
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t′1, . . . , t

′
n] denotes the result of replacing each selected

occurrence of ti by t′i (for 1≤i≤n), with suitable renaming of variables to prevent
free variables in t′i becoming bound after substitution.

Abstraction [ABS]

Γ ` t1 = t2
Γ ` (λx. t1) = (λx. t2)

• Provided x is not free in Γ.

Type instantiation [INST TYPE]

Γ ` t

Γ ` t[σ1, . . . , σn/α1, . . . , αn]

• Where t[σ1, . . . , σn/α1, . . . , αn] is the result of substituting, in parallel, the types σ1,
. . ., σn for type variables α1, . . ., αn in t, with the restrictions:

(i) none of the type variables α1, . . . , αn occur in Γ;

(ii) no distinct variables in t become identified after the instantiation.2

2The ML function implementing INST TYPE in the HOL system fails if side condition (i) is violated, but
instead of failing if (ii) is violated, it automatically renames any variable whose type is instantiated if the
variable is preceded in t by a different variable with the same name.

2.3. Logic 23

Discharging an assumption [DISCH]

Γ ` t2
Γ− {t1} ` t1 ⇒ t2

• Where Γ− {t1} is the set subtraction of {t1} from Γ.

Modus Ponens [MP]

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

In addition to these eight rules, there are also five axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PPλ, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined
in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the
hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties of
the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3 are
needed for rules BETA CONV, SUBST and INST TYPE.3 The fact that = and⇒ are interpreted
standardly (as in Section 1.4.2) is needed for rules REFL, BETA CONV, SUBST, ABS, DISCH
and MP.

3Note in particular that the second restriction on INST TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

24 Chapter 2. Theories

2.4 HOL Theories

A HOL theory T is a 4-tuple:

T = 〈StrucT , SigT ,AxiomsT ,TheoremsT 〉

where

(i) StrucT is a type structure called the type structure of T ;

(ii) SigT is a signature over StrucT called the signature of T ;

(iii) AxiomsT is a set of sequents over SigT called the axioms of T ;

(iv) TheoremsT is a set of sequents over SigT called the theorems of T , with the
property that every member follows from AxiomsT by the HOL deductive sys-
tem.

The sets TypesT and TermsT of types and terms of a theory T are, respectively, the
sets of types and terms constructable from the type structure and signature of T , i.e.:

TypesT = TypesStrucT

TermsT = TermsSigT

A model of a theory T is specified by giving a (standard) model M of the underlying
signature of the theory with the property that M satisfies all the sequents which are
axioms of T . Because of the Soundness Theorem 2.3.2, it follows that M also satisfies
any sequents in the set of given theorems, TheoremsT .

2.4.1 The theory MIN

The minimal theory MIN is defined by:

MIN = 〈{(bool, 0), (ind, 0)}, {⇒bool→bool→bool,=α→α→bool, ε(α→bool)→α}, {}, {}〉

Since the theory MIN has a signature consisting only of standard items and has no ax-
ioms, it possesses a unique standard model, which will be denoted Min.

Although the theory MIN contains only the minimal standard syntax, by exploiting the
higher order constructs of HOL one can construct a rather rich collection of terms over
it. The following theory introduces names for some of these terms that denote useful
logical operations in the model Min.

2.4. HOL Theories 25

2.4.2 The theory LOG

The theory LOG has the same type structure as MIN. Its signature contains the constants
in MIN and the following constants:

Tbool

∀(α→bool)→bool

∃(α→bool)→bool

Fbool

¬bool→bool

∧bool→bool→bool

∨bool→bool→bool

One One(α→β)→bool

Onto(α→β)→bool

Type Definition(α→bool)→(β→α)→bool

The following special notation is used in connection with these constants:

Notation Meaning
∀xσ. t ∀(λxσ. t)
∀x1 x2 · · · xn. t ∀x1. (∀x2. · · · (∀xn. t) · · ·)
∃xσ. t ∃(λxσ. t)
∃x1 x2 · · · xn. t ∃x1. (∃x2. · · · (∃xn. t) · · ·)
t1 ∧ t2 ∧ t1 t2
t1 ∨ t2 ∨ t1 t2

The axioms of the theory LOG consist of the following sequents:

` T = ((λxbool. x) = (λxbool. x))
` ∀ = λPα→bool. P = (λx. T)
` ∃ = λPα→bool. P (ε P)
` F = ∀bbool. b
` ¬ = λb. b⇒ F
` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b
` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ ((b2 ⇒ b)⇒ b)
` One One = λfα→β. ∀x1 x2. (f x1 = f x2)⇒ (x1 = x2)
` Onto = λfα→β. ∀y. ∃x. y = f x
` Type Definition = λPα→bool repβ→α.One One rep ∧

(∀x. P x = (∃y. x = rep y))

26 Chapter 2. Theories

Finally, as for the theory MIN, the set TheoremsLOG is taken to be empty.
Note that the axioms of the theory LOG are essentially definitions of the new constants

of LOG as terms in the original theory MIN. (The mechanism for making such extensions
of theories by definitions of new constants will be set out in general in Section 2.5.1.)
The first seven axioms define the logical constants for truth, universal quantification,
existential quantification, falsity, negation, conjunction and disjunction. Although these
definitions may be obscure to some readers, they are in fact standard definitions of these
logical constants in terms of implication, equality and choice within higher order logic.
The next two axioms define the properties of a function being one-one and onto; they
will be used to express the axiom of infinity (see Section 2.4.3), amongst other things.
The last axiom defines a constant used for type definitions (see Section 2.5.4).

The unique standard model Min of MIN gives rise to a unique standard model of LOG.
This is because, given the semantics of terms set out in Section 1.3.2, to satisfy the
above equations one is forced to interpret the new constants in the following way:

• [[Tbool]] = 1 ∈ 2

• [[∀(α→bool)→bool]] ∈
∏
X∈U(X→2)→2 sends X ∈ U and f ∈ X→2 to

[[∀]](X)(f) =

{
1 if f−1{1} = X
0 otherwise

• [[∃(α→bool)→bool]] ∈
∏
X∈U(X→2)→2 sends X ∈ U and f ∈ X→2 to

[[∃]](X)(f) =

{
1 if f−1{1} 6= ∅
0 otherwise

• [[Fbool]] = 0 ∈ 2

• [[¬bool→bool]] ∈ 2→2 sends b ∈ 2 to

[[¬]](b) =

{
1 if b = 0
0 otherwise

• [[∧bool→bool→bool]] ∈ 2→2→2 sends b, b′ ∈ 2 to

[[∧]](b)(b′) =

{
1 if b = 1 = b′

0 otherwise

• [[∨bool→bool→bool]] ∈ 2→2→2 sends b, b′ ∈ 2 to

[[∨]](b)(b′) =

{
0 if b = 0 = b′

1 otherwise

2.4. HOL Theories 27

• [[One One(α→β)→bool]] ∈
∏

(X,Y)∈U2(X→Y)→2 sends (X, Y) ∈ U2 and f ∈ (X→Y) to

[[One One]](X, Y)(f) =

{
0 if f(x) = f(x′) for some x 6= x′ in X
1 otherwise

• [[Onto(α→β)→bool]] ∈
∏

(X,Y)∈U2(X→Y)→2 sends (X, Y) ∈ U2 and f ∈ (X→Y) to

[[Onto]](X,Y)(f) =

{
1 if {f(x) : x ∈ X} = Y
0 otherwise

• [[Type Definition(α→bool)→(β→α)→bool]] ∈
∏

(X,Y)∈U2(X→2)→(Y→X)→2
sends (X, Y) ∈ U2, f ∈ (X→2) and g ∈ (Y→X) to

[[Type Definition]](X, Y)(f)(g) =

1 if [[One One]](Y,X)(g) = 1

and f−1{1} = {g(y) : y ∈ Y }
0 otherwise.

Since these definitions were obtained by applying the semantics of terms to the left
hand sides of the equations which form the axioms of LOG, these axioms are satisfied
and one obtains a model of the theory LOG.

2.4.3 The theory INIT

The theory INIT is obtained by adding the following five axioms to the theory LOG.

BOOL CASES AX ` ∀b. (b = T) ∨ (b = F)

IMP ANTISYM AX ` ∀b1 b2. (b1 ⇒ b2)⇒ (b2 ⇒ b1)⇒ (b1 = b2)

ETA AX ` ∀fα→β. (λx. f x) = f

SELECT AX ` ∀Pα→bool x. P x⇒ P (ε P)

INFINITY AX ` ∃find→ind. One One f ∧ ¬(Onto f)

The unique standard model of LOG satisfies these five axioms and hence is the unique
standard model of the theory INIT. (For axiom SELECT AX one needs to use the definition
of [[ε]] given in Section 1.4.2; for axiom INFINITY AX one needs the fact that [[ind]] = I is
an infinite set.)

The theory INIT is the initial theory of the HOL logic. A theory which extends INIT

will be called a standard theory.

28 Chapter 2. Theories

2.4.4 Consistency

A (standard) theory is consistent if it is not the case that every sequent over its signature
can be derived from the theory’s axioms using the HOL logic, or equivalently, if the
particular sequent ` F cannot be so derived.

The existence of a (standard) model of a theory is sufficient to establish its consis-
tency. For by the Soundness Theorem 2.3.2, any sequent that can be derived from
the theory’s axioms will be satisfied by the model, whereas the sequent ` F is never
satisfied in any standard model. So in particular, the initial theory INIT is consistent.

However, it is possible for a theory to be consistent but not to possess a standard
model. This is because the notion of a standard model is quite restrictive—in particular
there is no choice how to interpret the integers and their arithmetic in such a model.
The famous incompleteness theorem of Gödel ensures that there are sequents which are
satisfied in all standard models (i.e. which are ‘true’), but which are not provable in the
HOL logic.

2.5 Extensions of theories

A theory T ′ is said to be an extension of a theory T if:

(i) StrucT ⊆ StrucT ′.

(ii) SigT ⊆ SigT ′.

(iii) AxiomsT ⊆ AxiomsT ′.

(iv) TheoremsT ⊆ TheoremsT ′.

In this case, any model M ′ of the larger theory T ′ can be restricted to a model of the
smaller theory T in the following way. First, M ′ gives rise to a model of the structure
and signature of T simply by forgetting the values of M ′ at constants not in StrucT or
SigT . Denoting this model by M , one has for all σ ∈ TypesT , t ∈ TermsT and for all
suitable contexts that

[[αs.σ]]M = [[αs.σ]]M ′

[[αs,xs.t]]M = [[αs,xs.t]]M ′ .

Consequently if (Γ, t) is a sequent over SigT (and hence also over SigT ′), then Γ |=M t if
and only if Γ |=M ′ t. Since AxiomsT ⊆ AxiomsT ′ and M ′ is a model of T ′, it follows that
M is a model of T . M will be called the restriction of the model M ′ of the theory T ′ to
the subtheory T .

There are two main mechanisms for making extensions of theories in HOL:

2.5. Extensions of theories 29

• Extension by a constant specification (see Section 2.5.2).

• Extension by a type specification (see Section 2.5.5).4

The first mechanism allows ‘loose specifications’ of constants as in the Z notation [?];
the latter allows new types and type-operators to be introduced. As special cases (when
the thing being specified is uniquely determined) one also has:

• Extension by a constant definition (see Section 2.5.1).

• Extension by a type definition (see Section 2.5.4).

These mechanisms are described in the following sections. They all produce definitional
extensions in the sense that they extend a theory by adding new constants and types
which are defined in terms of properties of existing ones. Their key property is that the
extended theory possesses a (standard) model if the original theory does. So a series of
these extensions starting from the theory INIT is guaranteed to result in a theory with a
standard model, and hence in a consistent theory. It is also possible to extend theories
simply by adding new uninterpreted constants and types. This preserves consistency,
but is unlikely to be useful without additional axioms. However, when adding arbitrary
new axioms, there is no guarantee that consistency is preserved. The advantages of
postulation over definition have been likened by Bertrand Russell to the advantages of
theft over honest toil.5 As it is all too easy to introduce inconsistent axiomatizations,
users of the HOL system are strongly advised to resist the temptation to add axioms, but
to toil through definitional theories honestly.

2.5.1 Extension by constant definition

A constant definition over a signature ΣΩ is a formula of the form cσ = tσ, such that:

(i) c is not the name of any constant in ΣΩ;

(ii) tσ a closed term in TermsΣΩ
.

(iii) all the type variables occurring in tσ also occur in σ

Given a theory T and such a constant definition over SigT , then the definitional exten-
sion of T by cσ = tσ is the theory T +def 〈cσ = tσ〉 defined by:

T +def 〈cσ = tσ〉 = 〈 StrucT , SigT ∪ {(c, σ)},
AxiomsT ∪ {cσ = tσ}, TheoremsT 〉

4This theory extension mechanism is not implemented in Version 2.0 of the HOL system.
5See page 71 of Russell’s book Introduction to Mathematical Philosophy.

30 Chapter 2. Theories

Note that the mechanism of extension by constant definition has already been used
implicitly in forming the theory LOG from the theory MIN in Section 2.4.2. Thus with the
notation of this section one has

LOG = MIN +def 〈T = ((λxbool. x) = (λxbool. x))〉
+def 〈∀ = λPα→bool. P = (λx. T)〉
+def 〈∃ = λPα→bool. P (ε P)〉
+def 〈F = ∀bbool. b〉
+def 〈¬ = λb. b⇒ F〉
+def 〈∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b〉
+def 〈∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ ((b2 ⇒ b)⇒ b)〉
+def 〈One One = λfα→β. ∀x1 x2. (f x1 = f x2)⇒ (x1 = x2)〉
+def 〈Onto = λfα→β. ∀y. ∃x. y = f x〉
+def 〈Type Definition = λPα→bool repβ→α.

One One rep ∧
(∀x. P x = (∃y. x = rep y))〉

If T possesses a standard model then so does the extension T +def 〈cσ = tσ〉. This
will be proved as a corollary of the corresponding result in Section 2.5.2 by showing
that extension by constant definition is in fact a special case of extension by constant
specification. (This reduction requires that one is dealing with standard theories in
the sense of section 2.4.3, since although existential quantification is not needed for
constant definitions, it is needed to state the mechanism of constant specification.)

Remark Condition (iii) in the definition of what constitutes a correct constant definition
is an important restriction without which consistency could not be guaranteed. To see
this, consider the term ∃fα→α. One One f ∧ ¬(Onto f), which expresses the proposition
that (the set of elements denoted by the) type α is infinite. The term contains the type
variable α, whereas the type of the term, bool, does not. Thus by (iii)

cbool = ∃fα→α. One One f ∧ ¬(Onto f)

is not allowed as a constant definition. The problem is that the meaning of the right
hand side of the definition varies with α, whereas the meaning of the constant on the
left hand side is fixed, since it does not contain α. Indeed, if we were allowed to extend
the consistent theory INIT by this definition, the result would be an inconsistent theory.
For instantiating α to ind in the right hand side results in a term that is provable from
the axioms of INIT, and hence cbool = T is provable in the extended theory. But equally,
instantiating α to bool makes the negation of the right hand side provable from the
axioms of INIT, and hence cbool = F is also provable in the extended theory. Combining
these theorems, one has that T = F, i.e. F is provable in the extended theory.

2.5. Extensions of theories 31

2.5.2 Extension by constant specification

Constant specifications introduce constants (or sets of constants) that satisfy arbitrary
given (consistent) properties. For example, a theory could be extended by a constant
specification to have two new constants b1 and b2 of type bool such that ¬(b1 = b2).
This specification does not uniquely define b1 and b2, since it is satisfied by either b1 = T

and b2 = F, or b1 = F and b2 = T. To ensure that such specifications are consistent,
they can only be made if it has already been proved that the properties which the new
constants are to have are consistent. This rules out, for example, introducing three
boolean constants b1, b2 and b3 such that b1 6= b2, b1 6= b3 and b2 6= b3.

Suppose ∃x1 · · ·xn. t is a formula, with x1, . . . , xn distinct variables. If ` ∃x1 · · ·xn. t,
then a constant specification allows new constants c1, . . . , cn to be introduced satisfying:

` t[c1, · · · , cn/x1, · · · , xn]

where t[c1, · · · , cn/x1, · · · , xn] denotes the result of simultaneously substituting c1, . . . , cn
for x1, . . . , xn respectively. Of course the type of each constant ci must be the same
as the type of the corresponding variable xi. To ensure that this extension mechanism
preserves the property of possessing a model, a further more technical requirement is
imposed on these types: they must each contain all the type variables occurring in t.
This condition is discussed further in Section 2.5.3 below.

Formally, a constant specification for a theory T is given by

Data

〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉

Conditions

(i) c1, . . . , cn are distinct names that are not the names of any constants in SigT .

(ii) λx1σ1
· · ·xnσn . tbool ∈ TermsT .

(iii) tyvars(tbool) = tyvars(σi) for 1 ≤ i ≤ n.

(iv) ∃x1σ1
· · · xnσn . t ∈ TheoremsT .

The extension of a standard theory T by such a constant specification is denoted by

T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉

and is defined to be the theory:

〈StrucT ,
SigT ∪ {c1σ1

, . . . , cnσn},
AxiomsT ∪ {t[c1, . . . , cn/x1, . . . , xn]},
TheoremsT 〉

32 Chapter 2. Theories

Proposition The theory T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉 has a standard model if

the theory T does.

Proof Suppose M is a standard model of T . Let αs = α1, . . . , αm be the list of distinct
type variables occurring in the formula t. Then αs,xs.t is a term-in-context, where xs =

x1, . . . , xn. (Change any bound variables in t to make them distinct from xs if necessary.)
Interpreting this term-in-context in the model M yields

[[αs,xs.t]]M ∈
∏

Xs∈Um

(
n∏
i=1

[[αs.σi]]M(Xs)

)
→2

Now ∃xs. t is in TheoremsT and hence by the Soundness Theorem 2.3.2 this sequent is
satisfied by M . Using the semantics of ∃ given in Section 2.4.2, this means that for all
Xs ∈ Um the set

S(Xs) = {ys ∈ [[αs.σ1]]M(Xs)× · · · × [[αs.σn]]M(Xs) : [[αs,xs.t]]M(Xs)(ys) = 1}

is non-empty. Since it is also a subset of a finite product of sets in U , it follows that it is
an element of U (using properties Sub and Prod of the universe). So one can apply the
global choice function ch ∈ ∏X∈U X to select a specific element

(s1(Xs), . . . , sn(Xs)) = ch(S(Xs)) ∈
n∏
i=1

[[αs.σi]]M(Xs)

at which [[αs,xs.t]]M(Xs) takes the value 1. Extend M to a model M ′ of the signature
of T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉 by defining its value at each new constant
(ci, σi) to be

M ′(ci, σi) = si ∈
∏

Xs∈Um
[[σi]]M(Xs).

Note that the Condition (iii) in the definition of a constant specification ensures that αs
is the canonical context of each type σi, so that [[σi]] = [[αs.σi]] and thus si is indeed an
element of the above product.

Since t is a term of the subtheory T of T +spec〈(c1, . . . , cn), λx1σ1
, . . . , xnσn . tbool〉, as

remarked at the beginning of Section 2.5, one has that [[αs,xs.t]]M ′ = [[αs,xs.t]]M . Hence
by definition of the si, for all Xs ∈ Um

[[αs,xs.t]]M ′(Xs)(s1(Xs), . . . , sn(Xs)) = 1

Then using Lemma 4 in Section 1.3.3 on the semantics of substitution together with the
definition of [[ci]]M ′, one finally obtains that for all Xs ∈ Um

[[t[c1, . . . , cn/x1, . . . , xn]]]M ′(Xs) = 1

or in other words that M ′ satisfies t[c1, . . . , cn/x1, . . . , xn]. Hence M ′ is a model of
T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉, as required.

2.5. Extensions of theories 33

The constants which are asserted to exist in a constant specification are not neces-
sarily uniquely determined. Correspondingly, there may be many different models of
T +spec〈(c1, . . . , cn), λx1σ1

, . . . , xnσn . tbool〉 whose restriction to T is M ; the above con-
struction produces such a model in a uniform manner by making use of the global
choice function on the universe.

Extension by a constant definition, cσ = tσ, is a special case of extension by constant
specification. For let t′ be the formula xσ = tσ, where xσ is a variable not occurring in
tσ. Then clearly ` ∃xσ. t′ and one can apply the method of constant specification to
obtain the theory

T +spec〈c, λxσ. t′〉

But since t′[cσ/xσ] is just cσ = tσ, this extension yields exactly T +def 〈cσ = tσ〉. So as
a corollary of the Proposition, one has that for each standard model M of T , there is
a standard model M ′ of T +def 〈cσ = tσ〉 whose restriction to T is M . In contrast with
the case of constant specifications, M ′ is uniquely determined by M and the constant
definition.

2.5.3 Remarks about constants in HOL

Note how Condition (iii) in the definition of a constant specification was needed in the
proof that the extension mechanism preserves the property of possessing a standard
model. Its role is to ensure that the introduced constants have, via their types, the
same dependency on type variables as does the formula loosely specifying them. The
situation is the same as that discussed in the Remark in Section 2.5.1. In a sense, what
is causing the problem in the example given in that Remark is not so much the method
of extension by introducing constants, but rather the syntax of HOL which does not
allow constants to depend explicitly on type variables (in the way that type operators
can). Thus in the example one would like to introduce a ‘polymorphic’ constant cbool(α)

explicitly depending upon α, and define it to be ∃fα→α. One One f ∧ ¬(Onto f). Then
in the extended theory one could derive cbool(ind) = T and cbool(bool) = F, but now no
contradiction results since cbool(ind) and cbool(bool) are different.

In the current version of HOL, constants are (name,type)-pairs. One can envision
a slight extension of the HOL syntax with ‘polymorphic’ constants, specified by pairs
(c, αs.σ) where now αs.σ is a type-in-context and the list αs may well contain extra type
variables not occurring in σ. Such a pair would give rise to the particular constant
term cσ(αs), and more generally to constant terms cσ′(τs) obtained from this one by
instantiating the type variables αi with types τi (so σ′ is the instance of σ obtained by
substituting τs for αs). This new syntax of polymorphic constants is comparable to the
existing syntax of compound types (see section 1.2): an n-ary type operator op gives
rise to a compound type (α1, . . . , αn)op depending upon n type variables. Similarly, the

34 Chapter 2. Theories

above syntax of polymorphic constants records how they depend upon type variables
(as well as which generic type the constant has).

However, explicitly recording dependency of constants on type variables makes for a
rather cumbersome syntax which in practice one would like to avoid where possible. It
is possible to avoid it if the type context αs in (c, αs.σ) is actually the canonical context
of σ, i.e. contains exactly the type variables of σ. For then one can apply Lemma 1
of Section 1.2.3 to deduce that the polymorphic constant cσ′(τs) can be abbreviated to
the ordinary constant cσ′ without ambiguity—the missing information τs can be recon-
structed from σ′ and the information about the constant c given in the signature. From
this perspective, the rather technical side Conditions (iii) in Sections 2.5.1 and 2.5.2
become rather less mysterious: they precisely ensure that in introducing new constants
one is always dealing just with canonical contexts, and so can use ordinary constants
rather than polymorphic ones without ambiguity. In this way one avoids complicat-
ing the existing syntax at the expense of restricting somewhat the applicability of these
theory extension mechanisms.

2.5.4 Extension by type definition

Every (monomorphic) type σ in the initial theory INIT determines a set [[σ]] in the uni-
verse U . However, there are many more sets in U than there are types in INIT. In
particular, whilst U is closed under the operation of taking a non-empty subset of [[σ]],
there is no corresponding mechanism for forming a ‘subtype’ of σ. Instead, subsets are
denoted indirectly via characteristic functions, whereby a closed term p of type σ→bool
determines the subset {x ∈ [[σ]] : [[p]](x) = 1} (which is a set in the universe provided it is
non-empty). However, it is useful to have a mechanism for introducing new types which
are subtypes of existing ones. Such types are defined in HOL by introducing a new type
constant and asserting an axiom that characterizes it as denoting a set in bijection (i.e.
one-to-one correspondence) with a non-empty subset of an existing type (called the rep-
resenting type). For example, the type num is defined to be equal to a countable subset of
the type ind, which is guaranteed to exist by the axiom INFINITY AX (see Section 2.4.3).

As well as defining types, it is also convenient to be able to define type operators.
An example would be a type operator inj which mapped a set to the set of one-to-
one (i.e. injective) functions on it. The subset of σ→σ representing (σ)inj would be
defined by the predicate One One. Another example would be a binary cartesian product
type operator prod. This is defined by choosing a representing type containing two
type variables, say σ[α1;α2], such that for any types σ1 and σ2, a subset of σ[σ1;σ2]

represents the cartesian product of σ1 and σ2. The details of such a definition are given
in Section 4.3.

Types in HOL must denote non-empty sets. Thus it is only consistent to define a new
type isomorphic to a subset specified by a predicate p, if there is at least one thing for

2.5. Extensions of theories 35

which p holds, i.e. ` ∃x. p x. For example, it would be inconsistent to define a binary
type operator iso such that (σ1, σ2)iso denoted the set of one-to-one functions from σ1

onto σ2 because for some values of σ1 and σ2 the set would be empty; for example
(ind, bool)iso would denote the empty set. To avoid this, a precondition of defining a
new type is that the representing subset is non-empty.

To summarize, a new type is defined by:

1. Specifying an existing type.

2. Specifying a subset of this type.

3. Proving that this subset is non-empty.

4. Specifying that the new type is isomorphic to this subset.

In more detail, defining a new type (α1, . . . , αn)op consists in:

1. Specifying a type-in-context, α1, . . . , αn.σ say. The type σ is called the representing
type, and the type (α1, . . . , αn)op is intended to be isomorphic to a subset of σ.

2. Specifying a closed term-in-context, α1, . . . , αn, .p say, of type σ→bool. The term p

is called the characteristic function. This defines the subset of σ to which (α1, . . . , αn)op

is to be isomorphic.6

3. Proving ` ∃xσ. p x.

4. Asserting an axiom saying that (α1, . . . , αn)op is isomorphic to the subset of σ
selected by p.

To make this formal, the theory LOG provides the polymorphic constant Type Definition

defined in Section 2.4.2. The formula ∃f(α1,...,αn)op→σ. Type Definition p f asserts that
there exists a one-to-one map f from (α1, . . . , αn)op onto the subset of elements of σ for
which p is true. Hence, the axiom that characterizes (α1, . . . , αn)op is:

` ∃f(α1,...,αn)op→σ. Type Definition p f

Defining a new type (α1, . . . , αn)op in a theory T thus consists of introducing op as a
new n-ary type operator and the above axiom as a new axiom. Formally, a type definition
for a theory T is given by

Data

〈(α1, . . . , αn)op, σ, pσ→bool〉

Conditions
6The reason for restricting p to be closed, i.e. to have no free variables, is that otherwise for consis-

tency the defined type operator would have to depend upon (i.e. be a function of) those variables. Such
dependent types are not (yet!) a part of the HOL system.

36 Chapter 2. Theories

(i) (op, n) is not the name of a type constant in StrucT .

(ii) α1, . . . , αn.σ is a type-in-context with σ ∈ TypesT .

(iii) pσ→bool is a closed term in TermsT whose type variables occur in α1, . . . , αn.

(iv) ∃xσ. p x ∈ TheoremsT .

The extension of a standard theory T by a such a type definition is denoted by

T +tydef〈(α1, . . . , αn)op, σ, p〉

and defined to be the theory

〈StrucT ∪ {(op, n)},
SigT ,
AxiomsT ∪ {∃f(α1,...,αn)op→σ. Type Definition p f},
TheoremsT 〉

Proposition The theory T +tydef 〈(α1, . . . , αn)op, σ, p〉 has a standard model if the theory T
does.

Instead of giving a direct proof of this result, it will be deduced as a corollary of the
corresponding proposition in the next section.

2.5.5 Extension by type specification7

The type definition mechanism allows one to introduce new types by giving a concrete
representation of the type as a ‘subtype’ of an existing type. One might instead wish
to introduce a new type satisfying some property without having to give an explicit
representation for the type. For example, one might want to extend INIT with an atomic
type one satisfying ` ∀fα→one gα→one. f = g without choosing a specific type in INIT and
saying that one is in bijection with a one-element subset of it. (The idea being that the
choice of representing type is irrelevant to the properties of one that can be expressed
in HOL.) The mechanism described in this section provides one way of achieving this
while at the same time preserving the all-important property of possessing a standard
model and hence maintaining consistency.

Each closed formula q involving a single type variable α can be thought of as specify-
ing a property q[τ/α] of types τ . Its interpretation in a model is of the form

[[α, .q]] ∈
∏
X∈U

[[α.bool]](X) =
∏
X∈U

2 = U→2

7This theory extension mechanism is not implemented in Version 2.0 of the HOL system. It was
proposed by T. Melham and refines a suggestion from R. Jones and R. Arthan.

2.5. Extensions of theories 37

which is a characteristic function on the universe, determining a subset {X ∈ U :

[[α, .q]](X) = 1} consisting of those sets in the universe for which the property q holds.
The most general way of ensuring the consistency of introducing a new atomic type ν
satisfying q[ν/α] would be to prove ‘∃α. q’. However, such a formula with quantification
over types is not8 a part of the HOL logic and one must proceed indirectly—replacing
the formula by (a logically weaker) one that can be expressed formally with HOL syntax.
The formula used is

(∃fα→σ. Type Definition p f) ⇒ q

where σ is a type, pσ→bool is a closed term and neither involve the type variable α. This
formula says ‘q holds of any type which is in bijection with the subtype of σ determined
by p’. If this formula is provable and if the subtype is non-empty, i.e. if

∃xσ. p x

is provable, then it is consistent to introduce an extension with a new atomic type ν
satisfying q[ν/α].

In giving the formal definition of this extension mechanism, two refinements will
be made. Firstly, σ is allowed to be polymorphic and hence a new type constant of
appropriate arity is introduced, rather than just an atomic type. Secondly, the above
existential formulas are permitted to be proved (in the theory to be extended) from
some hypotheses.9 Thus a type specification for a theory T is given by

Data

〈(α1, . . . , αn)op, σ, p, α,Γ, q〉

Conditions

(i) (op, n) is a type constant that is not in StrucT .

(ii) α1, . . . , αn.σ is a type-in-context with σ ∈ TypesT .

(iii) pσ→bool is a closed term in TermsT whose type variables occur in αs = α1, . . . , αn.

(iv) α is a type variable distinct from those in αs.

(v) Γ is a list of closed formulas in TermsT not involving the type variable α.

(vi) q is a closed formula in TermsT .

8yet!
9This refinement increases the applicability of the extension mechanism without increasing its expres-

sive power. A similar refinement could have be made to the other theory extension mechanisms.

38 Chapter 2. Theories

(vii) The sequents

(Γ , ∃xσ. p x)

(Γ , (∃fα→σ. Type Definition p f) ⇒ q)

are in TheoremsT .

The extension of a standard theory T by such a type specification is denoted

T +tyspec〈(α1, . . . , αn)op, σ, p, α,Γ, q〉

and is defined to be the theory

〈StrucT ∪ {(op, n)},
SigT ,
AxiomsT ∪ {(Γ, q[(α1, . . . , αn)op/α])},
TheoremsT 〉

Example To carry out the extension of INIT mentioned at the start of this section, one
forms

INIT+tyspec〈()one, bool, p, α, ∅, q〉

where p is the term λbbool. b and q is the formula ∀fβ→α gβ→α. f = g. Thus the re-
sult is a theory extending INIT with a new type constant one satisfying the axiom
∀fβ→one gβ→one. f = g.

To verify that this is a correct application of the extension mechanism, one has to
check Conditions (i) to (vii) above. Only the last one is non-trivial: it imposes the
obligation of proving two sequents from the axioms of INIT. The first sequent says that
p defines an inhabited subset of bool, which is certainly the case since T witnesses this
fact. The second sequent says in effect that any type α that is in bijection with the subset
of bool defined by p has the property that there is at most one function to it from any
given type β; the proof of this from the axioms of INIT is left as an exercise.

Proposition The theory T +tyspec〈(α1, . . . , αn)op, σ, p, α,Γ, q〉 has a standard model if the
theory T does.

Proof Write αs for α1, . . . , αn, and suppose that αs′ = α′1, . . . , α
′
m is the list of type

variables occurring in Γ and q, but not already in the list αs, α.
Suppose M is a standard model of T . Since αs, .p is a term-in-context of type σ→bool,

interpreting it in M yields

[[αs, .p]]M ∈
∏

Xs∈Un
[[αs.σ→bool]]M(Xs) =

∏
Xs∈Un

[[αs.σ]]M(Xs)→2.

2.5. Extensions of theories 39

There is no loss of generality in assuming that Γ consists of a single formula γ. (Just
replace Γ by the conjunction of the formulas it contains, with the convention that this
conjunction is T if Γ is empty.) By assumption on αs′ and by Condition (iv), αs, αs′, .γ is
a term-in-context. Interpreting it in M yields

[[αs, αs′.γ]]M ∈
∏

(Xs,Xs′)∈Un+m

[[αs, αs′.bool]]M(Xs,Xs′) = Un+m→2

Now (γ, ∃xσ. p x) is in TheoremsT and hence by the Soundness Theorem 2.3.2 this
sequent is satisfied by M . Using the semantics of ∃ given in Section 2.4.2 and the
definition of satisfaction of a sequent from Section 2.2, this means that for all (Xs,Xs′) ∈
Un+m if [[αs, αs′.γ]]M(Xs,Xs′) = 1, then the set

{y ∈ [[αs.σ]]M : [[αs, .p]](Xs)(y) = 1}

is non-empty. (This uses the fact that p does not involve the type variables αs′, so that by
Lemma 4 in Section 1.3.3 [[αs, αs′.p]]M(Xs,Xs′) = [[αs, .p]]M(Xs).) Since it is also a subset
of a set in U , it follows by property Sub of the universe that this set is an element of U .
So defining

S(Xs) =

{
{y ∈ [[αs.σ]]M : [[αs, .p]](Xs)(y) = 1} if [[αs, .γ]]M(Xs,Xs′) = 1, some Xs′

1 otherwise

one has that S is a function Un→U . Extend M to a model of the signature of T ′ by
defining its value at the new n-ary type constant op to be this function S. Note that
the values of σ, p, γ and q in M ′ are the same as in M , since these expressions do not
involve the new type constant op.

For each Xs ∈ Un define iXs to be the inclusion function for the subset S(Xs) ⊆
[[αs.σ]]M if [[αs, αs′.γ]]M(Xs,Xs′) = 1 for some Xs′, and otherwise to be the function
1→[[αs.σ]]M sending 0 ∈ 1 to ch([[αs.σ]]M). Then iXs ∈ (S(Xs)→[[αs.σ]]M ′(Xs)) because
[[αs.σ]]M ′ = [[αs.σ]]M . Using the semantics of Type Definition given in Section 2.4.2, one
has that for any (Xs,Xs′) ∈ Un+m, if [[αs, αs′.γ]]M ′(Xs,Xs

′) = 1 then

[[Type Definition]]M ′([[αs.σ]]M ′ , S(Xs))([[αs, .p]]M ′)(iXs) = 1.

Thus M ′ satisfies the sequent

(γ , ∃f(αs)op→σ. Type Definition p f).

But since the sequent (γ, (∃fα→σ. Type Definition p f) ⇒ q) is in TheoremsT , it is satisfied
by the model M and hence also by the model M ′ (since the sequent does not involve the
new type constant op). Instantiating α to (αs)op in this sequent (which is permissible
since by Condition (iv) α does not occur in γ), one thus has that M ′ satisfies the sequent

(γ , (∃f(αs)op→σ. Type Definition p f)⇒ q[(αs)op/α]).

40 Chapter 2. Theories

Applying Modus Ponens, one concludes that M ′ satisfies (γ , q[(αs)op/α]) and therefore
M ′ is a model of T ′, as required.

An extension by type definition is in fact a special case of extension by type specifica-
tion. To see this, suppose 〈(α1, . . . , αn)op, σ, pσ→bool〉 is a type definition for a theory T .
Choosing a type variable α different from α1, . . . , αn, let q denote the formula

∃fα→σ. Type Definition p f

Then 〈(α1, . . . , αn)op, σ, p, α, ∅, q〉 satisfies all the conditions necessary to be a type spec-
ification for T . Since q[(α1, . . . , αn)op/α] is just ∃f(α1,...,αn)op→σ. Type Definition p f , one
has that

T +tydef〈(α1, . . . , αn)op, σ, p〉 = T +tyspec〈(α1, . . . , αn)op, σ, p, α, ∅, q〉

Thus the Proposition in Section 2.5.4 is a special case of the above Proposition.
In an extension by type specification, the property q which is asserted of the newly

introduced type constant need not determine the type constant uniquely (even up to
bijection). Correspondingly there may be many different standard models of the ex-
tended theory whose restriction to T is a given model M . By contrast, a type definition
determines the new type constant uniquely up to bijection, and any two models of the
extended theory which restrict to the same model of the original theory will be isomor-
phic.

Part II

The HOL System

Chapter 3

The HOL Logic in ML

In this chapter, the concrete representation of the HOL logic is described. This involves
describing the ML functions that comprise the interface to the logic (up to and including
Section 3.3); the quotation, printing and parsing of logical terms (Section 3.4); the
representation of theorems (Section 3.6); the representation of theories (Section 3.7);
some useful HOL theories (Sections ?? and 3.9); the methods for extending theories
(throughout Section ?? and in Section 5.7); and the ML system functions concerning
the logic (Section 6.3). It is assumed that the reader is familiar with ML. If not, the
introduction to ML in Getting Started with HOL in TUTORIAL should be read first.

The HOL system provides ML types hol_type and term to represent types and terms of
the HOL logic, as defined in Sections 1.2 and 1.3, respectively. It also provides primitive
ML functions for creating and manipulating values of these types. The key idea of
the HOL system, due to Robin Milner, and discussed in this chapter, is that theorems
are represented as an abstract ML type whose only pre-defined values are axioms, and
whose only operations are rules of inference. This means that the only way to construct
theorems in HOL is to apply rules of inference to axioms or existing theorems; hence the
consistency of the logic is preserved.

The purpose of the meta-language ML is to provide a programming environment in
which to build theorem proving tools to assist in the construction of proofs. When
the HOL system is built, a range of useful theorems is pre-proved and a set of tools
pre-defined. The basic system thus offers a rich initial environment; users can further
enrich it by implementing their own application specific tools and building their own
application specific theories.

3.1 Lexical matters

The name of a HOL variable can be any ML string, but the quotation mechanism will
parse only names that are identifiers (see Section 3.1.1 below). The use of non-identifiers
as variable names is discouraged except in special circumstances (for example, when
writing derived rules that generate variables with names that are guaranteed to be dif-
ferent from existing names). The name of a type variable in the HOL logic is formed
by a prime (’) followed by an alphanumeric which itself contains no prime (see Sec-
tion 3.1.1.3 for examples). The name of a type constant or a term constant in the HOL

43

44 Chapter 3. The HOL Logic in ML

logic can be any identifier, although some names are treated specially by the HOL parser
and printer and should therefore be avoided.

3.1.1 Identifiers

A HOL identifier can be of two forms:

(i) A finite sequence of alphanumerics starting with a letter.

(ii) A symbolic identifier, i.e., a finite sequence formed by any combination of the
following characters:

? + * / \ = < > & % @ ! , : ; _ | ~ -

A letter is a member of the list:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

HOL is case-sensitive: upper and lower case letters are considered to be different.
Alphanumerics are letters or digits or underscores (_) or primes (’). A digit is one of

0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. A number is a string of one or more digits.

3.1.1.1 Separators

The separators used by the HOL lexical analyser are (with ascii codes in brackets):

space (32), carriage return (13), line feed (10), tab (^I, 9), form feed (^L, 12)

3.1.1.2 Special identifiers

The following valid identifiers should not be used as the name of a variable or a con-
stant.

let in and \ ; => | : := with updated_by

3.1.1.3 Type variable names

The name of a type variable in the HOL logic is a string beginning with a prime (’)
followed by an alphanumeric which itself contains no prime; for example all of the
following are valid type variable names except for the last:

’a ’b ’cat ’A11 ’g_a_p ’f’oo

3.2. Types 45

3.2 Types

The allowed types depend on which type constants have been declared in the current
theory. See Section 3.7 for details of how such declarations are made.

There are two primitive constructor functions for values of type hol_type:

mk_vartype : string -> hol_type
mk_type : (string * hol_type list) -> hol_type

The function mk_vartype constructs a type variable with a given name; it fails if the
name is not an allowable type variable name (i.e. not a ’ followed by an alphanumeric).

The function mk_type constructs a compound type from a string representing the name
of the type operator and a list of types representing the arguments to the operator.
Function types σ1→σ2 of the logic are represented in ML as though they were com-
pound types (σ1, σ2)fun (in Section 1.2, however, function types were not regarded as
compound types).

The evaluation of mk_type("name", [σ1,· · ·,σn]) fails if

(i) name is not a type operator of the current theory;

(ii) name is a type operator of the current theory, but its arity is not n.

For example, mk_type("bool",[]) evaluates to an ML value of type term representing
the type bool and mk_type("fun", [mk_type("ind",[]), mk_type("bool",[])]) evalu-
ates to a value representing ind→bool. (These types are introduced in Section ??).

There are two primitive destructor functions for values of type hol_type:

dest_vartype : hol_type -> string
dest_type : hol_type -> (string * hol_type list)

The function dest_vartype extracts the name of a type variable. The function dest_type

destructs a compound type into the name of the type operator and a list of the argument
types; dest_vartype and dest_type are thus the inverses of mk_vartype and mk_type,
respectively. The destructors fail on arguments of the wrong form.

Types are printed in the form ‘: · · · ‘ using the quotation syntax described in Sec-
tion 3.4. For example, the ML value of type hol_type representing ind→(ind→bool)
would be printed as ‘:ind -> ind -> bool‘.

3.3 Terms

The four primitive kinds of terms of the logic are described in Section 1.3. The ML
functions for manipulating these are described in this section. There are also various
derived terms that are described in Section 3.5.1.

46 Chapter 3. The HOL Logic in ML

The allowed terms depend on which constants have been declared in the current
theory. See Section 3.7 for details of how such declarations are made.

There are four primitive constructor functions for values of type term:

mk_var : (string * hol_type) -> term

mk_var(x,σ) evaluates to a variable with name x and type σ; it always succeeds.

mk_const : (string * hol_type) -> term

mk_const(c,σ) evaluates to a term representing the constant with name c and type σ; it
fails if:

(i) c is not the name of a constant in the current theory;

(ii) σ is not an instance of the generic type of c (the generic type of a constant is
established when the constant is defined; see Section 3.7).

mk_comb : (term * term) -> term

mk_comb(t1,t2) evaluates to a term representing the combination t1 t2. It fails if:

(i) the type of t1 does not have the form σ′->σ;

(ii) the type of t1 has the form σ′->σ, but the type of t2 is not equal to σ′.

mk_abs : (term * term) -> term

mk_abs(x,t) evaluates to a term representing the abstraction λx. t; it fails if x is not a
variable.

There are four primitive destructor functions on terms:

dest_var : term -> (string * hol_type)
dest_const : term -> (string * hol_type)
dest_comb : term -> (term * term)
dest_abs : term -> (term * term)

These are the inverses of mk_var, mk_const, mk_comb and mk_abs, respectively. They fail
when applied to terms of the wrong form. Other useful destructor functions are rator,
rand, bvar, body, lhs and rhs. See REFERENCE for details.

The function

type_of : term -> hol_type

3.4. Quotation 47

returns the type of a term. It could be defined (recursively) in terms of the destructors
but is predefined for convenience.

Terms are printed in the form ‘ · · · ‘ using the quotation syntax described in Sec-
tion 3.4. For example, the term representing

∀x y. x < y ⇒ ∃z. x+ z = y

would be printed as:

‘!x y. x < y ==> ?z. x + z = y‘

Note that a colon is used to distinguish type quotation from term quotation; the
former have the form ‘: · · · ‘ and the latter have the form ‘ · · · ‘.

3.4 Quotation

HOL types and terms can be input to the system in two ways: by using constructor
functions, or by using quotation. The former allows some terms to be built which cannot
be constructed using quotation. For example, a term containing two variables with the
same name but different types, e.g. the term xbool = (xnum = 1), can be built only by
using constructors.

It would be tedious, however, to always have to input types and terms using the
constructor functions. The HOL system, adapting the approach taken in LCF, , has special
quotation parsers for HOL types and terms (named Type and Term, respectively) which
enables types and terms to be input using a fairly standard syntax. The HOL printer also
outputs types and terms using this syntax.

For example, the ML expression

Type ‘:bool -> bool‘

denotes exactly the same value (of ML type type) as

mk_type("fun",[mk_type("bool",[]), mk_type("bool",[])])

and

Term ‘\x.x+1‘

can be used instead of1

1In order to be processed successfully, the latter quotation (which features a numeral) requires the the-
ory of arithmetic to have already been loaded. This can be accomplished by load "arithmeticTheory".

48 Chapter 3. The HOL Logic in ML

mk_abs
(mk_var("x",mk_type("num",[])),
mk_comb
(mk_comb
(mk_const
("+",
mk_type("fun",[mk_type("num",[]),

mk_type("fun",[mk_type("num",[]),
mk_type("num",[])])])),

mk_var("x", mk_type("num",[]))),
mk_numeral (Arbnum.fromString "1")))

It should be noted that there is no explicit type information in \x.x+1. The HOL
type checker knows that 1 has type num and + has type num->(num->num). From this
information it can infer that both occurrences of x in \x.x+1 could have type num. This is
not the only possible type assignment; for example, the first occurrence of x could have
type bool and the second one have type num. In that case there would be two different
variables with name x, namely xbool and xnum, the second of which is free. In fact, as
mentioned, the only way to construct a term with this second type assignment is by
using constructors, since the type checker uses the heuristic that all variables in a term
with the same name have the same type. This is illustrated in the following session.

1- Term ‘x = (x = 1)‘;
Type inference failure: unable to infer a type for the application of

$= (x :num)

which has type

:num -> bool

to

(x :num) = (1 :num)

which has type

:bool

unification failure message: unify failed

- mk_eq
(mk_var("x",mk_type("bool",[])),
mk_eq
(mk_var("x",mk_type("num",[])),
mk_numeral (Arbnum.fromString "1")));

> val it = ‘x = x = 1‘ : term

3.4. Quotation 49

The original quotation type checker was designed and implemented by Robin Milner.
It employs heuristics like the one above to infer a sensible type for all variables occurring
in a term.

At times, the user may want to control the exact type of a subterm. To support
such functionality, types can be explicitly indicated by following any subterm with a
colon and then a type. For example, Term ‘f(x:num):bool‘ will type check with f and x

getting types num->bool and num respectively. This treatment of types within quotations
is inherited from LCF.

The type inference algorithm used for the HOL logic is almost identical to that used
for ML. For example, the ML expression fn x => x will be ascribed ML type ’a -> ’a,
and the HOL term constructed by Term ‘\x.x‘ will get an analogous type, as shown in
the session below. This session also shows that a HOL term has both an ML type (namely
hol_type) and a HOL type (: ’a -> ’a in this case).

2- Term ‘\x. x‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘\x. x‘ : term

- type_of it;
> val it = ‘:’a -> ’a‘ : hol_type

For terms of polymorphic type, i.e., terms whose types have type variables, the type
checker will invent names for the type variables (as in the above session). This is further
shown in the following session (in which we first tell the HOL printer to output type
information):

3- show_types := true;
> val it = () : unit

- Term ‘f x‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘(f :’a -> ’b) (x :’a)‘ : term

In this example, x is unconstrained in the term f x, since it appears only as an argument.
The system assigns it the type variable ’a. On the other hand, f is a function, since it is
applied to x. Thus f has a function type, the domain of which is ’a; moreover, since the
result of the application is also unconstrained, the range of the function type is chosen
to be the next type variable different from ’a, i.e., ’b.

Allowing the system to invent type variables introduces a degree of non-determinism
that may not be suitable for some applications. In such cases, explicit type constraints
should be used. The system can be prevented from inventing type variables by setting
the flag Globals.guessing_tyvars to false.

50 Chapter 3. The HOL Logic in ML

3.4.1 Overloading

A limited amount of overloading resolution is performed by the quotation parser for
terms. For example, the tilde symbol (~) denotes boolean negation in the initial theory
of HOL and it also denotes the additive inverse in the integer and real theories. If
we load the integer theory and enter an ambiguous term featuring ~, the system will
inform us that overloading resolution is being performed.

1- load "integerTheory";
> val it = () : unit

- Term ‘~~x‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘~~x‘ : term

- type_of it;
> val it = ‘:bool‘ : hol_type

A priority mechanism is used to resolve multiple possible choices. In the example,
~ could be consistently chosen to have type :bool -> bool or :int -> int, and the
mechanism has chosen the former. For finer control, explicit type constraints may be
used. In the following session, the ~~x in the first quotation has type :bool, while in the
second, a type constraint ensures that ~~x has type :int.

2- show_types := true;
> val it = () : unit

- Term ‘~(x = ~~x)‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘~((x :bool) = ~~x)‘ : term

- Term ‘~(x:int = ~~x)‘;
> val it = ‘~((x :int) = ~~x)‘ : term

Note that the symbol ~ stands for two different constants in the second quotation;
its first occurrence is boolean negation, while the other two occurrences are the ad-
ditive inverse operation for integers. For more information on how to set up and use
overloading, consult REFERENCE.

3.4.2 Antiquotation

Within a quotation, expressions of the form ^(t) (where t is an ML expression of type
term or type) are called antiquotations. An antiquotation ^(t) evaluates to the ML value
of t. For example, Term ‘x \/ ^(mk_conj(Term‘y:bool‘, Term‘z:bool‘))‘ evaluates to
the same term as Term ‘x \/ (y /\ z)‘. The most common use of antiquotation is
when the term t is just an ML variable x. In this case ^(x) can be abbreviated by ^x.

3.5. Ways to construct types and terms 51

The following session illustrates antiquotation.

1- load "arithmeticTheory";
> val it = () : unit

- val y = Term ‘x+1‘;
> val y = ‘x + 1‘ : term

val z = Term ‘y = ^y‘;
> val z = ‘y = x + 1‘ : term

- Term ‘!x:num.?y:num.^z‘;
> val it = ‘!x. ?y. y = x + 1‘ : term

Types may be antiquoted as well:

1- val pred = Type ‘:’a -> bool‘;
> val pred = ‘:’a -> bool‘ : hol_type

- Type‘:^pred -> bool‘;
> val it = ‘:(’a -> bool) -> bool‘ : hol_type

One requirement of the system is that antiquoting a type into a term quotation re-
quires the use of ty_antiq. For example,

2- Term ‘!P:^pred. P x ==> Q x‘;

! Toplevel input:
! Term ‘!P:^pred. P x ==> Q x‘;
! ^^^^
! Type clash: expression of type
! hol_type
! cannot have type
! term

- Term ‘!P:^(ty_antiq pred). P x ==> Q x‘;
> val it = ‘!P. P x ==> Q x‘ : term

3.5 Ways to construct types and terms

The table below shows ML expressions for various kinds of type quotations. The expres-
sions in the same row are equivalent.

52 Chapter 3. The HOL Logic in ML

Types

Kind of type ML quotation Constructor expression

Type variable : ’alphanum mk_vartype("’alphanum")

Type constant : op mk_type("op",[])
Function type : σ1 -> σ2 mk_type("fun", [σ1 , σ2])

Compound type :(σ1, . . . , σn)op mk_type("op", [σ1 , . . . , σn])

Equivalent ways of inputting the four primitive kinds of term are shown in the next
table.

Primitive terms

Kind of term ML quotation Constructor expression

Variable var:σ mk_var("var",σ)
Constant const:σ mk_const("const",σ)
Combination t1 t2 mk_comb(t1, t2)
Abstraction \x.t mk_abs(x, t)

3.5.1 Derived syntactic forms

The HOL quotation parser can translate various standard logical notations into primitive
terms. For example, if + has been declared an infix (as explained in Section 3.7) (as
it is when arithmeticTheory has been loaded), then ‘x+1‘ is translated to ‘$+ x 1‘.
The escape character $ suppresses the infix behaviour of + and prevents the quotation
parser getting confused. In general, $ can be used to suppress any special syntactic
behaviour a constant name might have. This is illustrated in the table below, in which
the terms in the column headed ‘ML quotation’ are translated by the quotation parser to
the corresponding terms in the column headed ‘Primitive term’. Conversely, the terms
in the latter column are always printed in the form shown in the former one. The ML
constructor expressions in the rightmost column evaluate to the same values (of type
term) as the other quotations in the same row.

3.5. Ways to construct types and terms 53

Non-primitive terms

Kind of term ML quotation Primitive term Constructor expression

Negation ~t $~ t mk_neg(t)
Disjunction t1\/t2 $\/ t1 t2 mk_disj(t1,t2)
Conjunction t1/\t2 $/\ t1 t2 mk_conj(t1,t2)
Implication t1==>t2 $==> t1 t2 mk_imp(t1,t2)
Equality t1=t2 $= t1 t2 mk_eq(t1,t2)
∀-quantification !x.t $!(\x.t) mk_forall(x,t)
∃-quantification ?x.t $?(\x.t) mk_exists(x,t)
ε-term @x.t $@(\x.t) mk_select(x,t)
Conditional (t=>t1|t2) COND t t1 t2 mk_cond(t,t1,t2)
let-expression let x=t1 in t2 LET(\x.t2)t1 mk_let(\x.t1,t2)

There are constructors, destructors and indicators for all the obvious constructs. (In-
dicators, e.g. is_neg, return truth values indicating whether or not a term belongs to
the syntax class in question.) In addition to the constructors listed in the table there
are constructors, destructors, and indicators for pairs and lists, namely mk_pair, mk_cons
and mk_list (see REFERENCE). The constants COND and LET are explained in Sections ??
and 4.3.2, respectively. The constants \/, /\, ==> and = are examples of infixes and rep-
resent ∨, ∧, ⇒ and equality, respectively. If c is declared to be an infix, then the HOL
parser will translate t1 c t2 to $c t1 t2.

The constants !, ? and @ are examples of binders and represent ∀, ∃ and ε, respectively.
If c is declared to be a binder, then the HOL parser will translate c x.t to the combination
$c(\x.t) (i.e. the application of the constant c to the representation of the abstraction
λx. t).

In addition to the kinds of terms in the tables above, the parser also supports the
following syntactic abbreviations.

Syntactic abbreviations

Abbreviated term Meaning Constructor expression

t t1 · · · tn (· · ·(t t1)· · · tn) list_mk_comb(t,[t1, . . . ,tn])
\x1 · · ·xn.t \x1. · · · \xn.t list_mk_abs([x1, . . . ,xn],t)
!x1 · · ·xn.t !x1. · · · !xn.t list_mk_forall([x1, . . . ,xn],t)
?x1 · · ·xn.t ?x1. · · · ?xn.t list_mk_exists([x1, . . . ,xn],t)

There are also constructors list_mk_conj, list_mk_disj, list_mk_imp and list_mk_pair

for conjunctions, disjunctions, implications and tuples respectively. The corresponding

54 Chapter 3. The HOL Logic in ML

destructor functions are called strip_comb, etc.,

3.6 Theorems

In Chapter 1, the notion of deduction was introduced in terms of sequents, where a
sequent is a pair whose second component is a formula being asserted (a conclusion),
and whose first component is a set of formulas (hypotheses). Based on this was the
notion of a deductive system: a set of pairs, whose second component is a sequent, and
whose first component is a sequent list2. The concept of a sequent following from a set
of sequents via a deductive system was then defined: a sequent follows from a set of
sequents if the sequent is the last element of some chain of sequents, each of whose
elements is either in the set, or itself follows from the set along with earlier elements of
the chain, via the deductive system.

A notation for ‘follows from’ was then introduced. That a sequent ({t1, . . . , tn}, t)
follows from a set of sequents ∆, via a deductive systemD, is denoted by: t1, . . . , tn `D,∆
t. (It was noted that where either D or ∆ were clear by context, their mention could be
omitted; and where the set of hypotheses was empty, its mention could be omitted.)

A sequent that follows from the empty set of sequents via a deductive system is called
a theorem of that deductive system. That is, a theorem is the last element of a proof (in
the sense of Chapter 1) from the empty set of sequents. When a pair (L, (Γ, t)) belongs
to a deductive system, and the list L is empty, then the sequent (Γ, t) is called an axiom.
Any pair (L, (Γ, t)) belonging to a deductive system is called a primitive inference of the
system, with hypotheses3 L and conclusion (Γ, t).

A formula in the abstract is represented concretely in HOL by a term whose HOL type
is ":bool". Therefore, a term of type ":bool" is used to represent a member of the set of
hypotheses of a sequent; and likewise to represent the conclusion of a sequent. Sets in
this context are represented by lists, so the set of hypotheses of a sequent is represented
by a list of ‘:bool‘-typed terms.

A theorem in the abstract is represented concretely in the HOL system by a value with
the ML abstract type thm. The type thm has a primitive destructor function

dest_thm : thm -> (term list * term)

which returns a pair consisting of the hypothesis list and the conclusion, respectively, of
a theorem. From this, two destructor functions are derived

hyp : thm -> term list
concl : thm -> term

2Note that these sequents form a list, not a set; that is, are ordered.
3Note that ‘hypotheses’ and ‘conclusion’ are also used for the components of sequents.

3.6. Theorems 55

for extracting the hypothesis list and the conclusion, respectively, of a theorem. The
ML type thm does not have a primitive constructor function. In this way, the ML type
system protects the HOL logic from the arbitrary and unrecorded construction of theo-
rems, which would compromise the consistency of the logic. (Functions which return
theorems as values, e.g. functions representing primitive inferences, are discussed first
in Section 3.9, and further in Chapter8.)

It was mentioned in Chapter 1 that the deductive system of HOL includes five axioms4.
In that Chapter, the axioms were presented in abstract form. The concrete representa-
tion of the axioms in HOL is given in Section ??. To anticipate, the axiom BOOL_CASES_AX

mentioned in Chapter 1 is printed in HOL as follows (where T and F are the HOL logic’s
constants representing truth and falsity, respectively):

|- !t. (t = T) \/ (t = F) : thm

Note the special print format, with the approximation to the abstract ` notation, |-,
used to indicate ML type thm status; as well as the absence of HOL quotation marks in
the |- context. The session below illustrates the use of the destructor functions:

1- val th = BOOL_CASES_AX;
> val th = |- !t. (t = T) \/ (t = F) : thm

- hyp th;
> val it = [] : term list

- concl th;
> val it = ‘!t. (t = T) \/ (t = F)‘ : term

- type_of it;
> val it = ‘:bool‘ : hol_type

In addition to the print conventions mentioned above, the printing of theorems prints
hypotheses as periods (i.e. full stops or dots). The flag show_assums prints theorems
with hypotheses shown in full. These points are illustrated with a theorem inferred, for
example purposes, from another axiom mentioned in Chapter 1: SELECT_AX.

1- val th = UNDISCH (SPEC_ALL SELECT_AX);
> val th = [.] |- P ($@ P) : thm

- show_assums := true;
> val it = () : unit

- th;
> val it = [P x] |- P ($@ P) : thm

4This is a simplification: the axioms are an extension of the basic logic. See Sections ?? and ??.

56 Chapter 3. The HOL Logic in ML

3.7 Theories

In Chapter 1 a theory is described as a 4-tuple

T = 〈StrucT , SigT , AxiomsT , TheoremsT 〉

where

(i) StrucT is the type structure of T ;

(ii) SigT is the signature of T ;

(iii) AxiomsT is the set of axioms of T ;

(iv) TheoremsT is the set of theorems of T .

Theories are structured hierarchically to represent sequences of extensions called seg-
ments of an initial theory (see Section 2.5) called min. A theory segment is not really a
logical concept, but rather a concept of the representation of theories in the HOL sys-
tem. Each segment records some types, constants, axioms and theorems, together with
pointers to other segments called its parents. The theory represented by a segment is
obtained by taking the union of all the types, constants, axioms and theorems in the
segment, together with the types, constants, axioms and theorems in all the segments
reachable by following pointers to parents. This collection of reachable segments is
called the ancestry of the segment.

A typical piece of work with the HOL system consists in a number of sessions. In
the first of these, a new theory, T say, is created by importing some existing theory seg-
ments, making a number of definitions, and perhaps proving and storing some theorems
in the current segment. Then the current segment (named name say) is exported. The
concrete result will be an ML module nameTheory whose contents is the current theory
segment created during the session and whose ancestry represents the desired logical
theory T . Subsequent work sessions can access the definitions and theorems of T by
importing nameTheory; this avoids having to load the tools and replay the proofs that
created nameTheory in the first place.

The naming of data in theories is based on the names given to segments. Specifi-
cally an axiom, definition, specification or theorem is accessed by an ML long identi-
fier thyTheory.name, where thy is the name of the theory segment current when the
item was declared and name is a specific name supplied by the user (see the functions
new_axiom, new_definition, below). Different items can have the same specific name
if the associated segment is different. Thus each theory segment provides a separate
namespace of ML bindings of HOL items.

Various additional pieces of information are stored in a theory segment, including the
parsing status of the constants (e.g. whether they are infixes or binders).

3.7. Theories 57

There is always a current theory which is the theory represented by the current theory
segment together with its ancestry. The name of the current theory segment is returned
by the ML function:

current_theory : unit -> string

On startup, the current theory segment of HOL is named scratch, which is an empty
theory, having the theory bool as its sole parent. This is a very simple logical setting;
for example, common types such as numbers and pairs are not present. Typically, a user
would begin by loading whatever specific logical context is required.

3.7.1 Primitive ML functions for creating theories

The ML functions for creating theories and manipulating are listed below.

new_theory : string -> unit

One creates a new theory segment by a call to new_theory. This allocates a new ‘area’
where subsequent theory operations take effect. If the current theory (thy1 say) at the
time of a call to new_theory thy2 is non-empty, i.e., has had an axiom, definition, or
theorem stored in it, then thy1 is exported before thy2 is allocated. Furthermore, thy2

will obtain thy1 as a parent. If new_theory thy is called when the current theory segment
is already named thy, then that is interpreted as a request merely to clear the current
theory segment (nothing will be exported).

A call to new_theory "name" fails if:

• name is not an alphanumeric starting with a letter.

• there is a theory already named name in the ancestry of the current segment.

• if it is necessary to export the current segment before creating the new theory and
the export attempt fails.

The current theory segment acts as a kind of scratchpad. Elements stored in the
current segment may be overwritten by subsequent additions, or deleted outright. Any
theory elements that were built from overwritten or deleted elements are now held
to be out-of-date, and will not be included in the theory when it is finally exported.
Out-of-date constants and types are detected by the HOL printer, which will print them
surrounded by odd-looking syntax to alert the user.

In contrast to the current segment, (proper) ancestor segments may not be altered.
Since HOL theories are represented by ML modules, one imports an existing theory

segment by simply importing the corresponding module.

58 Chapter 3. The HOL Logic in ML

load : string -> unit

Executing load nameTheory imports the first file named nameTheory.uo found along
the loadPath into the session. Any unloaded ancestors of name will be loaded before
loading of nameTheory continues.

new_type : int -> string -> unit

Executing new_type n "op" makes op a new n-ary type operator in the current theory.
Failure if:

(i) there already exists a type operator named op in an ancestor theory segment.

(ii) op is not an allowed name for a type.

new_constant : (string * type) -> unit

Executing new_constant("c",σ) makes cσ′ a new constant of the current theory, for all
cσ′ where σ′ is an instance of σ. The type σ is called the generic type of c. Failure if:

(i) there already exists a constant named c in an ancestor theory segment.

new_infix : (string * type) -> unit

Executing new_infix("ix",σ) declares ix to be a new constant with generic type σ and
infix status. Failure if:

(i) there already exists a constant named ix in an ancestor theory segment;

(ii) σ not of the form σ1->σ2->σ3.

new_binder : (string * type) -> unit

Executing new_binder("b",σ) declares b to be a new constant with generic type σ and
binder status. Failure if:

(i) there already exists a constant named b an ancestor theory segment;

(ii) σ not of the form (σ1->σ2)->σ3.

new_axiom : (string * term) -> thm

Executing new_axiom("name",t) declares the sequent ({},t) to be an axiom of the cur-
rent theory with name name. Failure if:

(i) t contains out-of-date constants or types.

3.7. Theories 59

Once a theorem has been proved, it can be saved with the function

save_thm : (string * thm) -> thm

Evaluating save_thm("name",th) will save the theorem th with name name in the cur-
rent theory segment.

Once a theory segment has been constructed, it can be written out to a file, which,
after compilation, can be imported into future sessions.

export_theory : unit -> unit

When export_theory is called, all out-of-date entities are removed from the cur-
rent segment. Also, the parenthood of the theory is computed. The current theory
segment is written to file nameTheory.sml in the current working directory. The file
nameTheory.sig, which documents the contents of name, is also written to the current
working directory. Notice that the exported theory is not compiled by HOL. That is left
to an external tool, Holmake, which maintains dependencies among collections of HOL
theory segments.

3.7.2 Functions for creating definitional extensions

There are three kinds of definitional extensions: constant definitions, constant specifi-
cations and type definitions.

3.7.2.1 Constant definitions

In Section 2.5.1 a constant definition over a signature ΣΩ is defined to be an equation,
i.e. a formula of the form cσ = tσ, such that:

(i) c is not the name of any constant in ΣΩ;

(ii) tσ is a closed term in TermsΣΩ
;

(iii) all the type variables occurring in tσ occur in σ.

In HOL, definitions can be slightly more general than this, in that an equation:

c v1 · · · vn = t

is allowed to be a definition where v1, . . ., vn are variable structures (i.e. tuples of
distinct variables). Such an equation is logically equivalent to:

c = λv1 · · · vn. t

which is a definition in the sense of Section 2.5.1 if (i), (ii) and (iii) hold.
The following ML function creates a new definition in the current theory.

60 Chapter 3. The HOL Logic in ML

new_definition : (string * term) -> thm

Evaluating new_definition("name", c v1 · · · vn = t), where c is not already a con-
stant, declares the sequent ({},λv1 · · · vn. t) to be a constant definition of the current
theory. The name associated with the definition in this theory is name. Failure if:

(i) c is already a constant in an ancestor current theory;

(ii) t contains free variables that are not in any of the variable structures v1, . . .,
vn (this is equivalent to requiring λv1 · · · vn. t to be a closed term);

(iii) there is a type variable in v1, . . ., vn or t that does not occur in the type of c.

3.7.2.2 Constant specifications

In Section 2.5.2 a constant specification for a theory T is defined to be a pair:

〈(c1, . . . , cn), λx1σ1
· · ·xnσn . tbool〉

such that:

(i) c1, . . ., cn are distinct names.

(ii) λx1σ1
· · ·xnσn . tbool ∈ TermsT .

(iii) tyvars(λx1σ1
· · ·xnσn . tbool) ⊆ tyvars(σi) for 1 ≤ i ≤ n.

(iv) ∃x1σ1
· · · xnσn . t ∈ TheoremsT .

The following ML function is used to make constant specifications in the HOL system.

new_specification : string -> ((string*string)list) -> thm -> thm

Evaluating:

new_specification

"name"
[flag1,"c1", . . . , "flagn","cn"]
|- ?x1 · · · xn. t[x1, . . . ,xn]

simultaneously introduces new constants named c1, . . ., cn satisfying the property:

|- t[c1, . . . ,cn]

If flagi is constant then ci is declared an ordinary constant, if it is infixl n then ci
is declared a left associative infix with binding strength n, if it is infixr n then ci is
declared a right associative infix with binding strength n, and if it is binder then ci is
declared a binder. This theorem is stored, with name name, as a definition in the current
theory segment. A call to new_specification fails if:

3.7. Theories 61

(i) the theorem argument has a non-empty assumption list;

(ii) there are free variables in the theorem argument;

(iii) c1, . . ., cn are not distinct variables;

(iv) some ci is already a constant in an ancestor theory;

(v) some ci is not an allowed name for a constant;

(vi) some flagi is not either constant, infix or binder;

(vii) the type of ci is not suitable for a constant with the syntactic status specified
by flagi;

(viii) the type of some ci does not contain all the type variables which occur in the
term \x1 · · · xn. t[x1, . . . ,xn].

3.7.2.3 Type definitions

In Section 2.5.4 it is explained that defining a new type (α1, . . . , αn)op in a theory T
consists of introducing op as a new n-ary type operator and

` ∃f(α1,...,αn)op→σ. Type Definition p f

as a new axiom, where p is a predicate characterizing a non-empty subset of an existing
type σ. Formally, a type definition for a theory T is a 3-tuple

〈σ, (α1, . . . , αn)op, pσ→bool〉

where:

(i) σ ∈ TypesT and tyvars(σ) ∈ {α1, . . . , αn}.

(ii) op is not the name of a type constant in StrucT .

(iii) p ∈ TermsT is a closed term of type σ→bool and tyvars(p) ⊆ {α1, . . . , αn}.

(iv) ∃xσ. p x ⊆ TheoremsT .

The following ML function makes a type definition in the HOL system.

new_type_definition : (string * term * thm) -> thm

If t is a term of type σ->bool containing n distinct type variables, then evaluating:

new_type_definition("op", t, |- ?x. t x)

62 Chapter 3. The HOL Logic in ML

results in op being declared as a new n-ary type operator characterized by the defini-
tional axiom:

|- ?rep. TYPE DEFINITION t rep

which is stored as a definition with the automatically generated name op_TY_DEF.. The
constant TYPE_DEFINITION is defined in the theory bool by:

|- TYPE_DEFINITION (P:*->bool) (rep:**->*) =
(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\
(!x. P x = (?x’. x = rep x’))

Executing new_type_definition("op", t, |- ?x. t x) fails if:

(i) op is already the name of a type or type operator in an ancestor theory;

(ii) t does not have a type of the form σ->bool.

3.7.2.4 Defining bijections

The result of a type definition using new_type_definition is a theorem which asserts
only the existence of a bijection from the type it defines to the corresponding subset
of an existing type. To introduce constants that in fact denote such a bijection and its
inverse, the following ML function is provided:

define_new_type_bijections : string -> string -> string -> thm -> thm

This function takes three string arguments and a theorem argument. The theorem
argument must be a definitional axiom of the form returned by new_type_definition.
The first string argument is the name under which the constant definition (a constant
specification, in fact) made by define_new_type_bijections will be stored in the current
theory segment, and the second and third string arguments are user-specified names for
the two constants that are to be defined. These constants are defined so as to denote
mutually inverse bijections between the defined type, whose definition is given by the
supplied theorem, and the representing type of this defined type.

Evaluating:

define new type bijections "name" "abs" "rep"
|- ?rep:newty->ty. TYPE DEFINITION P rep

automatically defines two new constants abs:ty->newty and rep:ty->newty such that:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

3.7. Theories 63

This theorem, which is the defining property for the constants abs and rep, is stored
under the name ”name” in the current theory segment. It is also the value returned
by define_new_type_bijections. The theorem states that abs is the left inverse of rep
and—for values satisfying P—that rep is the left inverse of abs.

A call to define_new_type_bijections name abs rep th fails if:

(i) either abs or rep is already the name of a constant in an ancestor theory;

(ii) th is not a theorem of the form returned by new_type_definition.

3.7.2.5 Properties of type bijections

The following ML functions are provided for proving that the bijections introduced by
define_new_type_isomorphisms are injective (one-to-one) and surjective (onto):

prove_rep_fn_one_one : thm -> thm
prove_rep_fn_onto : thm -> thm
prove_abs_fn_one_one : thm -> thm
prove_abs_fn_onto : thm -> thm

The theorem argument to each of these functions must be a theorem of the form re-
turned by define_new_type_bijections:

|- (!a. abs(rep a) = a) /\ (!r. P r = (rep(abs r) = r))

If th is a theorem of this form, then evaluating prove_rep_fn_one_one th proves that the
function rep is one-to-one, and returns the theorem:

|- !a a’. (rep a = rep a’) = (a = a’)

Likewise, prove_rep_fn_onto th proves that rep is onto the set of values that satisfy P :

|- !r. P r = (?a. r = rep a)

Evaluating prove_abs_fn_one_one th proves that abs is one-to-one for values that satisfy
P , and returns the theorem:

|- !r r’. P r ==> P r’ ==> ((abs r = abs r’) = (r = r’))

And evaluating prove_abs_fn_onto th proves that abs is onto, returning the theorem:

|- !a. ?r. (a = abs r) /\ P r

All four functions will fail if applied to any theorem that does not have the form of a the-
orem returned by define_new_type_bijections. None of these functions saves anything
in the current theory.

64 Chapter 3. The HOL Logic in ML

3.7.3 ML functions for accessing theories

The arguments of ML type string to new_axiom, new_definition etc. are the names of the
corresponding axioms and definitions. These names are used when accessing theories
with the functions axiom, definition, etc., described below.

The current theory can be extended by adding new parents, types, constants, axioms
and definitions. Theories that are in the ancestry of the current theory cannot be ex-
tended in this way; they can be thought of as frozen.

There are various functions for loading the contents of theory files:

parents : string -> string list
types : string -> (int * string) list
constants : string -> term list
infixes : string -> term list
binders : string -> term list
axioms : string -> (string * thm) list
definitions : string -> (string * thm) list
theorems : string -> (string * thm) list

The first argument is the name of a theory (which must be in the ancestry of the current
theory segment); the result is a list of the components of the theory. The name of the
current theory can be abbreviated by ‘-‘. For example, parents ‘-‘ returns the parents
of the current theory.

In the case of types a list of arity-name pairs is returned; in the case of axioms,
definitions or theorems a list of string-theorem pairs is returned, where the string is the
name of the theorem representing the axiom, definition or theorem that was supplied
by the user. Note that constant specifications and type definitions are both retrieved
using the function definitions.

Individual axioms, definitions and theorems can be read from the current theory using
the following ML functions:

axiom : string -> thm
definition : string -> thm
theorem : string -> thm

The first argument is the user supplied name of the axiom, definition or theorem in the
current theory.

The contents of the current theory can be printed in a readable format using the
function print_theory.

3.8 The theory min

The theory min declares the type constant bool of booleans, the binary type operator fun
of functions, and the type constant ind of individuals. Building on this, three primitive
constants are declared in the theory min: equality, implication, and a choice operator.

3.9. Primitive rules of inference of the HOL Logic 65

Equality ($= : ’a -> ’a -> bool) parses as an infix with low binding precedence
(100).

Implication ($==> : bool -> bool -> bool) parses as a right-associative infix with
binding precedence 200.

Equality and implication are standard predicate calculus notions, but choice is more
exotic: if t is a term having type σ->bool, then @x.t x (or, equivalently, $@t) denotes
some member of the set whose characteristic function is t. If the set is empty, then @x.t x

denotes an arbitrary member of the set denoted by σ. The constant @ is a higher order
version of Hilbert’s ε-operator; it is related to the constant ι in Church’s formulation of
higher order logic. For more details, see Church’s original paper [?], Leisenring’s book
on Hilbert’s ε-symbol [?], or Andrews’ textbook on type theory [?].

3.9 Primitive rules of inference of the HOL Logic

The primitive rules of inference of the logic were described abstractly in Section 2.3.1.
The descriptions relied on meta-variables t, t1, t2, and so on. In the HOL logic, infinite
families of primitive inferences are grouped together and thought of as single primitive
inference schemes. Each family contains all the concrete instances of one particular
inference ‘pattern’. These can be produced, in abstract form, by instantiating the meta-
variables in Section 2.3.1 to concrete terms.

In HOL, primitive inference schemes are represented by ML functions that return the-
orems as values. That is, for particular HOL terms, the ML functions return the instance
of the theorem at those terms. The ML functions are part of the ML abstract type thm:
although thm has no primitive constructors, it has (eight) operations which return theo-
rems as values: ASSUME, REFL, BETA_CONV, SUBST, ABS, INST_TYPE, DISCH and MP.

The ML functions that implement the primitive inference schemes in the HOL system
are described below. The same notation is used here as in Section 2.3.1: hypotheses
above a horizontal line and conclusion beneath. The machine-readable ASCII notation
is used for the logical constants.

3.9.1 Assumption introduction

ASSUME : term -> thm

t |- t

ASSUME t evaluates to t|- t. Failure if t is not of type bool.

66 Chapter 3. The HOL Logic in ML

3.9.2 Reflexivity

REFL : term -> thm

|- t = t

REFL t evaluates to |- t = t. A call to REFL never fails.

3.9.3 Beta-conversion

BETA_CONV : term -> thm

|- (\x.t1)t2 = t1[t2/x]

• where t1[t2/x] denotes the result of substituting t2 for x in t1, with suitable renam-
ing of variables to prevent free variables in t2 becoming bound after substitution.
The substitution t1[t2/x] is always defined.

BETA_CONV (\x.t1)t2 evaluates to the theorem |- (\x.t1)t2 = t1[t2/x]. Failure if the ar-
gument to BETA_CONV is not a β-redex (i.e. is not of the form (\x.t1)t2).

3.9.4 Substitution

SUBST : (thm * term)list -> term -> thm -> thm

Γ1 |- t1=t
′
1 · · · Γn |- tn=t

′
n Γ |- t[t1, . . . , tn]

Γ1 ∪ · · · ∪ Γn ∪ Γ |- t[t′1, . . . , t
′
n]

• where t[t1, . . . , tn] denotes a term t with some free occurrences of the terms t1, . . .,
tn singled out and t[t′1, . . . , t

′
n] denotes the result of simultaneously replacing each

such occurrences of ti by t′i (for 1≤i≤n), with suitable renaming of variables to
prevent free variables in t′i becoming bound after substitution.

The first argument to SUBST is a list [(|-t1=t
′
1, x1); . . . ;(|-tn= t

′
n, xn)]. The second

argument is a template term t[x1, . . . , xn] in which occurrences of the variable xi (where
1 ≤ i ≤ n) are used to mark the places where substitutions with |- ti=t

′
i are to be done.

Thus

SUBST [(|-t1=t
′
1, x1);. . .;(|-tn= t

′
n, xn)] t[x1, . . . , xn] Γ |- t[t1, . . . , tn]

returns Γ |- t[t′1, . . . , t
′
n]. Failure if:

(i) any of the arguments are of the wrong form;

(ii) the type of xi is not equal to the type of ti for some 1 ≤ i ≤ n.

3.9. Primitive rules of inference of the HOL Logic 67

3.9.5 Abstraction

ABS : term -> thm -> thm

Γ |- t1 = t2
Γ |- (\x.t1) = (\x.t2)

• where x is not free in Γ.

ABS x Γ |- t1=t2 returns the theorem Γ |- (\x.t1) = (\x.t2). Failure if x is not a vari-
able, or x occurs free in any assumption in Γ.

3.9.6 Type instantiation

INST_TYPE : (type*type) list -> thm -> thm

Γ |- t
Γ |- t[σ1, . . . , σn/α1, . . . , αn]

• t[σ1, . . . , σn/α1, . . . , αn] denotes the result of substituting (in parallel) the types
σ1, . . . , σn for the type variables α1, . . . , αn in t, with the restriction that none of
α1, . . . , αn occur in Γ.

INST_TYPE[(σ1,α1);. . .;(σn,αn)] th returns the result of instantiating each occurrence
of αi in the theorem th to σi (for 1 ≤ i ≤ n). Failure if:

(i) arguments of the wrong form (e.g. an αi is not a type variable);

(ii) αi (for 1 ≤ i ≤ n) occurs in any assumption in Γ.

3.9.7 Discharging an assumption

DISCH : term -> thm -> thm

Γ |- t2
Γ−{t1} |- t1 ==> t2

• Γ−{t1} denotes the set obtained by removing t1 from Γ (note that t1 need not
occur in Γ; in this case Γ−{t1} = Γ).

DISCH t1 Γ |- t2 evaluates to the theorem Γ−{t1} |- t1 ==> t2. DISCH fails if the term
given as its first argument is not of type bool.

68 Chapter 3. The HOL Logic in ML

3.9.8 Modus Ponens

MP : thm -> thm -> thm

Γ1 |- t1 ==> t2 Γ2 |- t1
Γ1 ∪ Γ2 |- t2

MP takes two theorems (in the order shown above) and returns the result of applying
Modus Ponens; it fails if the arguments are not of the right form.

3.10 Oracles

hol98 extends the LCF tradition by allowing the use of an oracle mechanism, enabling
arbitrary formulas to become elements of the thm type. By use of this mechanism, hol98

can utilize the results of arbitrary proof procedures. In spite of such liberalness, one can
still make strong assertions about the security of ML objects of type thm.

To avoid unsoundness, a tag is attached to any theorem coming from an oracle. This
tag is propagated through every inference that the theorem participates in (much as
ordinary assumptions are propagated in the inference rule MP). If it happens that falsity
becomes derived, the offending oracle can be found by examining the tags component
of the theorem. A theorem proved without use of any oracle will have an empty tag,
and can thus be considered to have been proved solely by deductive steps in the HOL
logic.

A tagged theorem can be created via

mk_oracle_thm : tag -> term list * term -> thm

which directly creates the requested theorem and attaches the given tag to it. Tags
may be created with

Tag.read : string -> tag.

As well as providing principled access to the results of external reasoners, tags are
used to implement some useful ‘system’ operations on theorems. For example, one can
directly create a theorem via the function mk_thm. The tag MK_THM gets attached to each
theorem created with this call. This allows users to directly create useful theorems, e.g.,
to use as test data for derived rules of inference. Another tag is used to implement
so-called ‘validity checking’ for tactics.

The tags in a theorem can be viewed by setting Globals.show_tags to true.

1- Globals.show_tags := true;
> val it = () : unit

- mk_thm([], Term ‘F‘);;
> val it = [oracles: MK_THM] [axioms:] [] |- F : thm

3.11. The theory bool 69

There are three elements to the left of the turnstile in the fully printed representation
of a theorem: the first two5 comprise the tags component and the third is the standard
assumption list. The tag component of a theorem can be extracted by

Thm.tag : thm -> tag

and prettyprinted by

Tag.pp : ppstream -> tag -> unit.

3.11 The theory bool

At start-up, the initial theory for users of the HOL system is called bool, which is con-
structed when the HOL system is built. The theory bool contains the five axioms for
higher order logic. These axioms, together with the rules of inference described in
Section 3.9, constitute the core of the HOL logic. Because of the way the HOL system
evolved from LCF,6 the particular axiomatization of higher order logic it uses differs
from the classical axiomatization due to Church [?]. The biggest difference is that in
Church’s formulation type variables are in the meta-language, whereas in the HOL logic
they are part of the object language.

The logical constants T (truth), F (falsity), ~ (negation), /\ (conjunction), \/ (dis-
junction), ! (universal quantification), ? (existential quantification) and ?! (unique ex-
istence quantifier) can all be defined in terms of equality, implication and choice. The
definitions listed below are fairly standard; each one is preceded by its ML name. (Later
definitions sometimes use earlier ones.)

T_DEF |- T = ((\x:bool. x) = (\x. x))

FORALL_DEF |- $! = \P:’a->bool. P = (\x. T)

EXISTS_DEF |- $? = \P:’a->bool. P($@ P)

AND_DEF |- $/\ = \t1 t2. !t. (t1 ==> t2 ==> t) ==> t

OR_DEF |- $\/ = \t1 t2. !t. (t1 ==> t) ==> (t2 ==> t) ==> t

F_DEF |- F = !t. t

NOT_DEF |- $~ = \t. t ==> F

EXISTS_UNIQUE_DEF |- $?! = (\P. $? P /\ (!x y. P x /\ P y ==> (x = y)))

5Tags are also used for tracking the use of axioms in proofs.
6To simplify the porting of the LCF theorem-proving tools to the HOL system, the HOL logic was made

as like PPλ (the logic built-in to LCF) as possible.

70 Chapter 3. The HOL Logic in ML

There are five axioms in the theory bool; the first four are the following:

BOOL_CASES_AX |- !t. (t = T) \/ (t = F)

IMP_ANTISYM_AX |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)

ETA_AX |- !t. (\x. t x) = t

SELECT_AX |- !P:’a->bool x. P x ==> P($@ P)

The fifth and last axiom of the HOL logic is the Axiom of Infinity. Its statement is phrased
in terms of the function properties ONE_ONE and ONTO. The definitions are:

ONE_ONE_DEF |- ONE_ONE f = (!x1 x2. (f x1 = f x2) ==> (x1 = x2))

ONTO_DEF |- ONTO f = (!y. ?x. y = f x)

The Axiom of Infinity is

INFINITY_AX |- ?f:ind->ind. ONE_ONE f /\ ~(ONTO f)

This asserts that there exists a one-to-one map from ind to itself that is not onto. This
implies that the type ind denotes an infinite set.

The four other axioms of the theory bool, the rules of inference in Section 3.9 and
the Axiom of Infinity are, together, sufficient for developing all of standard mathemat-
ics. Thus, in principle, the user of the HOL system should never need to make a non-
definitional theory. In practice, it is often very tempting to take the risk of introducing
new axioms because deriving them from definitions can be tedious—proving that ‘ax-
ioms’ follow from definitions amounts to proving their consistency.

The theory bool also supplies the definitions of a number of useful constants.

LET_DEF |- LET = \f x. f x

COND_DEF |- COND = \t t1 t2.@x.((t=T)==>(x=t1))/\((t=F)==>(x=t2))

ARB_DEF |- ARB = @x. T

The constant LET is used in representing terms containing local variable bindings (i.e.
let-terms. For example, the concrete syntax let v = M in N is translated by the parser
to the term LET (\v.N) M. For the full description of how let expressions are translated,
see Section 4.3.

The constant COND is used in representing conditional expressions. The concrete
syntax ‘if t1 then t2 else t3‘ abbreviates the application COND t1 t2 t3. The syntax
t1 => t2 | t3 is also permitted. The system alway prints out conditionals in the ”if t1 then
t2 else t3” form.

3.11. The theory bool 71

The polymorphic constant ARB is used to denote a fixed but arbitrary element in a
type, which is occasionally useful when attempting to deal with the issue of partiality.

A large number of theorems involving the logical constants are pre-proved in the
theory bool. The following are only a selection.

BOTH_EXISTS_AND_THM |- !P Q. (?x. P /\ Q) = (?x. P) /\ ?x. Q

BOTH_EXISTS_IMP_THM |- !P Q. (?x. P ==> Q) = (!x. P) ==> ?x. Q

BOTH_FORALL_IMP_THM |- !P Q. (!x. P ==> Q) = (?x. P) ==> !x. Q

BOTH_FORALL_OR_THM |- !P Q. (!x. P \/ Q) = (!x. P) \/ !x. Q

COND_ABS |- !b f g. (\x. (if b then f x else g x)) = if b then f else g

COND_EXPAND |- !b t1 t2. (if b then t1 else t2) = (~b \/ t1) /\ (b \/ t2)

COND_ID |- !b t. (if b then t else t) = t

COND_RAND |- !f b x y. f (if b then x else y) = if b then f x else f y

COND_RATOR |- !b f g x. (if b then f else g) x = if b then f x else g x

DE_MORGAN_THM |- !A B. (~(A /\ B) = ~A \/ ~B) /\ (~(A \/ B) = ~A /\ ~B)

ETA_THM |- !M. (\x. M x) = M

EXISTS_OR_THM |- !P Q. (?x. P x \/ Q x) = (?x. P x) \/ ?x. Q x

FORALL_AND_THM |- !P Q. (!x. P x /\ Q x) = (!x. P x) /\ !x. Q x

LEFT_AND_FORALL_THM |- !P Q. (!x. P x) /\ Q = !x. P x /\ Q

LEFT_EXISTS_AND_THM |- !P Q. (?x. P x /\ Q) = (?x. P x) /\ Q

LEFT_EXISTS_IMP_THM |- !P Q. (?x. P x ==> Q) = (!x. P x) ==> Q

LEFT_FORALL_IMP_THM |- !P Q. (!x. P x ==> Q) = (?x. P x) ==> Q

LEFT_FORALL_OR_THM |- !Q P. (!x. P x \/ Q) = (!x. P x) \/ Q

LEFT_OR_EXISTS_THM |- !P Q. (?x. P x) \/ Q = ?x. P x \/ Q

NOT_EXISTS_THM |- !P. ~(?x. P x) = !x. ~P x

NOT_FORALL_THM |- !P. ~(!x. P x) = ?x. ~P x

72 Chapter 3. The HOL Logic in ML

RIGHT_AND_FORALL_THM |- !P Q. P /\ (!x. Q x) = !x. P /\ Q x

RIGHT_AND_OVER_OR |- !A B C. (B \/ C) /\ A = B /\ A \/ C /\ A

RIGHT_EXISTS_AND_THM |- !P Q. (?x. P /\ Q x) = P /\ ?x. Q x

RIGHT_EXISTS_IMP_THM |- !P Q. (?x. P ==> Q x) = P ==> ?x. Q x

RIGHT_FORALL_IMP_THM |- !P Q. (!x. P ==> Q x) = P ==> !x. Q x

RIGHT_FORALL_OR_THM |- !P Q. (!x. P \/ Q x) = P \/ !x. Q x

RIGHT_OR_EXISTS_THM |- !P Q. (?x. P ==> Q x) = P ==> ?x. Q x

RIGHT_FORALL_IMP_THM |- !P Q. (!x. P ==> Q x) = P ==> !x. Q x

RIGHT_FORALL_OR_THM |- !P Q. (!x. P \/ Q x) = P \/ !x. Q x

RIGHT_OR_EXISTS_THM |- !P Q. P \/ (?x. Q x) = ?x. P \/ Q x

SELECT_REFL |- !x. (@y. y = x) = x

SELECT_UNIQUE |- !P x. (!y. P y = y = x) ==> ($@ P = x)

Chapter 4

Commonly-used Theories

A useful subset of the collection of theories distributed with the HOL system is listed in
Table ??.
In the rest of this section, each of these theories is briefly described. A complete list
of all the definitions and theorems in each theory is not given here; the sections that
follow provide only an overview of the contents of each theory. For a complete list of
all the built-in axioms, definitions and theorems in HOL, see REFERENCE.

minTheory the origin theory
boolTheory definitions of logical operators and basic axioms
combinTheory combinators
pairTheory theory of pairs
sumTheory disjoint sums
relationTheory transitive closure and wellfoundedness
numTheory Peano’s axioms derived from the axiom of infinity
prim recTheory, the primitive recursion theorem
arithmeticTheory Peano arithmetic development
numeralTheory numerals
integerTheory integers
setTheory sets as a separate type (includes finite sets)
pred setTheory sets as predicates (includes finite sets)
bagTheory bags (also known as multisets)
listTheory lists
rich listTheory extended theory of lists
optionTheory the option type
finite mapTheory finite functions
ltreeTheory polymorphic finitely branching trees
restr binderTheory definitions of binder restrictions
res quanTheory restricted quantifier support
asciiTheory ascii
stringTheory strings
wordTheory (plus several others) theory of bitstrings
realTheory (plus several others) real numbers and analysis

Table 4.1: Commonly-used Theories

73

74 Chapter 4. Commonly-used Theories

4.1 Combinators and the theory combin

The theory combin contains the definitions of function composition (infixed o) and the
combinators S, K and I.

o_DEF |- !f g. f o g = (\x. f(g x))

K_DEF |- K = (\x y. x)

S_DEF |- S = (\f g x. f x(g x))

I_DEF |- I = S K K

The following elementary properties are pre-proved in the theory combin:

o_THM |- !f g x. (f o g)x = f(g x)

o_ASSOC |- !f g h. f o (g o h) = (f o g) o h

K_THM |- !x y. K x y = x

S_THM |- !f g x. S f g x = f x (g x)

I_THM |- !x. I x = x

I_o_ID |- !f. (I o f = f) /\ (f o I = f)

Having the symbols o, S, K and I as built-in constants is sometimes inconvenient
because they are often wanted as mnemonic names for variables (e.g. S to range over
sets and o to range over outputs). Variables (though not constants) with these names
can be used in the current system if o, S, K and I are first hidden (see Section 6.4).

4.2 The theory relation

Mathematical relations can be represented in HOL by the type :’a -> ’b -> bool. The
theory relation is intended to suppport this view of relations, but does not as yet pro-
vide a well-rounded collection of definitions; indeed, it is common to treat relations
directly. For example, R1 ⊆ R2 can be phrased as !x y. R1 x y ==> R2 x y. The theory
relation currently provides definitions and theorems about the transitive closure of a
relation and for wellfounded relations.

4.3. Pairs and the type prod 75

TC_DEF |- !R a b.
TC R a b =

!P.
(!x y. R x y ==> P x y) /\
(!x y z. P x y /\ P y z ==> P x z)
==>

P a b

WF_DEF |- !R. WF R = !B. (?w. B w) ==> ?min. B min /\ !b. R b min ==> ~B b

Wellfoundedness is used to justify the principle of wellfounded induction and also a
general recursion theorem. The statement of the recursion theorem requires that the
notion of a function restriction be defined as well.

WF_INDUCTION_THM
|- !R:’a->’a->bool.

WF R
==> !P. (!x. (!y. R y x ==> P y) ==> P x)
==> !x. P x

RESTRICT_DEF |- !f R x. RESTRICT f R x = \y. if R y x then f y else ARB

WFREC_COROLLARY
|- !M R f. (f = WFREC R M) ==> WF R ==> !x. f x = M (RESTRICT f R x) x

WF_RECURSION_THM |- !R. WF R ==> !M. ?!f. !x. f x = M (RESTRICT f R x) x

The theorems WF_INDUCTION_THM and WFREC_COROLLARY are used to automate recursive
definitions. A few basic combinators for wellfounded relations are also provided in this
theory.

Empty_def |- !x y. Empty x y = F

inv_image_def |- !R f. inv_image R f = \x y. R (f x) (f y)

WF_Empty |- WF Empty

WF_SUBSET |- !R P. WF R /\ (!x y. P x y ==> R x y) ==> WF P

WF_TC |- !R. WF R ==> WF (TC R)

WF_inv_image |- !R f. WF R ==> WF (inv_image R f)

4.3 Pairs and the type prod

The Cartesian product type operator prod is defined in the theory pair. Values of type
(σ1,σ2)prod are ordered pairs whose first component has type σ1 and whose second

76 Chapter 4. Commonly-used Theories

component has type σ2. The HOL parser converts type expressions of the form ‘:σ1#σ2‘

into (σ1,σ2)prod, and the printer inverts this transformation. Pairs are constructed with
an infixed comma symbol

$, : ’a -> ’b -> ’a # ’b

so, for example, if t1 and t2 have types σ1 and σ2 respectively, then t1,t2 is a term with
type σ1#σ2. It is usual, but not necessary, to write pairs within brackets: (t1,t2). The
comma symbol associates to the right, so that (t1,t2,. . .,tn) means (t1,(t2,. . .,tn)).

Cartesian products are defined by representing a pair (t1,t2) by the function

\a b. (a=t1) /\ (b=t2)

The representing type of σ1#σ2 is thus σ1->σ2->bool. To define pairs this way, the con-
stants MK_PAIR and IS_PAIR are first defined.

MK_PAIR_DEF |- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y))

IS_PAIR_DEF |- !p. IS_PAIR p = (?x y. p = MK_PAIR x y)

From these two definitions it is easy to prove that:

|- ?p:’a->’b->bool. IS_PAIR p

since |- IS_PAIR(MK_PAIR x y) follows easily from the definition of IS_PAIR. The exis-
tence theorem shown above is called PAIR_EXISTS. Given this theorem, the type operator
prod is defined by evaluating:

new_type_definition(‘prod‘, "IS_PAIR:(*->**->bool)->bool", PAIR_EXISTS)

which results in the definitional axiom prod_TY_DEF shown below being asserted in the
theory bool.

prod_TY_DEF |- ?rep. TYPE_DEFINITION IS_PAIR rep

Next, a new constant REP_prod is defined, which maps a pair to its representation as
a function:

REP_prod |- REP_prod =
(@rep : ’a # ’b -> ’a -> ’b -> bool.

(!p’ p’’. (rep p’ = rep p’’) ==> (p’ = p’’)) /\
(!p. IS_PAIR p = (?p’. p = rep p’)))

The infix constructor ‘,’ and the selectors FST:’a#’b->’a and SND:’a#’b->’b are then
defined by the equations shown below.

4.3. Pairs and the type prod 77

COMMA_DEF |- !x y. x,y = (@p. REP_prod p = MK_PAIR x y)

FST_DEF |- !p. FST p = (@x. ?y. MK_PAIR x y = REP_prod p)

SND_DEF |- !p. SND p = (@y. ?x. MK_PAIR x y = REP_prod p)

The following standard theorems about pairs follow easily from these definitions and
the axiom prod_TY_DEF.

PAIR |- !x. (FST x,SND x) = x

FST |- !x y. FST(x,y) = x

SND |- !x y. SND(x,y) = y

PAIR_EQ |- (x,y = a,b) = (x = a) /\ (y = b)

4.3.1 Paired abstractions

The quotation parser will convert1 \(x1,x2).t to UNCURRY(\x1 x2.t), where the constant
UNCURRY is defined by:

UNCURRY f (x,y) = f x y

The transformation is done recursively so that, for example,

\(x1,x2,x3).t

is converted to

UNCURRY \x1.UNCURRY(\x2,x3.t))

More generally, the quotation parser repeatedly applies the transformation:

\(v1,v2).t ; UNCURRY(\v1.\v2.t)

until no more variable structures remain. For example:

\(x,y).t ; UNCURRY(\x y.t)
\(x1,x2,. . .,xn).t ; UNCURRY(\x1.\(x2,. . .,xn).t)
\((x1,. . .,xn),y1,. . .,ym).t ; UNCURRY(\(x1,. . .,xn).\(y1,. . .,ym).t)

1Only when the theory of pairs is loaded.

78 Chapter 4. Commonly-used Theories

Note that a variable structure like (x,y) in \(x,y).x+y is not a subterm of the abstrac-
tion in which it occurs; it disappears on parsing. This can lead to unexpected errors
(accompanied by obscure error messages). For example:

2- Term ‘\(x,y).x+y‘;
> val it = ‘\(x,y). x + y‘ : term

- val p = Term ‘(x:num,y:num)‘;
> val p = ‘(x,y)‘ : term

- Lib.try Term ‘\^p.x+y‘;

Exception raised at Term.dest_var:
not a var
! Uncaught exception:
! HOL_ERR <poly>

If b is a binder, then b(x1,x2).t is parsed as b(\(x1,x2).t), and hence transformed
as above. For example, !(x,y).x>y parses to $!(UNCURRY(\x.\y.$> x y)) (where > is an
infixed constant of the theory arithmetic meaning ‘is greater than’).

Applications of paired abstraction to tuples can be β-reduced using PAIRED_BETA_CONV

(see Section 9.3.1).

4.3.2 let-terms

The quotation parser accepts let-terms superficially similar to those in ML. For example,
the following terms are allowed:

let x = 1 and y = 2 in x+y

let f(x,y) = (x*x)+(y*y) and a = 20*20 and b = 50*49 in f(a,b)

let-terms are actually abbreviations for ordinary terms which are specially supported
by the parser and pretty printer. The constant LET is defined (in the theory bool) by:

LET = (\f x. f x)

and is used to encode let-terms in the logic. The parser repeatedly applies the transfor-
mations:

let f v1 . . . vn = t1 in t2 ; LET(\f.t2)(\v1 . . . vn.t1)
let (v1,. . .,vn) = t1 in t2 ; LET(\(v1,. . .,vn).t2)t1
let v1=t1 and . . . and vn=tn in t ; LET(. . .(LET(LET(\v1 . . . vn.t)t1)t2). . .)tn

The underlying structure of the term can be seen by applying destrucor operations. For
example:

4.4. Disjoint sums 79

1- Term ‘let x = 1 and y = 2 in x+y‘;
> val it = ‘let x = 1 and y = 2 in x + y‘ : term

- dest_comb it;
> val it = (‘LET (LET (\x y. x + y) 1)‘, ‘2‘) : term * term

- Term ‘let (x,y) = (1,2) in x+y‘;
> val it = ‘let (x,y) = (1,2) in x + y‘ : Term.term

- dest_comb it;
> val it = (‘LET (\(x,y). x + y)‘, ‘(1,2)‘) : Term.term * Term.term

The reader is recommended to convince himself or herself that the translations of
let-terms represent the intuitive meaning suggested by the surface syntax.
let-terms can be simplified with let_CONV – see Section 9.3.4.

4.4 Disjoint sums

The theory sum defines the binary disjoint union type operator sum. A type (σ1,σ2)sum

denotes the disjoint union of types σ1 and σ2. The type operator sum can be defined just
as prod was, but the details are omitted here.2 The HOL parser converts ":σ1+σ2" into
(σ1,σ2)sum, and the printer inverts this.

The standard operations on sums are:

INL : ’a -> ’a + ’b
INR : ’b -> ’a + ’b
ISL : ’a + ’b -> bool
ISR : ’a + ’b -> bool
OUTL : ’a + ’b -> ’a
OUTR : ’a + ’b -> ’b

These are all defined as constants in the theory sum. The constants INL and INR in-
ject into the left and right summands, respectively. The constants ISL and ISR test for
membership of the left and right summands, respectively. The constants OUTL and OUTR

project from a sum to the left and right summands, respectively.
The following two theorems, which are minor variants of each other, are pre-proved

in the built-in theory sum. Each one, on its own, provides a complete and abstract
characterization of the disjoint sum type.

sum_axiom |- !f g. ?! h. (h o INL = f) /\ (h o INR = g)

sum_Axiom = |- !f g. ?! h. (!x. h(INL x) = f x) /\ (!x. h(INR x) = g x)

2The definition of disjoint unions in the HOL system is due to Tom Melham. The technical details of
this definition can be found in [?].

80 Chapter 4. Commonly-used Theories

Also provided as built-in, are the following theorems having to do with the discriminator
functions ISL and ISR:

ISL |- (!x. ISL(INL x)) /\ (!y. ~ISL(INR y))

ISR |- (!x. ISR(INR x)) /\ (!y. ~ISR(INL y))

ISL_OR_ISR |- !x. ISL x \/ ISR x

The sum theory also provides the following built-in theorems:

OUTL |- !x. OUTL(INL x) = x

OUTR |- !x. OUTR(INR x) = x

INL |- !x. ISL x ==> (INL(OUTL x) = x)

INR |- !x. ISR x ==> (INR(OUTR x) = x)

which describe the projection functions OUTL and OUTR.

4.5 The theory one

The theory one defines the type one which contains one element. The constant one is
specified to denote this element. The pre-proved theorems in the theory one are:

one_axiom |- !(f:’a->one) (g:’a -> one). f = g
one |- !(v:one). v = one
one_Axiom |- !(e:’a). ?!(fn:one->’a). fn one = e

These three theorems are equivalent characterizations of the type with only one value.
The theory one is typically used in constructing more elaborate types.

4.6 Natural numbers

The natural numbers are developed in a series of theories. First, the type of numbers
is defined from the Axiom of Infinity, and Peano’s axioms are derived. Then the prim-
itive recursion theorem is proved. Based on that, a large theory treating the standard
arithmetic operations is developed. Lastly, a theory of numerals is provided.

4.6. Natural numbers 81

4.6.1 The theory num

The theory num defines the type num of natural numbers to be isomorphic to a countable
subset of the primitive type ind. In this theory, the constants 0 and SUC (the successor
function) are defined and Peano’s axioms pre-proved in the form:

NOT_SUC |- !n. ~(SUC n = 0)
INV_SUC |- !m n. (SUC m = SUC n) ==> (m = n)
INDUCTION |- !P. P 0 /\ (!n. P n ==> P(SUC n)) ==> (!n. P n)

In higher order logic, Peano’s axioms are sufficient for developing number theory
because addition and multiplication can be defined. In first order logic these must be
taken as primitive. Note also that INDUCTION could not be stated as a single axiom in
first order logic because predicates (e.g. P) cannot be quantified.

Uses of the theorem INDUCTION are supported by the tactic numLib.INDUCT_TAC (see the
documentation in REFERENCE for details).

4.6.2 The theory prim rec

In classical logic, unlike domain theory logics such as PPλ, arbitrary recursive definitions
are not allowed. For example, there is no function f (of type num->num) such that

!x. f x = (f x) + 1

Certain restricted forms of recursive definition do, however, uniquely define functions.
An important example are the primitive recursive functions.3 For any x and f the primi-
tive recursion theorem tells us that there is a unique function fn such that:

fn 0 = x) /\ (!n.fn(SUC n) = f (fn n) n)

The primitive recursion theorem follows from Peano’s axioms. When the HOL system
is built, the following theorem is proved and stored in the theory prim_rec:

num_Axiom |- !x f. ?!fn. (fn 0 = x) /\ (!n. fn(SUC n) = f (fn n) n)

The theorem states the validity of primitive recursive definitions on the natural num-
bers: for any x and f there exists a corresponding total function fn which satisfies the
primitive recursive definition whose form is determined by x and f.

3In higher order logic, primitive recursion is much more powerful than in first order logic; for example,
Ackermann’s function can be defined by primitive recursion in higher order logic.

82 Chapter 4. Commonly-used Theories

4.6.2.1 Primitive recursive definitions

The primitive recursion theorem can be used to justify any definition of a function on the
natural numbers by primitive recursion. For example, a primitive recursive definition in
higher order logic of the form

fun 0 x1 . . . xi = f1[x1, . . . , xi]
fun (SUC n) x1 . . . xi = f2[fun n t1 . . . ti, n, x1, . . . , xi]

where all the free variables in the terms t1, . . . , ti are contained in {n, x1, . . . , xi}, is
logically equivalent to:

fun 0 = \x1 . . . xi.f1[x1, . . . , xi]
fun (SUC n) = \x1 . . . xi.f2[fun n t1 . . . ti, n,x1, . . . , xi]

= (\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi]) (fun n) n

The existence of a recursive function fun which satisfies these two equations follows
directly from the primitive recursion theorem num_Axiom shown above. Specializing the
quantified variables x and f in a suitably type-instantiated version of num_Axiom so that

x=\x1 . . . xi.f1[x1, . . . , xi] and f=\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi])

yields (ignoring the uniqueness of fn) the existence theorem shown below:

|- ?fn. fn 0 = \x1 . . . xi.f1[x1, . . . , xi] /\
fn (SUC n) = (\f n x1 . . . xi.f2[f t1 . . . ti, n, x1, . . . , xi]) (fn n) n

This theorem allows a constant fun to be introduced (via the definitional mechanism
of constant specifications—see Section 3.7.2.2) to denote the recursive function that
satisfies the two equations in the body of the theorem. Introducing a constant fun to
name the function asserted to exist by the theorem shown above, and simplifying using
β-reduction, yields the following theorem:

|- fun 0 = \x1 . . . xi.f1[x1, . . . , xi] /\
fun (SUC n) = \x1 . . . xi.f2[fun n t1 . . . ti, n, x1, . . . , xi]

It follows immediately from this theorem that the constant fun satisfies the primitive
recursive defining equations given by the theorem shown below:

|- fun 0 x1 . . . xi = f1[x1, . . . , xi]
fun (SUC n) x1 . . . xi = f2[fun n t1 . . . ti, n, x1, . . . , xi]

To automate the use of the primitive recursion theorem in deriving recursive defini-
tions of this kind, the HOL system provides a function which automatically proves the
existence of primitive recursive functions and then makes a constant specification to
introduce the constant that denotes such a function:

4.6. Natural numbers 83

new_recursive_definition : thm -> string -> term -> thm

In fact, new_recursive_definition handles primitive recursive definitions over a range
of types, not just the natural numbers. For details, see Section 5.7.2, or the REFERENCE

documentation.

4.6.2.2 The less-than relation

The less-than relation ‘<’ is most naturally defined by primitive recursion. However, it
is needed for the proof of the primitive recursion theorem, so it must be defined before
definition by primitive recursion is available. The theory prim_rec therefore contains
the following non-recursive definition of <:

LESS |- !m n. m < n = (?P. (!n. P(SUC n) ==> P n) /\ P m /\ ~P n)

This definition says that m < n if there exists a set (with characteristic function P) that
is downward closed4 and contains m but not n.

4.6.2.3 Consequences of primitive recursion

Once the primitive recursion theorem is available, other useful theorems can be proved.
The theory prim_rec supplies the Axiom of Dependent Choice, which is a theorem in
HOL because it follows from SELECT_AX:

DC |- !P R a.
P a /\ (!x. P x ==> ?y. P y /\ R x y)
==>

?f. (f 0 = a) /\ !n. P (f n) /\ R (f n) (f (SUC n))

The theorem DC is useful when one wishes to build a function having a certain prop-
erty from a relational characterization. For example, an alternate characterization of
wellfoundedness is the absence of infinite decreasing R chains. By use of DC, this can be
proved to be equal to the the notion of wellfoundedness (namely, that every set has an
R-minimal element) defined in the theory relation.

wellfounded_def |- wellfounded (R:’a->’a->bool)
=

~?f. !n. R (f (SUC n)) (f n)

WF_IFF_WELLFOUNDED |- !R. WF R = wellfounded R

4A set of numbers is downward closed if whenever it contains the successor of a number, it also contains
the number.

84 Chapter 4. Commonly-used Theories

The theory prim_rec also provides theorems asserting the wellfoundedness of the pre-
decessor relation and the less-than relation, as well as the wellfoundedness of measure
functions.

WF_PRED |- WF (\x y. y = SUC x)

WF_LESS |- WF $<

measure_def |- measure = inv_image $<

WF_measure |- !m. WF (measure m)

4.6.3 The theory arithmetic

The built-in theory arithmetic contains primitive recursive definitions of following stan-
dard arithmetic operators.

ADD |- (!n. 0 + n = n) /\
(!m n. (SUC m) + n = SUC(m + n))

SUB |- (!m. 0 - m = 0) /\
(!m n. (SUC m) - n = (m < n => 0 | SUC(m - n)))

MULT |- (!n. 0 * n = 0) /\
(!m n. (SUC m) * n = (m * n) + n)

EXP |- (!m. m EXP 0 = 1) /\
(!m n. m EXP (SUC n) = m * (m EXP n))

It also contains the following non-recursive definitions.

GREATER |- !m n. m > n = n < m

LESS_OR_EQ |- !m n. m <= n = m < n \/ (m = n)

GREATER_OR_EQ |- !m n. m >= n = m > n \/ (m = n)

DIVISION |- !n. 0 < n ==> (!k. (k = ((k DIV n) * n) + (k MOD n)) /\
(k MOD n) < n)

An ad hoc but useful collection of over a hundred elementary theorems of arithmetic
are pre-proved when HOL is built and stored in the theory arithmetic. Each theorem
will be autoloaded when its name is first mentioned during any HOL session. For a
complete list of available theorems, see REFERENCE.

The following table gives the parsing status of the arithmetic constants.

4.6. Natural numbers 85

Operator Strength Associativity
>= 450 right
<= 450 right
> 450 right
< 450 right
+ 500 left
- 500 left
* 600 left
DIV 600 left
MOD 650 left
EXP 700 right

4.6.4 The theory numeral

The type num, is usually thought of as being supplied with an infinite collection of nu-
merals: 1, 2, 3, etc.. However, the HOL logic has no way to define such infinite families
of constants; instead all numerals other than 0 are actually built up from the constants
introduced by the following definitions:

NUMERAL_DEF !x. NUMERAL x = x

NUMERAL_BIT1 !x. NUMERAL_BIT1 n = n + (n + SUC 0)

NUMERAL_BIT2 !x. NUMERAL_BIT2 n = n + (n + SUC(SUC 0))

ALT_ZERO ALT_ZERO = 0

For example, the numeral 5 is represented by the term

NUMERAL(NUMERAL_BIT1(NUMERAL_BIT2(ALT_ZERO)))

but the HOL parser and pretty-printer make such terms appear as numerals. This binary
representation for numerals allows for asymptotically efficient calculation. Theorems
supporting arithmetic calculations on numerals can be found in the numeral theory;
these are mechanized by the reduce library. Numerals may of course be built using
mk_comb, and taken apart with dest_comb. A more convenient interface to this function-
ality is provided by mk_numeral, dest_numeral, and is_numeral. These functions make
use of an ML structure Arbnum (written by Michael Norrish) which implements arbitrary
precision numbers.

86 Chapter 4. Commonly-used Theories

1- mk_numeral (Arbnum.fromString "3432432423423423234");
> val it = ‘3432432423423423234‘ : term

- dest_numeral it;
> val it = <num> : Arbnum.num

- Arbnum.+(it,it);
> val it = <num> : num

- mk_numeral it;
> val it = ‘6864864846846846468‘ : term

Numerals are related to numbers via the derived inference rule num_CONV, found in
the numLib library.

numLib.num_CONV : term -> thm

num_CONV can be used to generate the “SUC” equation for any non-zero numeral. For
example:

1- load "numLib"; open numLib;

- num_CONV (Term ‘1‘);
> val it = |- 1 = SUC 0 : thm

- num_CONV (Term ‘2‘);
> val it = |- 2 = SUC 1 : thm

- num_CONV (Term ‘3141592653‘);
> val it = |- 3141592653 = SUC 3141592652 : thm

The num_CONV function works purely by inference, using the definitions provided above.5

When other numeric theories are loaded (such as those for the reals or integers),
numerals are overloaded so that the numeral 1 can actually stand for a natural number,
an integer or a real value. In order to precisely specify the desired type, the user can
use single character suffixes (‘n’ for the natural numbers, and ‘i’ for the integers):

5In previous versions of HOL, num_CONV would not prove its result, which was not in keeping with
the LCF approach, and which moreover made num_CONV dependent on the underlying implementation
of numbers. This made num_CONV incomplete on ML systems without arbitrary-sized numbers.

4.7. Integers 87

2- load "integerTheory";
> val it = () : unit

- Term‘2‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘2‘ : term

- type_of it;
> val it = ‘:int‘ : hol_type

- Term‘2n‘;
> val it = ‘2‘ : term

- type_of it;
> val it = ‘:num‘ : hol_type

- type_of (Term ‘42i‘);
> val it = ‘:int‘ : hol_type

A numeric literal such as 42i is represented by the application of an injection function
of type num -> ty to a numeral. The injection function is different for each type ty. See
Section 4.7 for further discussion.

The functions mk_numeral, dest_numeral, and is_numeral only work for numerals, and
not for numeric literals with character suffixes other than n. For information on how to
install new character suffixes, consult the add_numeral_info entry in REFERENCE.

4.7 Integers

There is an extensive theory of integers in HOL. The type of integers is constructed as
a quotient on pairs of natural numbers. A standard collection of operators are defined.
These are overloaded with similar operations on the natural numbers, and on the real
numbers. The constants defined in the integer theory include those found in the follow-
ing table.

88 Chapter 4. Commonly-used Theories

Constant Overloaded symbol Strength Associativity
int_ge >= 450 right
int_le <= 450 right
int_gt > 450 right
int_lt < 450 right
int_add + 500 left
int_sub - 500 left
int_neg ~ 900 trueprefix
int_mul * 600 left

/ 600 left
% 650 left

int_exp ** 700 right
int_of_num & prefix

The overloaded symbol & : num -> int denotes the injection function from natural
numbers to integers. The following session illustrates how overloading and integers
literals are treated.

3Term ‘1i = &(1n + 0n)‘;
> val it = ‘1 = & (1 + 0)‘ : term

- show_numeral_types := true;
> val it = () : unit

- Term ‘&1 = &(1n + 0n)‘;
<<HOL message: more than one resolution of overloading was possible.>>
> val it = ‘1i = & (1n + 0n)‘ : Term.term

4.8 Real numbers and analysis

There is an extensive collection of theories that make up the development of real num-
bers and analysis in HOL, due to John Harrison [?]. We will only give an overview of
the development; the interested reader should consult REFERENCE and Harrison’s thesis.

The axioms for the real numbers are derived from the ‘half reals’ which are con-
structed from the ‘half rationals’. This part of the development is recorded in hratTheory

and hrealTheory, but is not used once the reals have been constructed. The real axioms
are derived in the theory realaxTheory. A standard collection of operators on the reals,
and theorems about them, is found in realaxTheory and realTheory. The operators and
their parse status are listed in the following table.

4.9. The theory list 89

Constant Overloaded symbol Strength Associativity
real_ge >= 450 right
real_lte <= 450 right
real_gt > 450 right
real_lt < 450 right
real_add + 500 left
real_sub - 500 left
real_neg ~ 900 trueprefix
real_mul * 600 left
real_div / 600 left

pow 700 right
real_of_num & prefix

On the basis of realTheory, the following sequence of theories is constructed:

topologyTheory Topologies and metric spaces, including metric on the real line.

netsTheory Moore-Smith covergence nets, and special cases like sequences.

seqTheory Sequences and series of real numbers.

limTheory Limits, continuity and differentiation.

powserTheory Power series.

transcTheory Transcendental functions, e.g., exp, sin, cos, ln, root, sqrt, pi, tan, asn,
acs, atn. Also the Kurzweil-Henstock gauge integral and the fundamental theorem
of calculus, McLaurin’s theorem.

A separate development that depends only on realTheory is a theory of polynomials,
found in polyTheory. A standard collection of operations on polynomials, and theorems
about them, are also derived.

4.9 The theory list

The theory list introduces the unary type operator list by a type definition.6 The
standard list processing functions are then defined on this type:

NIL : ’a list
CONS : ’a -> ’a list -> ’a list
HD : ’a list -> ’a
TL : ’a list -> ’a list
NULL : ’a list -> bool

6For details of the definition, see [?, ?].

90 Chapter 4. Commonly-used Theories

The HOL parser has been specially modified to parse the expression [] into NIL, to
parse the expression h :: t into CONS h t, and to parse the expression [t1;t2;. . .;tn]

into CONS t1 (CONS t2 · · · (CONS tn NIL) · · ·). The HOL printer reverses these transfor-
mations.

The functions NIL and CONS are defined in terms of the representing type of lists. From
their definitions, the following fundamental theorems about lists are proved and stored
in the theory list.

list_Axiom |- !x f. ?!fn.(fn[] = x) /\ (!h t. fn(h::t) = f(fn t)h t)

list_INDUCT |- !P. P[] /\ (!t. P t ==> (!h. P(h::t))) ==> (!l. P l)

list_CASES |- !l. (l = []) \/ (?t h. l = h::t)

CONS_11 |- !h t h’ t’. (h::t = h’::t’) = (h = h’) /\ (t = t’)

NOT_NIL_CONS |- !h t. ~([] = h::t)

NOT_CONS_NIL |- !h t. ~(h::t = [])

The theorem list_Axiom shown above is analogous to the primitive recursion theo-
rem on the natural numbers discussed above in Section 4.6.2.1. It states the validity of
primitive recursive definitions on lists, and can be used to justify any such definition.
The ML function new_recursive_definition uses this theorem to do automatic proofs of
the existence of primitive recursive functions on lists and then make constant specifica-
tions to introduce constants that denote such functions. For example, the HOL system
defines a length function, LENGTH, on lists by the primitive recursive definition on lists
shown below:

new_recursive_definition Prefix list_Axiom "LENGTH"
(Term ‘(LENGTH NIL = 0) /\

(!h t. LENGTH (h::t) = SUC (LENGTH t))‘)

When this ML expression is evaluated, HOL uses list_Axiom to prove existence of a
function that satisfies the given primitive recursive definition, introduces a constant to
name this function using a constant specification, and stores the resulting theorem:

LENGTH |- (LENGTH [] = 0) /\ (!h t. LENGTH(h::t) = SUC(LENGTH t))

in the current theory (in this case, the theory list).
The predicate NULL and the selectors HD and TL are defined in the theory list by the

specifications:

4.9. The theory list 91

NULL |- NULL[] /\ (!h t. ~NULL(h::t))

HD |- !h t. HD(h::t) = h

TL |- !h t. TL(h::t) = t

The following primitive recursive definitions of functions on lists are also made in the
theory list:

SUM |- (SUM [] = 0) /\ (!h t. SUM(h::t) = h + SUM t)

APPEND |- (!l. APPEND [] l = l) /\
(!l1 l2 h. APPEND (h::l1) l2 = h::APPEND l1 l2)

FLAT |- (FLAT[] = []) /\ (!h t. FLAT(h::t) = APPEND h (FLAT t))

LENGTH |- (LENGTH [] = 0) /\ (!h t. LENGTH (h::t) = SUC(LENGTH t))

MAP |- (!f. MAP f [] = []) /\
(!f h t. MAP f (h::t) = f h::MAP f t)

EL |- (!l. EL 0 l = HD l) /\ (!l n. EL (SUC n)l = EL n (TL l))

EVERY_DEF |- (!P. EVERY P [] = T) /\
(!P h t. EVERY P (h::t) = P h /\ EVERY P t)

EXISTS_DEF |- (!P. EXISTS P [] = F) /\
(!P h t. EXISTS P (h::t) = P h \/ EXISTS P t)

FILTER |- (!P. FILTER P [] = []) /\
(!P h t. FILTER P (h::t)

= if P h then h::FILTER P t else FILTER P t)

FOLDL |- (!f e. FOLDL f e [] = e) /\
(!f e x l. FOLDL f e (x::l) = FOLDL f (f e x) l)

FOLDR |- (!f e. FOLDR f e [] = e) /\
(!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l))

MEM |- (!x. MEM x [] = F) /\
(!x h t. MEM x (h::t) = (x = h) \/ MEM x t)

For a complete list of available theorems in listTheory, see REFERENCE. The theory list

is relatively compact, largely because of how the HOL system has evolved. A more
extensive theory of lists can be found in rich_listTheory.

92 Chapter 4. Commonly-used Theories

4.10 Trees

The theories tree and ltree contain the definitions of two structurally-isomorphic types
of finitely-branching ordered trees. The types defined in these theories are used by Tom
Melham’s type definition package (see Section 5.7) to construct representations for ar-
bitrary concrete recursive types. The following is a summary of the main theorems
which are available in the theories tree and ltree, and which may be of use in cer-
tain specialized applications. For full details of the logical basis for these two theories,
see [?].

4.10.1 The theory tree

In the theory tree, a type tree is defined to denote the set of all ordered trees whose
nodes can branch any (finite) number of times. A constructor function

node : tree list -> tree

is then defined in the theory tree. This function can be used to construct any tree-
structured value of type tree. The expression "node []" denotes the tree consisting of
a single leaf node with no subtrees. If tl:(tree)list is a non-empty list of trees, then
the term "node tl" denotes the tree whose immediate subtrees are the trees in the list
tl. Using node, it is possible to construct a tree of any shape. For example, the tree

• • •

•

• •

HH
HHH

��
���

T
TT

�
��

is denoted by the term "node[node[]; node[]; node[node[]; node[]]".
The next two theorems follow from the formal definition of node and are stored in the

theory tree:

node_11 |- !tl1 tl2. (node tl1 = node tl2) = (tl1 = tl2)
tree_Induct |- !P. (!tl. EVERY P tl ==> P(node tl)) ==> (!t. P t)

These two theorems are analogous to the Peano postulates for the natural numbers, and
are used to prove the following abstract characterization of the defined type tree.

tree_Axiom |- !f. ?! fn. !tl. fn(node tl) = f(MAP fn tl)tl

This theorem states the validity of general ‘primitive recursive’ definitions of functions
over finitely-branching ordered trees.

4.10. Trees 93

4.10.2 The theory ltree

In the theory ltree, a type of labelled trees (called ’a ltree) is defined. Labelled trees
have the same sort of structure as values of the defined type tree discussed above. The
only difference is that a tree of type ’a ltree has a value or ‘label’ of type ’a associated
with each of its nodes. A constructor

Node : ’a -> ’a ltree list -> ’a ltree

is defined in the theory ltree. The function Node constructs labelled trees by mapping
a label of type ’a and a list of labelled subtrees to a labelled tree of type ’a ltree. The
following theorems about labelled trees are pre-proved and stored in the theory ltree.

Node_11 |- !v1 v2 trl1 trl2.
(Node v1 trl1 = Node v2 trl2) = (v1 = v2) /\ (trl1 = trl2)

ltree_Induct |- !P. (!t. EVERY P t ==> (!h. P(Node h t))) ==> (!l. P l)
ltree_Axiom |- !f. ?! fn. !v tl. fn(Node v tl) = f(MAP fn tl)v tl

These theorems are analogous to their counterparts in the theory tree discussed above.
The theorems Node_11 and ltree_Induct amount to a Peano-type characterization of
labelled trees, and the theorem ltree_Axiom is a primitive recursion theorem for labelled
trees.

94 Chapter 4. Commonly-used Theories

Chapter 5

Commonly-used Libraries

5.1 A simple proof manager

The goal stack provides a simple interface to tactic-based proof. When one uses tactics
to decompose a proof, many intermediate states arise; the goalstack takes care of the
necessary bookeeping. The implementation of goalstacks reported here is a re-design of
Larry Paulson’s original conception.

The goalstack library is automatically loaded when HOL starts up.
The abstract types goalstack and proofs are the focus of backwards proof operations.

The type proofs can be regarded as a list of independent goalstacks. Most operations
act on the head of the list of goalstacks; there are operations so that the focus can be
changed.

5.1.1 Starting a goalstack proof

g : term quotation -> proofs

set_goal : goal -> proofs

Recall that the type goal is an abbreviation for term list * term. To start on a new
goal, one gives set_goal a goal. This creates a new goalstack and makes it the focus of
further operations.

A shorthand for set_goal is the function g: it invokes the parser automatically, and it
doesn’t allow the the goal to have any assumptions.

Calling set_goal, or g, adds a new proof attempt to the existing ones, i.e., rather than
overwriting the current proof attempt, the new attempt is stacked on top.

5.1.2 Applying a tactic to a goal

expandf : tactic -> goalstack

expand : tactic -> goalstack

e : tactic -> goalstack

How does one actually do a goalstack proof then? In most cases, the application of
tactics to the current goal is done with the function expand. In the rare case that one

95

96 Chapter 5. Commonly-used Libraries

wants to apply an invalid tactic, then expandf is used. (For an explanation of invalid
tactics, see Chapter 24 of Gordon & Melham.) The abbreviation e may also be used to
expand a tactic.

5.1.3 Undo

b : unit -> goalstack

drop : unit -> proofs

dropn : int -> proofs

backup : unit -> goalstack

restart : unit -> goalstack

set_backup : int -> unit

Often (we are tempted to say usually!) one takes a wrong path in doing a proof, or
makes a mistake when setting a goal. To undo a step in the goalstack, the function
backup and its abbreviation b are used. This will restore the goalstack to its previous
state.

To directly back up all the way to the original goal, the function restart may be used.
Obviously, it is also important to get rid of proof attempts that are wrong; for that there
is drop, which gets rid of the current proof attempt, and dropn, which eliminates the
top n proof attempts.

Each proof attempt has its own undo-list of previous states. The undo-list for each
attempt is of fixed size (initially 12). If you wish to set this value for the current proof
attempt, the function set_backup can be used. If the size of the backup list is set to be
smaller than it currently is, the undo list will be immediately truncated. You can not
undo a “proofs-level” operation, such as set_goal or drop.

5.1.4 Viewing the state of the proof manager

p : unit -> goalstack

status : unit -> proofs

top_goal : unit -> goal

top_goals : unit -> goal list

initial_goal : unit -> goal

top_thm : unit -> thm

To view the state of the proof manager at any time, the functions p and status can
be used. The former only shows the top subgoals in the current goalstack, while the
second gives a summary of every proof attempt.

To get the top goal or goals of a proof attempt, use top_goal and top_goals. To get
the original goal of a proof attempt, use initial_goal.

5.2. The boss library 97

Once a theorem has been proved, the goalstack that was used to derive it still exists
(including its undo-list): its main job now is to hold the theorem. This theorem can be
retrieved with top_thm.

5.1.5 Switch focus to a different subgoal or proof attempt

r : int -> goalstack

R : int -> proofs

rotate : int -> goalstack

rotate_proofs : int -> proofs

Often we want to switch our attention to a different goal in the current proof, or a
different proof. The functions that do this are rotate and rotate_proofs, respectively.
The abbreviations r and R are simpler to type in.

5.2 The boss library

The library bossLib marshalls some of the most widely used theorem proving tools in
HOL and provides them with a convenient interface for interaction. The library currently
focuses on three things: definition of datatypes and functions; heigh-level interactive
proof operations, and composition of automated reasoners. Loading bossLib commits
one to working in a context that already supplies the theories of booleans, pairs, sums,
the option type, arithmetic, and lists.

5.2.1 Datatype definition

There are several useful consequences of an object logic datatype definition: structural
induction, rewrite rules for constructors, etc. However, these have not traditionally been
automatically derived at the invocation of the definition package: the user would have
to build the required theorems by explicitly invoking various proof procedures. To rem-
edy this, bossLib offers the Hol_datatype function. This function allows for the defini-
tion of mutually recursive types, nested recursive types and record types. The syntax of
declarations that Hol_datatype accepts is found in Table 5.1.

There is an underlying database of datatype facts that supports the activities of bossLib.
This database already contains the relevant entries for the types bool, prod, num, option,
and list. When a datatype is defined by Hol_datatype, the following information is
derived and stored in the database.

• initiality theorem for the type

• injectivity of the constructors

98 Chapter 5. Commonly-used Libraries

Hol datatype ‘[binding ;]* binding‘

binding ::= ident = constructor-spec
| ident = record-spec

constructor-spec ::= [clause |]* clause

clause ::= ident
| ident of [hol type =>]* hol type

record-spec ::= <| [ident : hol type ;]* ident : hol type |>

Table 5.1: Datatype Declaration

• distinctness of the constructors

• structural induction theorem

• case analysis theorem

• definition of the ‘case’ constant for the type

• congruence theorem for the case constant

• definition of the ‘size’ of the type

5.2.2 Support for high-level proof steps

The following functions use information in the database to ease the application of hol98’s
underlying functionality:

type_rws : string -> thm list

Induct : tactic

Cases : tactic

Cases_on : term quotation -> tactic

Induct_on : term quotation -> tactic

• The function type rws will search for the given type by name in the underlying
database and return useful rewrite rules for that type. The rewrite rules of the
datatype are built from the injectivity and distinctness theorems, along with the
case constant definition. The pre-existing rewrite rules in the database are already
integrated into the simplification sets provided by bossLib; however rewrite rules
arising from an invocation of Hol_datatype, or which come from a user-defined
theory, will have to be manually added into the simpsets used by the simplifier.

5.2. The boss library 99

• The Induct tactic makes it convenient to invoke induction. When it is applied to
a goal, the leading universal quantifier is examined; if its type is that of a known
datatype, the appropriate structural induction tactic is extracted and applied.

• The Cases tactic makes it convenient to invoke case analysis. The leading univer-
sal quantifier in the goal is examined; if its type is that of a known datatype, the
appropriate structural case analysis theorem is extracted and applied.

• The Cases on tactic takes a quotation, which is parsed into a term M , and then M
is searched for in the goal. If M is a variable, then a variable with the same name
is searched for. Once the term to split over is known, its type and the associated
facts are obtained from the underlying database and used to perform the case
split. If some free variables of M are bound in the goal, an attempt is made to
remove (universal) quantifiers so that the case split has force. Finally, M need not
appear in the goal, although it should at least contain some free variables already
appearing in the goal. Note that the Cases_on tactic is more general than Cases,
but it does require an explicit term to be given.

• The Induct on tactic takes a quotation, which is parsed into a term M , and then
M is searched for in the goal. If M is a variable, then a variable with the same
name is searched for. Once the term to induct on is known, its type and the
associated facts are obtained from the underlying database and used to perform
the induction. If M is not a variable, a new variable v not already occurring in the
goal is created, and used to build a term v = M which the goal is made conditional
on before the induction is performed. First however, all terms containing free
variables from M are moved from the assumptions to the conclusion of the goal,
and all free variables of M are universally quantified. Induct_on is more general
than Induct, but it does require an explicit term to be given.

Two supplementary entrypoints have been provided for more exotic inductions:

completeInduct on performs complete induction on the term denoted by the given
quotation. Complete induction allows a seemingly 1 stronger induction hypoth-
esis than ordinary mathematical induction: to wit, when inducting on n, one
is allowed to assume the property holds for all m smaller than n. Formally:
∀P. (∀x. (∀y. y < x ⊃ P y) ⊃ P x) ⊃ ∀x. P x. This allows the inductive hy-
pothesis to be used more than once, and also allows instantiating the inductive
hypothesis to other than the predecessor.

measureInduct on takes a quotation, and breaks it apart to find a term and a measure
function with which to induct. For example, if one wanted to induct on the length
of a list L, the invocation measureInduct_on ‘LENGTH L‘ would be be appropriate.

1Complete induction and ordinary mathematical induction are each derivable from the other.

100 Chapter 5. Commonly-used Libraries

5.2.3 Function definition

Define : term quotation -> thm

xDefine : string -> term quotation -> thm

Hol_defn : string -> term quotation -> Defn.defn

The Define function is a general-purpose function definition mechanism. The xDefine
function is identical to Define except that it takes an explicit name to use when storing
the definition in the current theory. Define accepts the following syntax:

1. Non-recursive definition, varstructs allowed on lhs.

Define ‘f w (x, y, z) = x + y / w + z‘;

2. Primitive recursive (or non-recursive) over known datatype.

Define

‘(fold b f [] = b) /\

(fold b f (h::t) = f h (fold b f t))‘;

3. Non-recursive definition, over complex patterns:

Define

‘(g (0,x,y,z) = 1)

/\ (g (w,0,y,z) = 2)

/\ (g (w,x,0,z) = 3)

/\ (g (w,x,y,0) = 4)‘;

4. Recursions (not mutual or nested) that aren’t handled by 2.

Define ‘(flatten [] = [])

/\ (flatten ([]::rst) = flatten rst)

/\ (flatten ((h::t)::rst) = h::flatten(t::rst))‘;

5. Nested recursions.

Define ‘N x = if x>100 then x-10 else N(N(x+11))‘;

6. Mutual recursion.

5.2. The boss library 101

xDefine "even_odd"

‘(even 0 = T)

/\ (even (SUC n) = odd n)

/\ (odd 0 = F)

/\ (odd (SUC n) = even n)‘;

7. Schematic definitions (mutual and nested recursive schemata are accepted).

Define ‘While s = if B s then While (C s) else s‘;

For complex recursions, Define attempts to find a measure under which recursive
calls become smaller (and to prove that they do indeed become smaller). Currently,
it examines the domain type of the function being defined and synthesizes a “size”
measure. Then it does some basic simplifications and then attempts to automatically
prove the termination constraints. If this termination proof fails, then the definition
attempt fails. If the termination proof succeeds, an induction theorem for the function
is also automatically derived and stored in the current theory.
Example. Invoking

Define

‘(gcd 0 y = y)

/\ (gcd (SUC x) 0 = SUC x)

/\ (gcd (SUC x) (SUC y) =

if y <= x then gcd (x-y) (SUC y)

else gcd (SUC x) (y-x))‘;

proves all termination conditions and stores the theorem

|- (gcd 0 y = y) /\

(gcd (SUC x) 0 = SUC x) /\

(gcd (SUC x) (SUC y) =

if y <= x then gcd (x - y) (SUC y)

else gcd (SUC x) (y - x))

in the current theory under the name "gcd_def" and also stores the theorem

!P. (!y. P 0 y) /\

(!x. P (SUC x) 0) /\

(!x y. (~(y <= x) ==> P (SUC x) (y - x)) /\

(y <= x ==> P (x - y) (SUC y))

==> P (SUC x) (SUC y))

==>

!v v1. P v v1.

102 Chapter 5. Commonly-used Libraries

in the current theory under the name "gcd_ind" before returning the requested recur-
sion equations.

Recall that, if the termination proof fails, an invocation of Define (or xDefine) fails.
In such situations, the ML function Hol_defn should be used.

Hol_defn : string -> term quotation -> Defn.defn

WF_REL_TAC : Defn.defn -> term quotation -> tactic

Hol_defn makes the requested definition, but defers the proof of termination to the
user. For setting up termination proofs, there are several useful entrypoints, namely

Defn.tgoal : Defn.defn -> GoalstackPure.proofs

Defn.tprove : Defn.defn * tactic -> thm * thm

Defn.tgoal is analogous to set_goal and Defn.tprove is analogous to prove.
Example. An invocation of Define on the following equations for Quicksort will cur-
rently fail, since the termination proof is beyond the capabilities of our naive termina-
tion prover. Instead, we make an application of Hol_defn:

val qsort_def =

Hol_defn "qsort"

‘(qsort r [] = []) /\

(qsort r (h::t) =

APPEND (qsort r (FILTER (\x. r x h) t))

(h :: qsort r (FILTER (\x. ~(r x h)) t)))‘;

which returns a defn, but does not try to prove termination. Although it is possible to
directly work with elements of type defn, it is more convenient to invoke ‘Defn.tgoal
qsort def’, which sets up a termination proof in a goalstack. The goal is just to get the
unrestricted recursion equations and induction theorem.

Defn.tgoal qsort_def;

> val it =

> Proof manager status: 1 proof.

> 1. Incomplete:

> Initial goal:

> ((qsort r [] = []) /\

> (qsort r (h::t) =

> APPEND (qsort r (FILTER (\x. r x h) t))

> (h::qsort r (FILTER (\x. ~r x h) t)))) /\

> !P.

5.2. The boss library 103

> (!r. P r []) /\

> (!r h t. P r (FILTER (\x. r x h) t) /\

> P r (FILTER (\x. ~r x h) t) ==> P r (h::t))

> ==> !v v1. P v v1

How to proceed? The function WF_REL_TAC now shows its utility. When given a defn

and a quotation denoting a termination relation for the function, WF_REL_TAC initiates
the termination proof. For our example, we obtain two subgoals both of which are easy
to prove.

- e (WF_REL_TAC qsort_def ‘measure (LENGTH o SND)‘

> OK..

>

> 2 subgoals:

> val it =

> !t h r. LENGTH (FILTER (\x. r x h) t) < LENGTH (h::t)

>

>

> !t h r. LENGTH (FILTER (\x. ~r x h) t) < LENGTH (h::t)

Both goals are provable; once the proof is completed, we can encapsulate it with
Defn.tprove, which takes a defn, builds a termination goal from it, applies the given
tactic, and, if the initial goal is proved, returns a pair comprising the requested equations
and the induction theorem.

val (qsort_eqns,qsort_ind) =

Defn.tprove

(qsort_def,

WF_REL_TAC qsort_def ‘measure (LENGTH o SND)‘

THEN ...);

> val qsort_eqns =

> |- (qsort r [] = []) /\

> (qsort r (h::t) =

> APPEND (qsort r (FILTER (\x. r x h) t))

> (h::qsort r (FILTER (\x. ~r x h) t))) : thm

> val qsort_ind =

> |- !P.

> (!r. P r []) /\

> (!r h t. P r (FILTER (\x. r x h) t) /\

> P r (FILTER (\x. ~r x h) t) ==> P r (h::t))

> ==> !v v1. P v v1

104 Chapter 5. Commonly-used Libraries

5.2.4 Automated reasoners

bossLib brings together the most powerful reasoners in hol98 and tries to make it easy
to compose them in a simple way. We take our basic reasoners from mesonLib, simpLib,
and decisionLib, but the point of bossLib is to provide a layer of abstraction so the
user has to know only a few entrypoints.2

PROVE : thm list -> term quotation -> thm

PROVE_TAC : thm list -> tactic

DECIDE : term quotation -> thm

DECIDE_TAC : tactic

The inference rule PROVE (and the corresponding tactic PROVE TAC) takes a list of
theorems and a quotation, and attempts to prove the term using a first order reasoner.
The inference rule DECIDE (and the corresponding tactic DECIDE TAC) applies a decision
procedure that (at least) handles statements of linear arithmetic.

RW_TAC : simpset -> thm list -> tactic

&& : simpset * thm list -> simpset (* infix *)

std_ss : simpset

arith_ss : simpset

list_ss : simpset

The rewriting tactic RW TAC works by first adding the given theorems into the given
simpset; then it simplifies the goal as much as possible; then it performs case splits on
any conditional expressions in the goal; then it repeatedly (1) eliminates all hypotheses
of the form v = M or M = v where v is a variable not occurring in M , (2) breaks
down any equations between constructor terms occurring anywhere in the goal. The
infix combinator && is used to build a new simpset from a given simpset and a list of
theorems.

Simplification sets for its native datatypes are provided by bossLib. In general, these
are extended versions of those found in simpLib. The simpset for pure logic, sums,
pairs, and the option type is named std_ss. The simpset for arithmetic is named
arith_ss, and the simpset for lists is named list_ss. The simpsets provided by bossLib
strictly increase in strength: std ss is contained in arith ss, and arith ss is contained
in list ss.

STP_TAC : simpset -> tactic -> tactic

ZAP_TAC : simpset -> thm list -> tactic

2In the mid 1980’s Graham Birtwistle advocated such an approach, calling it ‘Ten Tactic HOL’.

5.3. Record types 105

The compound reasoners of bossLib take a basic approach: they simplify the goal
as much as possible with RW_TAC and then a ‘finishing’ tactic is applied. The primi-
tive entrypoint for this is STP TAC. Currently, the most powerful reasoner is ZAP TAC,
which features a finishing tactic that first tries a tautology checking tactic; if that fails,
DECIDE_TAC is called; if that fails, PROVE_TAC is called with the second argument. Al-
though this general approach (simplify as much as possible, then apply automated rea-
soners in sequence) is crude, we have found that it allows one to make good progress
in a high percentage of proof situations.

by : term quotation * tactic -> tactic (* infix 8 *)

SPOSE_NOT_THEN : (thm -> tactic) -> tactic

The function by is an infix operator that takes a quotation and a tactic tac. The
quotation is parsed into a term M . When the invocation “M by tac” is applied to a goal
(A, g), a new subgoal (A,M) is created and tac is applied to it. If the goal is proved, the
resulting theorem is broken down and added to the assumptions of the original goal;
thus the proof proceeds with the goal ((M :: A), g). (Note however, that case-splitting
will happen if the breaking-down of `M exposes disjunctions.) Thus by allows a useful
style of ‘assertional’ or ‘Mizar-like’ reasoning to be mixed with ordinary tactic proof‘3

SPOSE NOT THEN initiates a proof by contradiction by assuming the negation of the
goal and driving the negation inwards through quantifiers. It provides the resulting
theorem as an argument to the supplied function, which will use the theorem to build
and apply a tactic.
Note. When the library bossLib is loaded, the infix parsing status of && and “by” must
be re-asserted by the user.

5.3 Record types

Record types are convenient ways of bundling together a number of component types,
and giving those components names so as to facilitate access to them. Record types
are semantically equivalent to big pair (cross-product) types, but the ability to label
the fields with names of one’s own choosing is a great convenience. Record types as
implemented in hol98 are similar to C’s struct types and to Pascal’s records. However,
the current HOL implementation doesn’t allow the equivalent of variant records, nor for
records to be recursive.

Done correctly, record types provide useful maintainability features. If one can al-
ways access the fieldn field of a record type by simply writing record.fieldn, then
changes to the type that result in the addition or deletion of other fields will not in-
validate this reference. One failing in SML’s record types is that they do not allow the

3Proofs in the Mizar system are readable documents, unlike almost all tactic-based proofs.

106 Chapter 5. Commonly-used Libraries

same maintainability as far as (functional) updates of records are concerned. The HOL
implementation allows one to write rec with fieldn := new value, which replaces
the old value of fieldn in the record rec with new value. This expression will not need
to be changed if another field is added, modified or deleted from the record’s original
definition.

5.3.1 Defining a record type

Defining a record type is achieved with the function Hol datatype, as previously dis-
cussed. For example, to create a record type called person with boolean, string and
number fields called employed, name and age, one would enter:

val _ = Hol_datatype ‘person = <| employed : bool ; age : num ;

name : string

|>‘;

The order in which the fields are entered is not significant. As well as defining the
type (called person), the datatype definition function also defines three other sets of
constants. These are the field access functions, update functions, and functional update
functions. The field access functions have names of the form “〈record-type〉 〈field 〉”.
These functions can be used directly, or one can use standard field selection nota-
tion to access the values of a record’s field. Thus, one would write the expression:
‘‘bob.employed‘‘ in order to return the value of bob’s employed field. The alternative,
‘‘person employed bob‘‘, works, but would be printed using the first syntax, with the
full-stop.

The update functions are given the names “〈record-type〉 〈field 〉 update” for each
field in the type. They take a value of the type of the field in question and a record
value to be modified. They return a new record value that is otherwise the same as the
old value but with the specified field having the new value. They can be written with
the keyword with and the := operator:

‘‘bob with employed := T‘‘

If a chain of updates is desired, then multiple updates can be specified inside <|-|>
pairs, separated by semi-colons, thus:

‘‘bob with <| age := 10; name := "Child labourer" |>‘‘

Finally, the second sort of update functions, the so-called “functional” updates have
names of the form “〈record-type〉 〈field 〉 fupd”. Rather than specifying a new value for
the record, these functions take a function as their first parameter, which will be an
endomorphism on the field type, so that the resulting record is the same as the original,

5.3. Record types 107

except that the specified field has had the given function applied to it to generate the
new value for that field. The functional update functions allow more concision when
writing updates on a record that depend on the field’s old value.

The special syntax for writing these updates is to again use the with keyword, but to
use the infix updated by rather than :=. Thus

‘‘bob with employed updated_by $~‘‘

is a record value with the opposite boolean value in the employed field as held by bob.

5.3.2 Specifying record literals

The parser accepts lists of field specifications between <|-|> pairs without the with

keyword. These translate to sequences of updates of an arbitrary value (literally, the
HOL value ARB), and are treated as literals. Thus,

‘‘<| age := 21; employed := F; name := "Layabout" |>‘‘

5.3.3 Using the theorems produced by record definition

As well as defining the type and the functions described above, record type definition
also proves a suite of useful theorems. Most of these are returned in a big record; all
are stored using save thm so that they can be recovered.

The record returned has the following fields:

type axiom The type axiom for the record type, as returned by the standard datatype
definition package.

accessor fns The definitions of the accessor functions. This theorem should be in-
cluded in rewrites used for this type.

update fns The definitions of the update functions. This theorem should be included
in rewrites used for this type.

cases thm The usual cases theorem for a type, stating that for all record values, there
exist component values making it up.

fn upd thm The definitions of the functional update functions. This theorem should be
included in rewrites used for this type.

acc upd thm A theorem stating simpler forms for expressions of the form fieldi (fieldj update v r).
If i = j, then the RHS is v, if not, it is (fieldi r). This theorem should be included
in rewrites used for this type.

108 Chapter 5. Commonly-used Libraries

upd acc thm A theorem stating that fieldi update (fieldi r) r = r for all of the fields
defined in the type. This theorem should be included in rewrites used for this
type.

upd upd thm A thereom stating that fieldi update v1 (fieldi update v2 r) = fieldi update v1 r.
This theorem should be included in rewrites used for this type.

upd canon thm A theorem that states commutativity results for all possible pairs of field
updates. They are constructed in such a way that if used as rewrites, they will
canonicalise sequences of updates. This theorem should be included in rewrites
used for this type.

cons 11 thm The standard result stating the type constructor is injective. This theorem
should be included in rewrites used for this type.

create term This last component of the record returned is not a theorem, but rather an
ML function. It is identical to the create term fn already defined in RecordType,
but is pre-applied to the relevant arguments, so that it is of the type string-value
list to term.

5.4 The meson library

5.5 The simp library

5.6 The num library

5.7. The type definition package 109

5.7 The type definition package

All of this section of the documentation is out of date. Users of hol98
should use Hol datatype to define types, and Define or xDefine to
define functions over them. The functions described here do exist in hol98
but generally with different types. This section was written for HOL88
and has not been updated since.

In the HOL system, new types and type operators can be introduced using the consistency-
preserving definitional mechanism of type definitions (see Sections 2.5.4 and 3.7.2.3).
The ML rule for introducing a new type is:

new_type_definition : (string # term # thm) -> thm

This rule allows axioms of a restricted form to be added to the primitive basis of the
logic. These axioms are analogous to definitional axioms for new constants: they define
new types in terms of other type expressions already present in the logic. Like the
rule new_definition for making constant definitions, the rule new_type_definition for
type definitions ensures that adding a new syntactic entity (in this case, a type or type
operator) is a conservative extension of the logic.

The basic idea behind new_type_definition is that a type definition is made by adding
an axiom to the logic which asserts that the set of values denoted by a new type is
isomorphic to an appropriate subset of the values denoted by a type expression already
present in the logic. A definitional axiom of this form merely states that a new type is
isomorphic to a particular subset of an existing type. From such type definition axioms,
it is usual to prove theorems that characterize newly-defined types more abstractly. The
idea is to prove a collection of theorems that state the essential properties of a new
type without reference to how it is defined. These theorems then constitute a derived
‘abstract axiomatization’ of the new type, and once they have been proved they become
the basis for all further reasoning about it.

With this approach, introducing a new type (or type operator) in HOL involves two
distinct steps:

1. Finding an appropriate representation for the new type, and making a type
definition using new_type_definition based on this representation.

2. Using the axiomatic definition of the new type and the properties of its repre-
sentation to prove a set of theorems that abstractly characterizes it.

Defining a new type using this approach can be hard work. But a set of tools is
provided in the system which—for a certain class of commonly-used concrete recursive
types—automatically carries out all the formal proofs necessary to define these types

110 Chapter 5. Commonly-used Libraries

and derive abstract characterizations from their definitions. This section provides a
user-level overview of these tools. Details of the formal proofs carried out by these tools
are discussed in [?].

5.7.1 Defining types

The main ML function in the HOL type definition package is

define_type : string -> string -> thm

This function can be used to define any concrete recursive type in the HOL system. These
are types whose values are generated by a set of constructors (i.e. functions) which yield
concrete representations for these values. Examples include types which denote finite
sets of atomic values (enumerated types), types which denote sets of structured values
(record types) or finite disjoint unions of structured values (variant records), and types
which denote sets of recursive data structures (recursive types).

The two inputs to define_type are both strings. The first string is a name under which
the results of making the type definition will be stored in the current theory segment.
The second is a user-supplied informal4 specification of the concrete recursive type to
be defined. This type specification is written in a notation (explained below) which
resembles a data type declaration in functional programming languages like Standard
ML [?]. It simply states the names of the new type’s constructors and the logical types of
their arguments. The output is a theorem which abstractly characterizes the properties
of the desired recursive type—i.e. a derived ‘abstract axiomatization’ of the type.

5.7.1.1 Input syntax

The type specification given as input to define_type must be an ML string (of ML type
string) of the form:

‘op = C1 ty
1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykmm ‘

where each tyji is either a type expression already defined as a type in the current theory
(this type expression must not contain op) or is the name op itself. A string of this form
describes an n-ary type operator op, where n is the number of distinct type variables
in the types tyji on the right hand side of the equation. If n = 0 then op is a type
constant; otherwise op is an n-ary type operator. The concrete type described has m
distinct constructors C1, . . . , Cm where m ≥ 1. Each constructor Ci takes ki arguments,
where ki ≥ 0; and the types of these arguments are given by the type expressions tyji
for 1 ≤ j ≤ ki. If one or more of the type expressions tyji is the type op itself, then

4In this context, informal means not in the language of higher order logic.

5.7. The type definition package 111

the equation specifies a recursive type. In any specification of a recursive type, at least
one constructor must be non-recursive—i.e. all its arguments must have types which
already exist in the current theory.

The input parser for define_type treats type expressions exactly as the HOL quotation
parser does, with precedences among the various built-in type operators in force.

5.7.1.2 The type specified

The logical type described by an input string of the form shown above is intended
to denote the set of all values which can be finitely generated using the constructors
C1, . . . , Cm, where each constructor is one-to-one and any two different constructors
yield different values. Every value of this type will be denoted by some term of the
form:

Ci x
1
i . . . x

ki
i

where xji is a term of type tyji for 1 ≤ j ≤ ki. In addition, any two terms:

Ci x
1
i . . . x

ki
i and Cj x

1
j . . . x

kj
j

denote equal values exactly when their constructors are the same (i.e. i = j) and these
constructors are applied to equal arguments (i.e. xni = xnj for 1 ≤ n ≤ ki).

5.7.1.3 The output

For any type specification in the form of an equation of the kind discussed above, exe-
cuting:

define type ‘name‘ ‘op = C1 ty
1
1 . . . tyk1

1 | · · · | Cm ty1
m . . . tykmm ‘

will make a formal definition for a type (or type operator) op in the current theory
segment, make appropriate definitions for constants C1, C2, . . . , Cm, and automatically
prove a theorem which provides an abstract characterization of the newly-defined type
op. This theorem, which is stored in the current theory segment under the name name
and also returned by define_type, has the form shown below:

|- !f1 · · · fm. ?!fn:op->*.
!x1

1 · · · x
k1
1 . fn(C1 x1

1 . . . xk1
1) = f1 (fn x1

1) . . . (fn xk1
1) x1

1 . . . xk1
1

...
!x1

m · · · xkm1 . fn(Cm x1
m . . . xkmm) = fm (fn x1

m) . . . (fn xkmm) x1
m . . . xkmm

112 Chapter 5. Commonly-used Libraries

where the right hand sides of the equations include recursive applications ‘fn x
j
i ’ only

for variables x
j
i of type op. (See the examples given below.) A theorem of this form

asserts the unique existence of primitive recursive functions defined by cases on the
constructors C1, C2, . . . , Cm. This is a slight extension of the initiality property by which
structures of this kind are characterized in the ‘initial algebra’ approach to specifying
abstract data types [?]. This property provides an abstract characterization of the type
op which is both succinct and complete, in the sense that it completely determines the
structure of the values of op up to isomorphism.

The call to define_type shown above fails if:

(i) not in draft mode;

(ii) op is already the name of a type constant or type operator in the current
theory;

(iii) any one of C1, . . . , Cm is already the name of a constant in the current theory.

(iv) either op or any one C1, . . . , Cm is not a legal identifier. Identifiers must start
with a letter (as defined by is_letter) and contain only alphanumeric charac-
ters (as defined by is_alphanum)

(v) ABS_op or REP_op are already constants in the current theory;

(vi) there is already an axiom, definition, constant specification or type definition
stored under either the name op_TY_DEF or the name op_ISO_DEF in the current
theory segment.

(vii) there is already a theorem stored under the name ‘name‘ in the current theory
segment.

(viii) the input type specification does not conform to the syntax described above.

5.7.1.4 Examples

The session that follows illustrates the use of define_type in defining a variety of simple
concrete types. It is assumed that the session begins with the user in draft mode.

The first definition is simple, the definition of a type three with exactly three distinct
values: ONE, TWO, and THREE.

1#let three_Axiom = define_type ‘three_Axiom‘ ‘three = ONE | TWO | THREE‘;;
three_Axiom =
|- !e0 e1 e2. ?! fn. (fn ONE = e0) /\ (fn TWO = e1) /\ (fn THREE = e2)

5.7. The type definition package 113

The theorem returned by define_type provides a complete and abstract characterization
of a defined logical type three which denotes a set of exactly three elements. This
characterization takes the form of a degenerate ‘primitive recursion’ theorem for the
concrete type three. Since three is an enumerated type with no recursive constructors,
the theorem returned by define_type simply states that any function defined by cases
on the three constants ONE, TWO, and THREE exists and is uniquely defined.

It follows immediately from this theorem that the type constant three denotes a set
containing exactly three values: the fact that the function fn always exists implies that
the constants ONE, TWO, and THREE denote distinct values of type three, and the fact
that fn is uniquely determined by its values for ONE, TWO, and THREE implies that these
constants denote the only values of type three.

The next call to define_type defines a ‘record type’ rec, values of which are records
with three boolean fields (essentially 3-tuples):

2#let rec_Axiom = define_type ‘rec_Axiom‘ ‘rec = REC bool bool bool‘;;
rec_Axiom = |- !f. ?! fn. !b0 b1 b2. fn(REC b0 b1 b2) = f b0 b1 b2

Here, the resulting theorem states that a function fn on record values of type rec can
be uniquely defined in terms of a function f of the three components of the record.

A more interesting recursive example is the type of natural numbers , which can be
defined using define_type as follows:

3#let nat_Axiom = define_type ‘nat_Axiom‘ ‘nat = Z | Suc nat‘;;
nat_Axiom = |- !e f. ?! fn. (fn Z = e) /\ (!n. fn(Suc n) = f(fn n)n)

Here, the input string describes a type nat with two constructors: Z, which stands for
zero; and Suc, which is the successor function on natural numbers. (The names Z,
and Suc are used here because 0 and SUC are already constants in the built-in HOL
theory num.) The output theorem is just the primitive recursion theorem5 for the natural
numbers; it states that any primitive recursive definition on the natural numbers (i.e.
on values of type nat) uniquely defines a total function.

A recursive type of labelled binary trees, where labels of type * appear only on leaf
nodes, can likewise be defined using define_type. The input states that a binary tree is
either a leaf node (LEAF) labelled by a value of type * or an internal node NODE with two
binary trees as subtrees:

4#let btree_Axiom =
define_type ‘btree_Axiom‘ ‘btree = LEAF * | NODE btree btree‘;;
btree_Axiom =
|- !f0 f1.

?! fn.
(!x. fn(LEAF x) = f0 x) /\
(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

5See Section 4.6.2 for a discussion of the primitive recursion theorem.

114 Chapter 5. Commonly-used Libraries

The result returned by the call to define_type is, in this case, an abstract characteriza-
tion for a defined type (*)btree, in the form of a ‘primitive recursion theorem’ for the
required type of labelled binary trees.

Any simple concrete recursive type can be defined automatically from a user-supplied
equation using define_type in exactly the same way.

5.7.2 Defining recursive functions

An important property of the characterizing theorems for concrete types shown in the
examples given above is that they provide a formal means for defining recursive func-
tions on those types. When a concrete recursive type op is characterized by a theorem
of the kind returned by define_type (see Section 5.7.1.3) this theorem can be used to
prove the existence of any primitive recursive function on op and to define constants
which denote such functions.

This is illustrated for a particular example by the method of defining primitive re-
cursive functions on the natural numbers discussed in Section 4.6.2.1. In that section,
an ML function new_prim_rec_definition was described which automates the logical
inferences necessary to derive particular primitive recursive definitions on the built-in
defined type num of natural numbers. The basis of this function is the primitive recursion
theorem

num_Axiom |- !x f. ?!fn. (fn 0 = x) /\ (!n. fn(SUC n) = f (fn n) n)

which is pre-proved and stored in the built-in theory prim_rec (see Section 4.6.2). The
ML function new_prim_rec_definition uses num_Axiom to automate the justification of
any user-supplied primitive recursive definition on the natural numbers.

The type definition package provides a similar function for defining primitive recur-
sive functions on arbitrary concrete recursive types.6 The ML function

new_recursive_definition : bool -> thm -> string -> term -> thm

automates the inferences necessary to justify any given primitive recursive definition on
a concrete recursive type of the kind definable by define_type. It takes four arguments.
The first is a boolean flag which indicates if the function to be defined will be an infix
or not. The second is the primitive recursion theorem for the concrete type in question
(i.e. a theorem obtained from define_type). The third argument is a name under which
the resulting definition will be saved in the current theory segment. The fourth argu-
ment is a term giving the desired primitive recursive definition. The value returned by
new_recursive_definition is a theorem which states the primitive recursive definition

6In fact, new prim rec definition is defined in ML using the more general tools provided by the type
definition package.

5.7. The type definition package 115

requested by the user. This theorem is derived by formal proof from an instance of the
general primitive recursion theorem given as the second argument.

If the ML variable op_Axiom is bound to a theorem of the form returned by define_type,
then evaluating:

new_recursive_definition
‘flag‘ op Axiom ‘name‘ " primitive recursive definition on op"

automatically proves the existence of the primitive recursive function supplied as the
fourth argument, and then declares a new constant in the current theory with this
definition as its specification. This constant specification is returned as a theorem and is
saved in the current theory segment under the name name. If flag is true, the constant
is given infix status. Failure occurs if:

(i) HOL cannot prove there is a function satisfying the defining equations supplied
by the user (i.e. the term supplied to new_recursive_definition is not a well-
formed primitive recursive definition on values of type op);

(ii) any other condition for making a constant specification is violated (see the
failure conditions for new_specification in Section 3.7.2.2).

Curried functions defined using new_recursive_definition can be recursive on any
one of their arguments. Furthermore, defining equations need not be given for all the
constructors of the concrete type in question. See the examples given in the next section,
or the examples of functions defined on num given in Section 4.6.2.1 for more details.

The ML function

prove_rec_fn_exists : thm -> term -> thm

is a version of new_recursive_definition which proves only that the required function
exists; it does not make a constant specification. The first argument is a theorem of
the form returned by define_type, and the second is a user-supplied primitive recur-
sive function definition. The theorem which is returned asserts the existence of the
recursively-defined function in question (if it is primitive recursive over the type char-
acterized by the theorem given as the first argument).

5.7.2.1 More examples

Continuing the example session started above in Section 5.7.1.4, the following inter-
actions with the system show how the ML function new_recursive_definition can be
used to define functions on concrete types, which have themselves been defined using
define_type.

Given the characterizing theorem btree_Axiom for the type of labelled binary trees
defined in Section 5.7.1.4, a recursive function Leaves, which computes the number of
leaf nodes in a binary tree, can be defined recursively in HOL as shown below:

116 Chapter 5. Commonly-used Libraries

5#let Leaves =
new_recursive_definition false btree_Axiom ‘Leaves‘
"(Leaves (LEAF (x:*)) = 1) /\
(Leaves (NODE t1 t2) = (Leaves t1) + (Leaves t2))";;
Leaves =
|- (!x. Leaves(LEAF x) = 1) /\

(!t1 t2. Leaves(NODE t1 t2) = (Leaves t1) + (Leaves t2))

The result of the call to new_recursive_definition is a theorem which states that the
constant Leaves satisfies the primitive-recursive defining equations supplied by the user.
This theorem is derived automatically from an instance of the general primitive recur-
sion theorem for binary trees (btree_Axiom) and an appropriate constant specification
for the constant Leaves.

The function defined using new_recursive_definition need not, in fact, be recursive.
Here is the definition of a predicate IsLeaf, which is true of binary trees which are
leaves, but is false of the internal nodes in a binary tree:

6#let IsLeaf =
new_recursive_definition false btree_Axiom ‘IsLeaf‘
"(IsLeaf (NODE t1 t2) = F) /\ (IsLeaf (LEAF (x:*)) = T)";;
IsLeaf = |- (!t1 t2. IsLeaf(NODE t1 t2) = F) /\ (!x. IsLeaf(LEAF x) = T)

Note that two equations defining a (recursive or non-recursive) function on binary trees
by cases can be given in either order. Here, the NODE case is given first, and the LEAF

case second. The reverse order was used in the above definition of Leaves.
The ML function new_recursive_definition also allows the user to partially specify

the value of a function defined on a concrete type, by allowing defining equations for
some of the constructors to be omitted. Here, for example, is the definition of a function
Label which extracts the label from a leaf node. The value of Label applied to an internal
node is left unspecified:

7#let Label =
new_recursive_definition false btree_Axiom ‘Label‘
"Label (LEAF (x:*)) = x";;
Label = |- !x. Label(LEAF x) = x

Curried functions can also be defined, and the recursion can be on any argument.
The next definition defines an infix (curried) function << which expresses the idea that
one tree is a proper subtree of another.

8#let Subtree =
new_recursive_definition true btree_Axiom ‘Subtree‘
"(<< (t:(*)btree) (LEAF (x:*)) = F) /\
(<< t (NODE t1 t2) = ((t=t1) \/ (t=t2) \/ (<< t t1) \/ (<< t t2)))";;
Subtree =
|- (!t x. t << (LEAF x) = F) /\

(!t t1 t2.
t << (NODE t1 t2) = (t = t1) \/ (t = t2) \/ t << t1 \/ t << t2)

5.7. The type definition package 117

Note that the first argument to the ML function is true (to indicate that the function be-
ing defined is to have infix status) and that the constant << is an infix after the definition
has been made. Furthermore, the function << is recursive on its second argument.

Finally, the function new_recursive_definition can also be used to define functions
by cases on enumerated types. For example, a predicate One, which is true of only the
value ONE of the three-valued type three defined above in Section 5.7.1.4, can be defined
as follows:

9#let One = new_recursive_definition false three_Axiom ‘One‘
"(One ONE = T) /\ (One TWO = F) /\ (One THREE = F)";;
One = |- (One ONE = T) /\ (One TWO = F) /\ (One THREE = F)

The existence only of any function definable using new_recursive_definition can be
proved using prove_rec_fn_exists. For example:

10#close_theory();;
() : void

#let exists = prove_rec_fn_exists three_Axiom
"(f ONE = T) /\ (f TWO = F) /\ (f THREE = F)";;
exists = |- ?f. (f ONE = T) /\ (f TWO = F) /\ (f THREE = F)

The resulting theorem simply states the existence of the required function. Here, a
constant is not defined, and the user need not be in draft mode.

5.7.3 Structural induction

For any concrete recursive type definable using the HOL type definition package there
is a structural induction theorem which states the validity of proof by induction on the
structure of the type’s values. The ML function

prove_induction_thm : thm -> thm

can be used to derive a structural induction theorem for any concrete recursive type
defined using define_type. If the ML variable op_Axiom is bound to a theorem of the
form returned by define_type, then executing

prove_induction_thm op_Axiom

will prove and return a structural induction theorem for the concrete type op. The
‘induction’ theorem is degenerate in the case of non-recursive types (see the examples
given below). Failure occurs, or an unpredictable output theorem is returned, if the
input theorem does not have the form of a theorem returned by define_type.

118 Chapter 5. Commonly-used Libraries

5.7.3.1 Examples

A structural induction theorem on the type of binary trees defined in the session begin-
ning on Section 5.7.1.4 can be proved by:

11#let btree_Induct = prove_induction_thm btree_Axiom;;
btree_Induct =
|- !P.

(!x. P(LEAF x)) /\ (!b1 b2. P b1 /\ P b2 ==> P(NODE b1 b2)) ==>
(!b. P b)

The output theorem states that a predicate P is true of all binary trees if it is true of
all labelled leaf nodes, and whenever it is true of two binary trees b1 and b2 it is also
true of the binary tree NODE b1 b2, in which b1 and b2 occur as immediate left and right
subtrees.

For non-recursive types, the induction theorem returned by prove_induction_thm is
degenerate: there are no ‘step’ cases in the induction. For the two types three and rec

defined in the preceding interactions of this session, the induction theorems are:

12#let three_Induct = prove_induction_thm three_Axiom;;
three_Induct = |- !P. P ONE /\ P TWO /\ P THREE ==> (!t. P t)

#let rec_Induct = prove_induction_thm rec_Axiom;;
rec_Induct = |- !P. (!b0 b1 b2. P(REC b0 b1 b2)) ==> (!r. P r)

Here, induction simply reduces to the consideration of cases, one for each of the con-
structors for the concrete type involved.

5.7.4 Structural induction tactics

This section has been included here for reference because it relates chiefly to the type
definition package, but it involves concepts not defined until later, in Chapter 10. Tac-
tics, goals and subgoals are defined in Section 10.1; and theorem continuations, in Sec-
tion 10.5. MAP_EVERY is defined in Section 10.5.1. ASSUME_TAC is defined in Section 10.3.
MP_TAC and INDUCT_TAC can be found in REFERENCE.

The ML function

INDUCT_THEN : thm -> (thm -> tactic) -> tactic

can be used to generate a structural induction tactic for any concrete types definable
using define_type. The first argument is an induction theorem of the form returned
by the function prove_induction_thm discussed in the previous section. The second
argument is a theorem continuation (see Chapter 10) that determines what is to be
done with the induction hypotheses when the resulting tactic is applied to a goal.

5.7. The type definition package 119

If th is an induction theorem for a concrete type op with m constructors C1, . . . , Cm
(i.e. a theorem of the kind returned by prove_induction_thm) and F is a theorem con-
tinuation, then the tactic INDUCT_THEN th F will reduce a goal (Γ,"!x:op.t[x]") to the
collection of m induction subgoals generated by:

MAP_EVERY F [th1
1; . . . ; thk1

1] (Γ, "t[C1 x
1
1 . . . x

k1
1]"),

...
MAP_EVERY F [th1

m; . . . ; thkmm] (Γ, "t[Cm x1
m . . . xkmm]")

where thji is a theorem of the form |- t[xji] asserting the truth of t[xji] for the jth recur-
sive argument (for non-recursive arguments, there will be no thji in the list) of the ith
constructor Ci (for 1 ≤ i ≤ m).

The most common use of INDUCT_THEN is in conjunction with the theorem continua-
tion ASSUME_TAC. For example, the built-in induction tactic INDUCT_TAC for mathematical
induction on the natural numbers is defined in ML by:

let INDUCT_TAC = INDUCT_THEN INDUCTION ASSUME_TAC

This built-in tactic reduces a goal (Γ,"!n.t[n]") to a basis subgoal (Γ,"t[0]") and a
step subgoal (Γ ∪ {"t[n]"},"t[SUC n]"). The extra assumption "t[n]" (i.e. the induction
hypothesis) is added to the assumptions Γ by ASSUME_TAC.

By contrast, the induction tactic INDUCT_MP_TAC (which is not built-in) defined by:

let INDUCT_MP_TAC = INDUCT_THEN INDUCTION MP_TAC

reduces a goal (Γ,"!n.t[n]") to a basis subgoal (Γ,"t[0]") and an induction step subgoal
(Γ, "t[n] ==> t[SUC n]"). Here, the theorem continuation MP_TAC makes the induction
hypothesis an antecedent of the step subgoal, rather than an assumption.

As this example illustrates, the theorem continuation F in an induction tactic

INDUCT_THEN th F

generated using an induction theorem th can be thought of as a function which deter-
mines what is to be done with the induction hypotheses corresponding to the recursive
arguments of constructors in the step cases of a proof by structural induction. When F
is ASSUME_TAC, the induction hypotheses become assumptions in the subgoals generated;
and when F is MP_TAC, the induction hypotheses become the antecedents of implicative
subgoals. Other theorem continuations (for which, see Chapter 10 and REFERENCE) can
also be used.

120 Chapter 5. Commonly-used Libraries

5.7.5 Other tools

The function

prove_constructors_one_one : thm -> thm

proves that the constructors of a concrete type which take arguments are one-to-one.
The argument to prove_constructors_one_one is a theorem of the form returned by
define_type.

The function

prove_constructors_distinct : thm -> thm

proves that the constructors of a concrete type yield distinct values. The argument to
prove_constructors_distinct is again a theorem of the form returned by define_type.

The function

prove_cases_thm : thm -> thm

proves a cases theorem for any concrete type. Such a theorem states that every value
can be constructed using one of the type’s constructors. This property follows more
easily (and therefore is faster to prove) from induction than from primitive recursion,
so the function prove_cases_thm takes as an argument an induction theorem of the kind
returned by prove_induction_thm.

These auxiliary tools work for any concrete type definable using define_type.

5.7.5.1 Examples

The following interactions with the system show the proof that the constructor LEAF

for the type (*)btree is one-one, and also that the constructor REC for the type rec is
one-to-one.

13#let LEAF_one_one = prove_constructors_one_one btree_Axiom;;
LEAF_one_one =
|- (!x x’. (LEAF x = LEAF x’) = (x = x’)) /\

(!b1 b2 b1’ b2’.
(NODE b1 b2 = NODE b1’ b2’) = (b1 = b1’) /\ (b2 = b2’))

#let REC_one_one = prove_constructors_one_one rec_Axiom;;
REC_one_one =
|- !b0 b1 b2 b0’ b1’ b2’.

(REC b0 b1 b2 = REC b0’ b1’ b2’) =
(b0 = b0’) /\ (b1 = b1’) /\ (b2 = b2’)

The function prove_constructors_one_one fails when the concrete type involved has
no constructors that take arguments. For example:

5.7. The type definition package 121

14#let th = prove_constructors_one_one three_Axiom;;
evaluation failed prove_constructors_one_one: invalid input theorem

The function prove_constructors_distinct returns the theorem stating that the con-
structors of a concrete type yield pair-wise distinct values. For example:

15#let NOT_LEAF_NODE = prove_constructors_distinct btree_Axiom;;
NOT_LEAF_NODE = |- !x b1 b2. ~(LEAF x = NODE b1 b2)

#let three_distinct = prove_constructors_distinct three_Axiom;;
three_distinct = |- ~(ONE = TWO) /\ ~(ONE = THREE) /\ ~(TWO = THREE)

Cases theorems are proved from structural induction theorems. For the binary tree
example considered in the present session, here is the cases theorem:

16#let btree_cases = prove_cases_thm btree_Induct;;
btree_cases = |- !b. (?x. b = LEAF x) \/ (?b1 b2. b = NODE b1 b2)

Note that the structural induction theorem for binary trees, btree_Induct, is used.

122 Chapter 5. Commonly-used Libraries

Chapter 6

Miscellaneous Features

This section describes some of the features that exist for managing the interface to the
HOL system.

• A help system.

• A theorem database.

• A datatype database.

• A tool for dependency maintenance in large developments.

• Flags for controlling the parsing and printing of terms.

• A function for adjusting the maximum depth to which terms and theorems are
printed by the pretty printer (the default is 500).

• Functions for counting the number of primitive inferences done in an evaluation,
and timing it.

• A version of the system which allows the implicit invocation of the parsers for HOL
types and terms.

6.1 Help

There are several kinds of help available in hol98, all accessible through the same incan-
tation:

help <string>;

The kinds of help available are:

MoscowML help. This is uniformly excellent. Information for library routines is avail-
able, whether the library is loaded or not via help "Lib".

HOL overview. This is a short summary of important information about hol98.

123

124 Chapter 6. Miscellaneous Features

HOL help. This is the on-line help from Hol88 and Hol90, and is intended to docu-
ment all HOL-specific functions available to the user. It is very detailed and often
accurate; however, it can be out-of-date, refer to HOL90 or HOL88, or even be
missing!

HOL structure information. For most structures in the hol98 source, one can get a
listing of the entrypoints found in the accompanying signature. This is helpful for
locating functions and is automatically derived from the system sources, so it is
alway up-to-date.

Theory facts. These are automatically derived from theory files, so they are always up-
to-date. The signature of each theory is available (since theories are represented
by structures in hol98). Also, each axiom, definition, and theorem in the theory
can be accessed by name in the help system; the theorem itself is given.

Therefore the following example queries can be made:

help "installPP" Moscow ML help
help "hol" hol98 overview
help "aconv" on-line HOL help
help "Tactic" HOL source structure information
help "boolTheory" theory structure signature
help "list_Axiom" theory structure signature and theorem statement

6.2 Holmake—a tool for maintaining HOL formalizations

The purpose of Holmake1 is to maintain dependencies in a hol98 source directory. A
single invocation of Holmake will compute dependencies between files, (re-)compile
plain ML code, (re-)compile and execute theory scripts, and (re-)compile the result-
ing theory modules. Holmake does not require the user to provide any dependency
information,e.g., a Makefile. Holmake can be very convenient to use, but there are some
conventions and restrictions on it that must be followed, which we will describe in the
sequel.
Holmake can be accessed through

<hol-dir>/bin/Holmake.

The development model that Holmake is designed to support is that there are two
modes of work: theory construction and system revision. In ‘theory construction’ mode,

1Holmake was first written by Ken Larsen and then extended by Michael Norrish.

6.2. Holmake—a tool for maintaining HOL formalizations 125

the user builds up a theory by interacting with HOL, perhaps over many sessions. In
‘system rebuild’ mode, a component that others depend on has been altered, so all
modules dependent on it have to be brought up to date. System rebuild mode is simpler
so we deal with it first.

6.2.1 System Rebuild

A system rebuild happens when an existing theory has been improved in some way
(augmented with a new theorem, a change to a definition, etc.), or perhaps some sup-
port ML code has been modified or added to the formalization under development. The
user needs to find and recompile just those modules affected by the change. This is what
an invocation of Holmake does, by identifying the out-of-date modules and re-compiling
and re-executing them.

6.2.2 Theory construction

To start a theory construction, some context (semantic, and also proof support) is estab-
lished, typically by loading parent theories and useful libraries. In the course of build-
ing the theory, the user keeps track of the ML—which, for example, establishes context,
makes definitions, builds and invokes tactics, and saves theorems—in a text file. This
file is used to achieve inter-session persistence of the theory being constructed, i.e.,
the text file resulting from session n is “use”d to start session n + 1; after that, theory
construction resumes.

Once the user finishes the perhaps long and arduous task of constructing a theory, the
user should

1. make the script separately compilable;

2. invoke Holmake. This will (a) compile and execute the script file; and (b) compile
the resulting theory file. After this, the theory file is available for use.

6.2.3 Making the script separately compilable

First, the invocation

val _ = export_theory();

should be added at the end of the file. When the script is finally executed, this call
writes the theory to disk.

Second, we address a crucial environmental issue: if a theory script has been con-
structed using <holdir>/bin/hol, then it has been developed in an environment where
some commonly used structures, e.g., Tactic, have already been loaded and opened for

126 Chapter 6. Miscellaneous Features

the user’s convenience. When we wish to apply Holmake to a script developed in this
way, we have to take some extra steps to ensure that the compilation environment also
provides these structures. In the common case, this is simple; one must only add, at the
head of the theory script, the following “boilerplate”:

open HolKernel Parse basicHol90Lib;

infix THEN THENL THENC ORELSE ORELSEC THEN_TCL ORELSE_TCL ## |->;

infixr -->;

This will duplicate the starting environment that one obtains with <holdir>/bin/hol

and <holdir>/bin/hol.unquote.
Now the script should be separately compilable. Invoke Holmake to check; MoscowML

will flag any unaccounted-for identifiers it finds. The user has to resolve these, either
by using the ‘dot’ notation to locate the identifier for the compiler, or by opening the
relevant module. This “compile/resolve-identifier” loop should continue until Holmake
succeeds in compiling the module.

The following notes may be of some further help.

1. The filenames of theory scripts must follow the following convention: a HOL the-
ory script for theory “x” should be named xScript.sml. When export_theory is
called during an invocation of Holmake, the files xTheory.sig and xTheory.sml

will be generated and then compiled.

2. In the MoscowML batch compiler, modules are not allowed to have unbound top-
level expressions. Hence, something like the following is not allowed:

new_theory "ted";

To make Moscow ML happy, one must instead write something like

val _ = new_theory "ted";

3. In the interactive system, one has to explicitly load modules; on the other hand,
the batch compiler will load modules automatically. For example, in order to
execute open Foo (or refer to values in Foo) in the interactive system, one must
first have executed load "Foo". Contrarily, the batch compiler will reject files
having occurrences of load, since load is only defined for the interactive system.

4. Take care not to have the string ”Theory” embedded in the name of any of your
files. hol98 generates files containing this string, and when it cleans up after itself,
it removes such files using a regular expression. This will also remove other files
with names containing ”Theory”. For example, if, in your development directory,

6.2. Holmake—a tool for maintaining HOL formalizations 127

you had a file of ML code named MyTheory.sml and you also were managing a
hol98 development there with Holmake, then MyTheory.sml would get deleted if
Holmake clean was invoked.

5. We can see that some users may not wish to use (some of) the support provided
by basicHol90Lib, since it is becoming dated. In that case, the same general
principle set out above will apply: the user must ensure that the compilation
environment for a theory script is the same as the interactive environment it was
developed in.

6.2.4 Summary

A complete theory construction is performed by the following steps:

• Construct theory script, perhaps over many sessions;

• Transform script into separately compilable form;

• Invoke Holmake to generate the theory and compile it.

After that, the theory is usable as an ML module.

6.2.5 What Holmake doesn’t do

Holmake only works properly on the current directory. Holmake will rebuild files in the
current directory if something it depends on from another directory is fresher than it is,
but it will not do any analysis on files in other directories. If one is developing a system
over more than one directory, one should write a master Makefile (or shell script) that
invokes Holmake in the subsidiary directories, in the correct order, i.e.., such that there
never is an out-of-date dependence leading outside of the current directory. This should
always be achievable, simply by ordering the directories in the order that one would
have to “use” files in them.

6.2.6 Holmake’s command-line arguments

Like make, Holmake takes command-line arguments corresponding to the targets that
the user desires to build. If there are none, then Holmake will attempt to build all ML
modules and HOL theories it can detect in the current directory. In addition, there are
three special targets that can be used:

clean Removes all compiled files.

128 Chapter 6. Miscellaneous Features

cleanDeps Removes all of the pre-computed dependency files. This can be an important
thing to do if, for example, you have introduced a new .sig file on top of an
existing .sml file.

cleanAll Removes all compiled files as well as all of the hidden dependency informa-
tion.

Finally, the user can directly affect the workings of Holmake with the following command-
line options:

-I <directory> Look in specified directory for additional MoscowML object files, in-
cluding other HOL theories. This option can be repeated, with multiple -I’s to
allow for multiple directories to be referenced.

-d <file> Ignore the given file and don’t try to build it. The file may be rebuilt anyway
if other files you have specified depend on it. This is useful to stop Holmake from
attempting to compile files that are interactive scripts (include use of load or use,
for example).

-f <theory> Toggles whether or not a theory should be built in “fast” mode. Fast
building causes tactic proofs (invocations of prove and store thm) to automati-
cally succeed. This lack of soundness is marked by the fast proof oracle tag. This
tag will appear on all theorems proved in this way and all subsequent theorems
that depend on such theorems. Holmake’s default is not to build in fast mode.

--fast Makes Holmake’s default be to build in fast mode (see above).

--help or -h Prints out a useful option summary and exits.

--holdir <directory> Associate this build with the given HOL directory, rather than
the one this version of Holmake was configured to use by default.

--no sigobj Do not link against HOL system’s directory of HOL system files. Use of this
option goes some way towards turning Holmake into a general MoscowML make

system. However, it will still attempt to do “HOL things” with files whose names
end in Script and Theory.

--qof Standing for “quit on failure”, if a tactic fails to prove a theorem, quit the build.
The default is to use mk thm to assert that the failed goal is true so that the build
can continue and other theorems proved.

--rebuild deps or -r Forces Holmake to always rebuild the dependency information,
whether or not it thinks it needs to.

6.3. Flags for the HOL logic 129

--version or -v Show some brief version information. As of this writing, Holmake is at
version 2.1.1.

Holmake should never exit with the MoscowML message “Uncaught exception”. Such
behaviour is a bug, please report it!

6.3 Flags for the HOL logic

The subset of flags that control aspects of HOL relating to the logic is summarized in the
table below.

Settable system flags

Flag Function Default value

timing Print number of theorems proved false

show_types Prints types in quotations false

theory_pp Pretty printing of theory files false

type_error Verbose type checking errors in quotations true

interface_print Causes inverse of interface map true
to be used when printing

6.4 Hiding constants

The following function can be used to hide the constant status of a name from the
quotation parser.

hide_constant : string -> void

Evaluating hide_constant ‘x‘ makes the quotation parser treat x as a variable (lexical
rules permitting), even if x is the name of a constant in the current theory (constants
and variables can have the same name). This is useful if one wants to use variables with
the same names as previously declared (or built-in) constants (e.g. o, I, S etc.). The
name x is still a constant for the constructors, theories, etc; hide_constant affects only
parsing.

Hiding a constant and then attempting to declare it as a new constant will fail (as it
must, if the system is to remain sound).

The function

unhide_constant : string -> void

130 Chapter 6. Miscellaneous Features

undoes the hiding; it fails if its argument is not a previously hidden constant.
The function:

is_hidden : string -> bool

tests whether a string is the name of a hidden constant.

6.5 Adjusting the pretty-print depth

The following ML function can be used to adjust the maximum depth of printing.

max_print_depth : int -> int

The default print depth is 500. Evaluating max_print_depth n sets the maximum to n

and returns the previous value of the maximum. Subterms nested more deeply than the
maximum print depth are printed as &. For example:

1#ADD_CLAUSES;;
Theorem ADD_CLAUSES autoloaded from theory ‘arithmetic‘.
ADD_CLAUSES =
|- (0 + m = m) /\

(m + 0 = m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))

|- (0 + m = m) /\
(m + 0 = m) /\
((SUC m) + n = SUC(m + n)) /\
(m + (SUC n) = SUC(m + n))

#max_print_depth 7;;
500 : int

#ADD_CLAUSES;;
|- (& + & = m) /\ (& + & = m) /\ ((& + & = &(&) /\ (& + (& = &(&)

#max_print_depth 5;;
7 : int

#ADD_CLAUSES;;
|- (& /\ (& /\ (& /\ (&

#max_print_depth 3;;
5 : int

#ADD_CLAUSES;;
|- &

6.6. Timing and counting theorems 131

6.6 Timing and counting theorems

Whenever HOL performs a primitive inference (or accepts an axiom or definition) a
counter is incremented. The value of this counter is returned by the function:

thm_count : void -> int

This counter can be reset with the function:

set_thm_count : int -> int

The previous value of the counter is returned.
The following function is used to switch ML into a mode in which the number of

primitive inferences done during each top-level interaction is shown. Run-time and
garbage collection time are also shown.

timer : bool -> bool

Executing timer true causes the number of primitive inferences and timings to be
printed; timer false switches the printing off. The previous setting is returned. Ex-
ecuting timer b is equivalent to setting the flag timing to the value b.

6.7 Quotation preprocessing

A person usually works with hol98 by interacting with the ML top level loop in order to
build formalizations and perform proofs. In this setting, the user often needs to enter
expressions of the HOL logic to ML, and interpret the resulting responses. Since the ML
representations of the types, terms, and theorems of the HOL logic are quite unreadable
in their ‘raw’ form, so-called prettyprinters for HOL logic expressions are automatically
invoked by the ML top level when printing output.

Similarly, types and terms often have to be constructed by the user, e.g., in order to
make definitions, state goals to prove, provide existential witnesses, etc. Since it would
be unbearable to make a type or term of any size ‘by hand’, the system comes equipped
with parsers for type and term expressions. The parser for types is called Type, and
the parser for terms is called Term. These parsers take quotations. A quotation ‘. . .

‘ is much like an SML string, except that it can span several lines without requiring
awkward backslashes, as an ML string would.2

For added convenience, the HOL system distribution supplies a version of hol98 that
features a combined parser that accepts both types and terms. Enclosing some object
language concrete syntax between occurrences of ‘‘ will result in the correct parser
being invoked. For example

2Quotations were a feature in the original LCF system. See the MoscowML User’s Manual for more
information.

132 Chapter 6. Miscellaneous Features

‘‘x /\ y /\ z ==> ?p. p‘‘

will parse as a term while

‘‘:’a -> (’b -> ’h) -> bool‘‘

parses as an HOL type. Note that the concrete syntax given in the quotation for a type
needs to provide a hint: the type parser will only be called if the first character after the
leading ‘‘ is a colon (:).

Knowledgable ML programmers will notice that the idiom ‘‘. . . ‘‘ is not ML-typable;
for that reason, it is implemented as a pre-processor to ML, thanks to work by Richard
Boulton. Users who wish to use the pre-processor should invoke <hol-dir>/bin/hol.unquote.
Holmake will accept source files having occurrences of ‘‘.

Part III

Theorem Proving with HOL

Chapter 7

Syntax

The HOL logic is a classical higher-order predicate calculus. Its syntax enjoys two main
differences from the syntax of standard first order logic.1 First, there is no distinction in
HOL between terms and formulas: HOL has only terms. Second, each term has a type:
types are used in order to build well-formed terms. There are two ways to construct
types and terms in HOL: by use of a parser, or by use of the programmer’s interface. In
this chapter, we will focus on the concrete syntax accepted by the parsers, leaving the
programmer’s interface for Chapter ??.

7.1 Types

A HOL type can be a variable, a constant, or a compound type, which is a constant of
arity n applied to a list of n types.

hol type ::= ’ident (type variable)
| bool (type of truth values)
| ind (type of individuals)
| hol type -> hol type (function arrow)
| hol type ident hol type (binary compound type)
| ident (nullary type constant)
| hol type ident (unary compound type)
| (hol type1, . . . , hol typen)ident (compound type)

Type constants are also known as type operators. They must be alphanumeric. Type
variables are alphanumerics written with a leading prime (’). In hol98, the type con-
stants bool, fun, and ind are primitive. The introduction of new type constants is
described in Chapter ??. bool is the two element type of truth values. The binary op-
erator fun is used to denote function types; it can be written with an infix arrow. The
nullary type constant ind denotes an infinite set of individuals; it is used for a few highly
technical developments in the system and can be ignored by beginners. Thus

’a -> ’b

(bool -> ’a) -> ind

1We assume the reader is familiar with first order logic.

135

136 Chapter 7. Syntax

are both well-formed types. The function arrow is ”right associative”, which means that
ambiguous uses of the arrow in types are resolved by adding parentheses in a right-to-
left sweep: thus the type expression

ind -> ind -> ind -> ind

is identical to

ind -> (ind -> (ind -> ind)).

The product (#) and sum (+) are other infix type operators, also right associative; how-
ever, they are not loaded by default in hol98. How to load in useful logical context is
dealt with in Chapter ??.

7.2 Terms

Ultimately, a HOL term can only be a variable, a constant, an application, or a lambda
term.

term ::= ident (variable or constant)
| term term (combination)
| \ident. term (lambda abstraction)

In the system, the usual logical operators have already been defined, including truth (T),
falsity (F), negation (~), equality (=), conjunction (/\), disjunction (\/), implication
(==>), universal (!) and existential (?) quantification, and an indefinite description
operator (@). As well, the basis includes conditional, lambda, and ‘let’ expressions.

7.2. Terms 137

Thus the set of terms available is, in general, an extension of the following grammar:

term ::= term : hol type (type constraint)
| term term (application)
| ~term (negation)
| term = term (equality)
| term ==> term (implication)
| term \/ term (disjunction)
| term /\ term (conjunction)
| if term then term else term (conditional)
| \ident1 . . . identn. term (lambda abstraction)
| !ident1 . . . identn. term (forall)
| ?ident1 . . . identn. term (exists)
| @ident1 . . . identn. term (choose)
| ?!ident1 . . . identn. term (exists-unique)
| let ident = term

[and ident = term]∗ in term (let expression)
| T (truth)
| F (falsity)
| ident (constant or variable)
| (term) (parenthesized term)

Some examples may be found in Table 7.1. Term application can be iterated. Appli-
cation is left associative so that term term term . . . term is equivalent in the eyes of the
parser to (. . . ((term term) term) . . .) term.

The lexical structure for term identifiers is much like that for ML: identifiers can be
alphanumeric or symbolic. Variables must be alphanumeric. A symbolic identifier is any
concatenation of the characters in the following list:

#?+*/\\=<>&%@!,:;_|~-

with the exception of the keywords \\, ;, =>, |, and : (colon). Any alphanumeric can
be a constant except the keywords let, in, and, and of.

x = T x is equal to true.
!x. Person x ==> Mortal x All persons are mortal.

!x y z. (x ==> y) /\ (y ==> z) ==> x ==> z Implication is transitive.
!x. P x ==> Q x P is a subset of Q

S = \f g x. f x (g x) Definition of a famous combinator.

Table 7.1: Concrete Syntax Examples

138 Chapter 7. Syntax

7.2.1 Constants

The HOL grammar gets extended when a new constant is introduced. The introduction
of new constants will be discussed in section ??. In order to provide some notational
flexibility, constants come in various flavours or fixities: besides being an ordinary con-
stant (with a fixity of Prefix), constants can also be binders, true prefixes2, suffixes, infixes,
or closefixes. More generally, terms can also be represented using reasonably arbitrary
mixfix specifications. The degree to which terms bind their associated arguments is
known as precedence. The higher this number, the tighter the binding. For example,
when introduced, + has a precedence of 500, while the tighter binding multiplication
(*) has a precedence of 600.

7.2.1.1 Binders

A binder is a construct that binds a variable; for example, the universal quantifier. In
HOL, this is represented using a trick that goes back to Alonzo Church: a binder is a
constant that takes a lambda abstraction as its argument. The lambda binding is used
to implement the binding of the construct. This is an elegant and uniform solution.
Thus the concrete syntax !v. M is represented by the application of the constant ! to
the abstraction (\v. M).

The most common binders are !, ?, ?!, and @. Sometimes one wants to iterate appli-
cations of the same binder, e.g.,

!x. !y. ?p. ?q. ?r. term.

This can instead be rendered

!x y. ?p q r. term.

7.2.1.2 Infixes

Infix constants can associate in one of three different ways: right, left or not at all. (If +
were non-associative, then 3 + 4 + 5 would fail to parse; one would have to write (3 +

4) + 5 or 3 + (4 + 5) depending on the desired meaning). The precedence ordering
for the initial set of infixes is /\, \/, ==>, =, , (comma3). Moreover, all of these constants
are right associative. Thus

X /\ Y ==> C \/ D, P = E, Q

is equal to

2The use of the term “true prefix” is forced upon us by the history of the system, which reserved the
classification “prefix” for terms without any special syntactic features.

3When pairTheory has been loaded.

7.2. Terms 139

((X /\ Y) ==> (C \/ D)), ((P = E), Q).

An expression

term <infix> term

is internally represented as

((<infix> term) term)

.

7.2.1.3 True prefixes

Where infixes appear between their arguments, true prefixes appear before theirs. This
might initially appear to be the same thing as happens with normal function application
(is f in f(x) not acting as a prefix?), but in fact, it is useful to allow for prefixes to have
binding power less than that associated with function application. An example of this
is ~, logical negation. This is a prefix with lower precedence than function application.
Normally

f x y is parsed as (f x) y

but

~ x y is parsed as ~ (x y)

because the precedence of ~ is lower than that of function application. The unary
negation symbol would also typically be defined as a true prefix, if only to allow one to
write

negop negop 3

(whatever negop happened to be) without needing extra parentheses.

7.2.1.4 Suffixes

Suffixes appear after their arguments. There are no suffixes introduced into the stan-
dard theories available in HOL, but users are always able to introduce their own if they
choose. Suffixes are associated with a precedence just as infixes and true prefixes are. If
p is a true prefix, i an infix, and s a suffix, then there are six possible orderings for the

140 Chapter 7. Syntax

three different operators based on their precedences, giving five parses for p t1 i t2 s

depending on the relative precedences:

Precedences
(lowest to highest) Parses

p, i, s p (t1 i (t2 s))
p, s, i p ((t1 i t2) s)
i, p, s (p t1) i (t2 s)
i, s, p (p t1) i (t2 s)
s, p, i (p (t1 i t2)) s
s, i, p ((p t1) i t2) s

7.2.2 Type constraints

A term can be constrained to be of a certain type. For example, X:bool constrains
the variable X to have type bool. Similarly, T:bool performs a (vacuous) constraint of
the constant T to bool. An attempt to constrain a term inappropriately will raise an
exception: for example,

if T then (X:ind) else (Y:bool)

will fail because both branches of a conditional must be of the same type. Type con-
straints can be seen as a suffix that binds more tightly than everything except function
application. Thus term . . . term : hol type is equal to (term . . . term) : hol type, but
x < y : num is a legitimate (though, again redundant) constraint on just the variable y.

The inclusion of : in the symbolic identifiers means that some constraints may need
to be separated by white space. For example,

$=:bool->bool->bool

will be broken up by the HOL lexer as

$=: bool -> bool -> bool

and parsed as an application of the symbolic identifier $=: to the argument list of terms
[bool, ->, bool, ->, bool]. A well-placed space will avoid this problem:

$= :bool->bool->bool

is parsed as the symbolic identifier ”=” constrained by a type.

7.2.2.1 Closefixes

Closefix terms are operators that completely enclose their arguments. An example one
might use in the development of a theory of denotational semantics is semantic brackets.
Thus, the HOL parsing facilities can be configured to allow one to write denotation x as
[| x |]. Closefixes are not associated with precedences because they can not compete
for arguments with other operators.

7.2. Terms 141

7.2.2.2 Type inference

Consider the term x = T. Each term (and all of its subterms), has a type in the HOL
logic. Now, T has type bool. This means that the constant = has type xty -> bool -> bool,
for some type xty. Since the type scheme for = is ’a -> ’a -> bool, we know that xty
must in fact be bool in order for the type instance to be well-formed. Knowing this, we
can deduce that the type of ‘x’ must be bool.

Ignoring the jargon (”scheme” and ”instance”) in the previous paragraph, we have
conducted a type assignment to the term structure, ending up with a well-typed term.
It would be very tedious for users to conduct such argumentation by hand for each term
entered to hol98. Thus, hol98 uses an adaptation of Milner’s type inference algorithm for
ML when constructing terms via parsing. At the end of type inference, unconstrained
type variables get assigned by the system. Usually, this assignment does the right thing.
However, at times, the most general type is not what is desired and the user must
add type constraints to the relevant subterms. For tricky situations, the global variable
show_types can be assigned. When this flag is set, the prettyprinters for terms and
theorems will show how types have been assigned to subterms. If you do not want the
system to assign type variables for you, the global variable guessing_tyvars can be set
to false, in which case the existence of unassigned type variables at the end of type
inference will raise an exception.

7.2.3 Expanded term grammar

There is some further syntax that is specially treated by the parser. The theory of pairs
introduces the infix pairing operator (,) as well as the corresponding infix product (#)
type operator. The theory of sets introduces notation for the empty set {} (or EMPTY),
membership (the infix IN) insertion (the infix INSERT), set comprehension, enumerated
sets, and many other defined constants. The theory of lists introduces the constants NIL
(the surface syntax [] can be used) and CONS, as well as notation for enumerated lists.
The theories of (Peano) numbers and strings introduce the constructors 0, SUC, "", and
STRING, as well as literals for numbers and strings. If the theory of restricted quantifiers
is present, syntax is provided for constraining bound variables by predicates.

Thus, if the theories of pairs, sets, numbers, strings, lists, and restricted quantifiers
are loaded, the HOL grammar is an extension of that in Table 7.2.

In the table, the varstruct (vstr) construct is used. A varstruct is (apparently) an
arbitrarily nested tuple of variables, where each variable only occurs once. The trans-
lation of varstructs into the internal abstract syntax trees is complex, so we avoid the

142 Chapter 7. Syntax

term ::= term : hol type (type constraint)
| term term (application)
| CONS term term (list builder)
| INSERT term term (set builder)
| SUC term (successor)
| ~term (negation)
| term = term (equality)
| term ==> term (implication)
| term \/ term (disjunction)
| term /\ term (conjunction)
| term < term (less-than)
| term + term (addition)
| term * term (multiplication)
| term - term (subtraction)
| term => term | term (conditional)
| \vstr1 . . . vstrn. term (lambda abstraction)
| !vstr1 . . . vstrn. term (forall)
| ?vstr1 . . . vstrn. term (exists)
| @vstr1 . . . vstrn. term (choose)
| ?!vstr1 . . . vstrn. term (exists-unique)
| let vstr = term

[and vstr = term]∗ in term (let expression)
| T (truth)
| F (falsity)
| [] (empty list)
| {} (empty set)
| (term,term) (pair)
| ident (constant or variable)
| numeral (numeric literal)
| "charseq" (string literal)
| (term) (parenthesized term)
| [term; . . . ;term] (enumerated list)
| {term; . . . ;term} (enumerated set)
| {term | term} (set comprehension)

Table 7.2: Expanded Term Grammar

7.3. Changes from older versions 143

explanation (for this draft).

vstr ::= ident : hol type
| ident
| vstr,vstr
| (vstr)
| (vstr::term)

The :: syntax is used with restricted quantifiers to allow arbitrary predicates to restrict
binding variables. Further to the above, the default grammar also allows restricted
quantification of all of a sequence of binding variables by putting the restriction at the
end of the sequence, thus with a universal quantification:

∀x y z :: P . Q(x, y, z)

Here the predicate P restricts all of x, y and z.
Also, in the term grammar a charseq is just a finite sequence of characters.

7.3 Changes from older versions

This section of the manual documents the (extensive) changes made to the parsing of
HOL terms and types in the Taupo release and beyond from the point of view of a user
who doesn’t want to know how to use the new facilities, but wants to make sure that
their old code continues to work cleanly.

The changes which may cause old terms to fail to parse are:

• The precedence of type annotations has completely changed. It is now a very
tight suffix (though with a precedence weaker than that associated with function
application), instead of a weak one. This means that (x,y:bool # bool) should
now be written as (x,y):bool # bool. The previous form will now be parsed as
a type annotation applying to just the y. This change brings the syntax of the logic
closer to that of SML and should make it generally easier to annotate tuples, as
one can now write

(x : τ1, y : τ2, . . . z : τn)

instead of

(x : τ1, (y : τ2, . . . (z : τn)))

where extra parentheses have had to be added just to allow one to write a fre-
quently occurring form of constraint.

144 Chapter 7. Syntax

• Most arithmetic operators are now left associative instead of right associative. In
particular, +, −, ∗ and DIV are all left associative. Similarly, the analogous opera-
tors in other numeric theories such as integer and real are also left associative.
This brings the HOL parser in line with standard mathematical practice.

• The binding equality in let expressions is treated exactly the same way as equali-
ties in other contexts. In previous versions of HOL, equalities in this context have
a different, weak binding precedence. This difference can be seen in the following
expression which parses successfully in the old version:

let x = p => q | r in Q

In Taupo releases and later, this expression will not parse because the conditional
expression binds to the left more weakly than the equality binds to the right, and
the parser ends up believing that the binding between the let and the in is not
an equality after all, as it should be.

• Old style conditional expressions in the right half of set comprehensions have to
be parenthesised to avoid confusing the parser. Thus

{ x | p => q | r } must be written { x | (p => q | r) }

Better yet, if-then-else syntax could be used for the conditional expression.

• Some lexical categories are more strictly policed. String literals (strings inside
double quotes) and numerals can’t be used unless the relevant theories have been
loaded. Nor can these literals be used as variables inside binding scopes.

7.3.1 Error messages

When complete this subsection will document all of the possibly confusing error mes-
sages that the new parser and lexing code might generate.

7.3.2 Parser tricks and magic

Here we describe how to achieve some useful effects with the new “Taupo” parser in
hol98 available in releases from Taupo-1 onwards.

Mix-fix syntax for if-then-else: The first step in bringing this about is to look at the
general shape of expressions of this form. In this case, it will be:

if . . . then . . . else . . .

7.3. Changes from older versions 145

Because there needs to be a “dangling” term to the right, the appropriate fixity
is TruePrefix. Knowing that the underlying term constant is called COND, the
simplest way to achieve the desired syntax is:

val _ = add_rule{term_name = "COND", fixity = TruePrefix 70,

pp_elements = [TOK "if", BreakSpace(1,0), TM,

BreakSpace(1,0),

TOK "then", BreakSpace(1,0), TM,

BreakSpace(1,0),

TOK "else", BreakSpace(1,0)],

paren_style = Always,

block_style =

(AroundEachPhrase, (PP.CONSISTENT, 0))};

The actual rule is slightly more complicated, and is in src/bool/boolScript.sml.

Mix-fix syntax for term substitution: Here we want to be able to write something
like:

[t1 / t2] t3

denoting the substitution of t1 for t2 in t3, perhaps translating to SUB t1 t2 t3. This
looks like it should be another TruePrefix, but the choice of the square brackets
([and]) as delimiters would conflict with the concrete syntax for list literals if
we did this. Given that list literals are effectively of the CloseFix class, we need
to make our new syntax the same. This is easy enough to do: we set up syntax

[t1 / t2]

to map to SUB t1 t2 a value of a functional type, that when applied to a third
argument will look right.4 The rule for this is thus:

val _ = add_rule {term_name = "SUB", fixity = Closefix,

pp_elements = [TOK "[", TM, TOK "/", TM, TOK "]"],

paren_style = OnlyIfNecessary,

block_style =

(AroundEachPhrase, (PP.INCONSISTENT, 2))};

4Note that doing the same thing for the if-then-else example in the previous example would be inap-
propriate, as it would allow one to write

ifP thenQ else

without the trailing argument

146 Chapter 7. Syntax

Aliasing If one wants a special syntax to be an “alias” for a normal HOL form, this is
easy to achieve; both examples so far have effectively done this. However, if one
just wants to have a normal one-for-one substitution of one string for another, one
can’t use the grammar/syntax phase of parsing to do this. Instead, one can use the
overloading mechanism. For example, let us alias MEM for IS EL. First we should
allow for overloading on the new name at the exact type of the old. Thus:

val _ = allow_for_overloading_on ("MEM",

Type‘:’a -> ’a list -> bool‘);

The next step is to overload the original constant for the new name:

val _ = overload_on ("MEM", Term‘IS_EL‘);

Making addition right associative If one has a number of old scripts that assume ad-
dition is right associative because this is how HOL used to be, it might be too
much pain to convert. The trick is to remove all of the rules at the given level of
the grammar, and put them back as right associative infixes. The easiest way to
tell what rules are in the grammar is by inspection (use term grammar()). With
just arithmeticTheory loaded, the only infixes at level 500 are + and -. So, we
remove the rules for them:

val _ = app temp_remove_rules_for_term ["+", "-"];

And then we put them back with the appropriate associativity:

val _ = app (fn s => temp_add_infix(s, 500, RIGHT)) ["+", "-"];

Note that we use the temp versions of these two functions so that other theories
depending on this one won’t be affected. Further note that we can’t have two
infixes at the same level of precedence with different associativities, so we have to
remove both operators, not just addition.

Chapter 8

Derived Inference Rules

The notion of proof was defined in the abstract in Chapter 1: a proof of a sequent (Γ, t)

from a set of sequents ∆ (with respect to a deductive system D) was defined to be
a chain of sequents culminating in (Γ, t), such that every element of the chain either
belongs to ∆ or else follows from ∆ and earlier elements of the chain by deduction.
The notion of a theorem was also defined in Chapter 1: a theorem of a deductive system
is a sequent that follows from the empty set of sequents by deduction; i.e., it is the last
element of a proof from the empty set of sequents, in the deductive system. In this
section, proofs and theorems are made concrete in HOL.

The deductive system of HOL was sketched in Section 3.9, where the eight families
of primitive inferences making up the deductive system were specified by diagrams. It
was explained that these families of inferences are represented in HOL via ML functions,
and that theorems are represented by an ML abstract type called thm. The eight ML
functions corresponding to the inferences are operations of the type thm, and each of
the eight returns a value of type thm. It was explained that the type thm has primitive
destructors, but no primitive constructor; and that in that way, the logic is protected
against the computation of theorems except by functions representing primitive infer-
ences, or compositions of these.

Finally, the primitive HOL logic was supplemented by three primitive constants and
five axioms, to form the basic logic1. The primitive inferences, together with the prim-
itive constants, the five axioms, and a collection of definitions, give a starting point for
constructing proofs, and hence computing theorems. However, proving even the sim-
plest theorems from this minimal basis costs considerable effort. The basis does not
immediately provide the transitivity of equality, for example, or a means of universal
quantification; both of these themselves have to be derived.

8.1 Simple derivations

As an illustration of a proof in HOL the following chain of theorems forms a proof (from
the empty set, in the HOL deductive system), for the particular terms "t1" and "t2", both
of HOL type ":bool":

1This corresponds to the HOL theory BASIC-HOL; see Section ??

147

148 Chapter 8. Derived Inference Rules

1. t1 ==> t2 |- t1 ==> t2

2. t1 |- t1

3. t1 ==> t2, t1 |- t2

That is, the third theorem follows from the first and second.
In the session below, the proof is performed in the HOL system, using the ML functions

ASSUME and MP.

1#top_print print_all_thm;;
- : (thm -> void)

#let th1 = ASSUME "t1 ==> t2";;
th1 = t1 ==> t2 |- t1 ==> t2

#let th2 = ASSUME "t1:bool";;
th2 = t1 |- t1

#MP th1 th2;;
t1 ==> t2, t1 |- t2

More briefly, one could evaluate the following, and ‘count’ the invocations of functions
representing primitive inferences.

2#set_flag(‘timing‘, true);;
false : bool
Run time: 0.0s

#MP(ASSUME "t1 ==> t2")(ASSUME "t1:bool");;
t1 ==> t2, t1 |- t2
Run time: 0.0s
Intermediate theorems generated: 3

Each of the three inference steps of the abstract proof corresponds to the application of
an ML function in the performance of the proof in HOL; and each of the ML functions
corresponds to a primitive inference of the deductive system.

It is worth emphasising that, in either case, every primitive inference in the proof
chain is made, in the sense that for each inference, the corresponding ML function is
evaluated. That is, HOL permits no short-cut around the necessity of performing com-
plete proofs. The short-cut provided by derived inference rules (as implemented in ML)
is around the necessity of specifying every step; something that would be impossible for
a proof of any length. It can be seen from this that the derived rule, and its representa-
tion as an ML function, is essential to the HOL methodology; theorem proving would be
otherwise impossible.

8.1. Simple derivations 149

There are, of course, an infinite number of proofs, of the ‘form’ shown in the example,
that can be conducted in HOL: one for every pair of ":bool"-typed terms. Moreover,
every time a theorem of the form

t1 ⇒ t2, t1 ` t2

is required, its proof must be constructed anew. To capture the general pattern of
inference, an ML function can be written to implement an inference rule as a derivation
from the primitive inferences. Abstractly, a derived inference rule is a rule that can be
justified on the basis of the primitive inference rules (and/or the axioms). In the present
case, the rule required ‘undischarges’ assumptions. It is specified for HOL by

Γ |- t1 ==> t2
Γ ∪ {t1} |- t2

This general rule is valid because from a HOL theorem of the form Γ |- t1==>t2, the
theorem Γ ∪ {t1} |- t2 can be derived as for the specific instance above. The rule can
be implemented in ML as a function (UNDISCH, say) that calls the appropriate sequence
of primitive inferences. The ML definition of UNDISCH is simply

3#let UNDISCH th = MP th (ASSUME(fst(dest_imp(concl th))));;
UNDISCH = - : (thm -> thm)

This provides a function that maps a theorem to a theorem; that is, performs proofs in
HOL. The following session illustrates the use of the derived rule, on a consequence of
the axiom IMP_ANTISYM_AX. (The inferences are counted.) Assume that the printing of
theorems has been adjusted as above and th is bound as shown below:

1#th;;
|- (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)
Run time: 0.0s

#set_flag(‘timing‘,true);;
true : bool
Run time: 0.0s

#UNDISCH th;;
t1 ==> t2 |- (t2 ==> t1) ==> (t1 = t2)
Run time: 0.1s
Intermediate theorems generated: 2

#UNDISCH it;;
t1 ==> t2, t2 ==> t1 |- t1 = t2
Run time: 0.0s
Intermediate theorems generated: 2

150 Chapter 8. Derived Inference Rules

Each successful application of UNDISCH to a theorem invokes an application of ASSUME,
followed by an application of MP; UNDISCH constructs the 2-step proof for any given
theorem (of appropriate form). As can be seen, it relies on the class of ML functions
that access HOL syntax: in particular, concl to produce the conclusion of the theorem,
dest_imp to separate the implication, and the selector fst to choose the antecedent.

This particular example is very simple, but a derived inference rule can perform proofs
of arbitrary length. It can also make use of previously defined rules. In this way, the
normal inference patterns can be developed much more quickly and easily; transitivity,
generalization, and so on, support the familiar patterns of inference.

A number of derived inference rules are pre-defined when the HOL system is entered
(of which UNDISCH is one of the first). In Section 8.3, the abstract derivations are given
for the pre-defined rules that reflect the more usual inference patterns of the predicate
(and lambda) calculi. Like those shown, some of the pre-defined derived rules in HOL
generate relatively short proofs. Others invoke thousands of primitive inferences, and
clearly save a great deal of effort. Furthermore, rules can be defined by the user to
make still larger steps, or to implement more specialized patterns.

All of the pre-defined derived rules in HOL are described in REFERENCE.

8.2 Rewriting

Included in the set of derived inferences that are pre-defined in HOL is a group of rules
with complex definitions that do a limited amount of ‘automatic’ theorem-proving in
the form of rewriting. The ideas and implementation were originally developed by
Milner and Wadsworth for Edinburgh LCF, and were later implemented more flexibly
and efficiently by Paulson and Huet for Cambridge LCF. They appear in HOL in the
Cambridge form. The basic rewriting rule is REWRITE_RULE. All of the rewriting rules are
described in detail in REFERENCE.
REWRITE_RULE uses a list of equational theorems (theorems whose conclusions can be

regarded as having the form t1 = t2) to replace any subterms of an object theorem that
‘match’ t1 by the corresponding instance of t2. The rule matches recursively and to
any depth, until no more replacements can be made, using internally defined search,
matching and instantiation algorithms. The validity of REWRITE_RULE rests ultimately
on the primitive rules SUBST (for making the substitutions); INST_TYPE (for instantiating
types); and the derived rules for generalization and specialization (see Sections 8.3.13
and 8.3.11) for instantiating terms. The definition of REWRITE_RULE in ML also relies on
a large number of general and HOL-oriented ML functions. The implementation is partly
described in Chapter 9.

In practice, the derived rule REWRITE_RULE plays a central role in proofs, because it
takes over a very large number of inferences which may happen in a complex and

8.2. Rewriting 151

unpredictable order. It is unlike any other primitive or pre-defined rule, first because
of the number of inferences it generates2; and second because its outcome is often
unexpected. Its power is increased by the fact that any existing equational theorem can
be supplied as a ‘rewrite rule’, including a standard HOL set of pre-proved tautologies;
and these rewrite rules can interact with each other in the rewriting process to transform
the original theorem.

The application of REWRITE_RULE, in the session below, illustrates that replacements
are made at all levels of the structure of a term. The example is numerical; the infixes
"$>" and "$<" are the usual ‘greater than’ and ‘less than’ relations, respectively, and
"SUC", the usual successor function. Use is made of the pre-existing definition of "$>":
GREATER (see REFERENCE). The timing facility is used again, for interest, and the printing
of theorems is adjusted as above.

1#top_print print_all_thm;;
- : (thm -> void)

#set_flag(‘timing‘,true);;
false : bool
Run time: 0.0s

#REWRITE_RULE
[GREATER]
(ASSUME "SUC 4 > 0 = (SUC 3 > 0 = (SUC 2 > 0 = (SUC 1 > 0 = SUC 0 > 0)))");;
##Definition GREATER autoloaded from theory ‘arithmetic‘.
GREATER = |- !m n. m > n = n < m
Run time: 1.5s
Intermediate theorems generated: 1

(SUC 4) > 0 =
((SUC 3) > 0 = ((SUC 2) > 0 = ((SUC 1) > 0 = (SUC 0) > 0)))
|- 0 < (SUC 4) =

(0 < (SUC 3) = (0 < (SUC 2) = (0 < (SUC 1) = 0 < (SUC 0))))
Run time: 0.3s
Intermediate theorems generated: 23

Notice that rewriting equations can be extracted from universally quantified theorems.
To construct the proof step-wise, with all of the instantiations, substitutions, and uses
of transitivity, etc., would be a lengthy process. The rewriting rules make it easy, and
do so whilst still generating the entire chain of inferences.

2The number of inferences performed by this rule is generally ‘inflated’; i.e. is generally greater than
the length of the proof itself, if the proof could be ‘seen’. This is because, in the current implemen-
tation, some inference is done during the search phase that is not necessarily in support of successful
replacements.

152 Chapter 8. Derived Inference Rules

8.3 Derivation of the standard rules

The HOL system provides all the standard introduction and elimination rules of the pred-
icate calculus pre-defined as derived inferences. It is these derived rules, rather than
the primitive rules, that one normally uses in practice. In this section, the derivations
of some of the standard rules are given, in sequence. These derivations only use the ax-
ioms and definitions in the theory bool (see Section ??), the eight primitive inferences
of the HOL logic, and inferences defined earlier in the sequence.

Theorems, in accordance with the definition given at the beginning of this chapter,
are treated as rules without hypotheses; thus the derivation of a theorem resembles the
derivation of a rule except in not having hypotheses. (The derivation of TRUTH, Sec-
tion 8.3.9, is the only example given of this, but there are several others in HOL.) There
are also some rules that are intrinsically more general than theorems. For example, for
any two terms t1 and t2, the theorem ` (λx. t1)t2 = t1[t2/x] follows by the primitive
rule BETA CONV. The rule BETA_CONV returns a theorem for each pair of terms t1 and t2,
and is therefore equivalent to an infinite family of theorems. No single theorem can be
expressed in the HOL logic that is equivalent to BETA CONV. (See Chapter 9 for further
discussion of this point.) (UNDISCH is not a rule of this sort, as it can, in fact, be expressed
as a theorem.)

For each derivation given below, there is an ML function definition in the HOL system
that implements the derived rule as a procedure in ML. The actual implementation in
the HOL system differs in some cases from the derivations given here, since the system
code has been optimised for improved performance.

In addition, for reasons that are mostly historical, not all the inferences that are de-
rived in terms of the abstract logic are actually derived in the current version of the HOL
system. That is, there are currently about forty rules that are installed in the system
on an ‘axiomatic’ basis, all of which should be derived by explicit inference. Although
the current status of these rules is not satisfactory, and it is planned, as a high priority,
to derive them properly in a future version, their current status does not actually com-
promise the consistency of the logic. In effect, the existing HOL system has a deductive
system more comprehensive than the one presented abstractly, but the model outlined
in Chapter 2 would easily extend to cover it.

For reference, in HOL Version 2.0 the following rules that should be derived are not
derived, but (for efficiency) are implemented as primitives. The list includes some
conversions and conversion-valued functions (conversions are discussed in Chapter 9).

8.3. Derivation of the standard rules 153

ADD_ASSUM CONTR IMP_ANTISYM_RULE
ALPHA DEF_EXISTS_RULE IMP_TRANS
AP_TERM DISJ_CASES INST
AP_THM DISJ1 MK_ABS
SUBS DISJ2 MK_COMB
SUBS_OCCS EQ_IMP_RULE MK_EXISTS
CCONTR EQ_MP NOT_ELIM
CHOOSE EQT_INTRO NOT_INTRO
CONJ ETA_CONV num_CONV
EXISTS SPEC TRANS
EXT SUBST_CONV CONJUNCT1
GEN SYM CONJUNCT2

The derivations that follow consist of sequences of numbered steps each of which

1. is an axiom, or

2. is a hypothesis of the rule being derived, or

3. follows from preceding steps by a rule of inference (either primitive or previously
derived).

Note that the abbreviation conv is used for the ML type term -> thm.3

8.3.1 Adding an assumption

ADD_ASSUM : term -> thm -> thm

Γ ` t

Γ, t′ ` t

1. t′ ` t′ [ASSUME]

2. Γ ` t [Hypothesis]

3. Γ ` t′ ⇒ t [DISCH 2]

4. Γ, t′ ` t [MP 3,1]

3This stands for ‘conversion’, as explained in Chapter 9.

154 Chapter 8. Derived Inference Rules

8.3.2 Undischarging

UNDISCH : thm -> thm

Γ ` t1 ⇒ t2
Γ, t1 ` t2

1. t1 ` t1 [ASSUME]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ, t1 ` t2 [MP 2,1]

8.3.3 Symmetry of equality

SYM : thm -> thm

Γ ` t1 = t2
Γ ` t2 = t1

1. Γ ` t1 = t2 [Hypothesis]

2. ` t1 = t1 [REFL]

3. Γ ` t2 = t1 [SUBST 1,2]

8.3.4 Transitivity of equality

TRANS : thm -> thm -> thm

Γ1 ` t1 = t2 Γ2 ` t2 = t3
Γ1 ∪ Γ2 ` t1 = t3

1. Γ2 ` t2 = t3 [Hypothesis]

2. Γ1 ` t1 = t2 [Hypothesis]

3. Γ1 ∪ Γ2 ` t1 = t3 [SUBST 1,2]

8.3. Derivation of the standard rules 155

8.3.5 Application of a term to a theorem

AP_TERM : term -> thm -> thm

Γ ` t1 = t2
Γ ` t t1 = t t2

1. Γ ` t1 = t2 [Hypothesis]

2. ` t t1 = t t1 [REFL]

3. Γ ` t t1 = t t2 [SUBST 1,2]

8.3.6 Application of a theorem to a term

AP_THM : thm -> conv

Γ ` t1 = t2
Γ ` t1 t = t2 t

1. Γ ` t1 = t2 [Hypothesis]

2. ` t1 t = t1 t [REFL]

3. Γ ` t1 t = t2 t [SUBST 1,2]

8.3.7 Modus Ponens for equality

EQ_MP : thm -> thm -> thm

Γ1 ` t1 = t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

1. Γ1 ` t1 = t2 [Hypothesis]

2. Γ2 ` t1 [Hypothesis]

3. Γ1 ∪ Γ2 ` t2 [SUBST 1,2]

156 Chapter 8. Derived Inference Rules

8.3.8 Implication from equality

EQ_IMP_RULE : thm -> (thm # thm)

Γ ` t1 = t2
Γ ` t1 ⇒ t2 Γ ` t2 ⇒ t1

1. Γ ` t1 = t2 [Hypothesis]
2. t1 ` t1 [ASSUME]
3. Γ, t1 ` t2 [EQ MP 1,2]
4. Γ ` t1 ⇒ t2 [DISCH 3]
5. Γ ` t2 = t1 [SYM 1]
6. t2 ` t2 [ASSUME]
7. Γ, t2 ` t1 [EQ MP 5,6]
8. Γ ` t2 ⇒ t1 [DISCH 7]
9. Γ ` t1 ⇒ t2 and Γ ` t2 ⇒ t1 [4,8]

8.3.9 T-Introduction

TRUTH

` T

1. ` T = ((λx. x) = (λx. x)) [Definition of T]
2. ` ((λx. x) = (λx. x)) = T [SYM 1]
3. ` (λx. x) = (λx. x) [REFL]
4. ` T [EQ MP 2,3]

8.3.10 Equality-with-T elimination

EQT_ELIM : thm -> thm

Γ ` t = T

Γ ` t

8.3. Derivation of the standard rules 157

1. Γ ` t = T [Hypothesis]
2. Γ ` T = t [SYM 1]
3. ` T [TRUTH]
4. Γ ` t [EQ MP 2,3]

8.3.11 Specialization (∀-elimination)

SPEC : term -> thm -> thm

Γ ` ∀x. t
Γ ` t[t′/x]

• t[t′/x] denotes the result of substituting t′ for free occurrences of x in t, with the
restriction that no free variables in t′ become bound after substitution.

1. ` ∀ = (λP. P = (λx. T)) [INST TYPE applied to the definition of ∀]
2. Γ ` ∀(λx. t) [Hypothesis]
3. Γ ` (λP. P = (λx. T))(λx. t) [SUBST 1,2]
4. ` (λP. P = (λx. T))(λx. t) = ((λx. t) = (λx. T)) [BETA CONV]
5. Γ ` (λx. t) = (λx. T) [EQ MP 4,3]
6. Γ ` (λx. t) t′ = (λx. T) t′ [AP THM 5]
7. ` (λx. t) t′ = t[t′/x] [BETA CONV]
8. Γ ` t[t′/x] = (λx. t) t′ [SYM 7]
9. Γ ` t[t′/x] = (λx. T) t′ [TRANS 8,6]

10. ` (λx. T) t′ = T [BETA CONV]
11. Γ ` t[t′/x] = T [TRANS 9,10]
12. Γ ` t[t′/x] [EQT ELIM 11]

8.3.12 Equality-with-T introduction

EQT_INTRO : thm -> thm

Γ ` t

Γ ` t = T

1. ` ∀b1 b2. (b1 ⇒ b2)⇒ (b2 ⇒ b1)⇒ (b1 = b2) [Axiom]

158 Chapter 8. Derived Inference Rules

2. ` ∀b2. (t⇒ b2)⇒ (b2 ⇒ t)⇒ (t = b2) [SPEC 1]

3. ` (t⇒ T)⇒ (T⇒ t)⇒ (t = T) [SPEC 2]

4. ` T [TRUTH]

5. ` t⇒ T [DISCH 4]

6. ` (T⇒ t)⇒ (t = T) [MP 3,5]

7. Γ ` t [Hypothesis]

8. Γ ` T⇒ t [DISCH 7]

9. Γ ` t = T [MP 6,8]

8.3.13 Generalization (∀-introduction)

GEN : term -> thm -> thm

Γ ` t

Γ ` ∀x. t
• Where x is not free in Γ.

1. Γ ` t [Hypothesis]

2. Γ ` t = T [EQT INTRO 1]

3. Γ ` (λx. t) = (λx. T) [ABS 2]

4. ` ∀(λx. t) = ∀(λx. t) [REFL]

5. ` ∀ = (λP. P = (λx. T)) [INST TYPE applied to the definition of ∀]
6. ` ∀(λx. t) = (λP. P = (λx. T))(λx. t) [SUBST 5,4]

7. ` (λP. P = (λx. T))(λx. t) = ((λx. t) = (λx. T)) [BETA CONV]

8. ` ∀(λx. t) = ((λx. t) = (λx. T)) [TRANS 6,7]

9. ` ((λx. t) = (λx. T)) = ∀(λx. T) [SYM 8]

10. Γ ` ∀(λx. t) [EQ MP 9,3]

8.3.14 Simple α-conversion

SIMPLE_ALPHA

` (λx1. t x1) = (λx2. t x2)

8.3. Derivation of the standard rules 159

• Where neither x1 nor x2 occurs free in t.4

1. ` (λx1. t x1) x = t x [BETA CONV]

2. ` (λx2. t x2) x = t x [BETA CONV]

3. ` t x = (λx2. t x2) x [SYM 2]

4. ` (λx1. t x1) x = (λx2. t x2) x [TRANS 1,3]

5. ` (λx. (λx1. t x1) x) = (λx. (λx2. t x2) x) [ABS 4]

6. ` ∀f. (λx. f x) = f [Appropriately type-instantiated axiom]

7. ` (λx. (λx1. t x1)x) = λx1. t x1 [SPEC 6]

8. ` (λx. (λx2. t x2)x) = λx2. t x2 [SPEC 6]

9. ` (λx1. t x1) = (λx. (λx1. t x1)x) [SYM 7]

10. ` (λx1. t x1) = (λx. (λx2. t x2)x) [TRANS 9,5]

11. ` (λx1. t x1) = (λx2. t x2) [TRANS 10,8]

8.3.15 η-conversion

ETA_CONV : conv

` (λx′. t x′) = t

• Where x′ does not occur free in t (we use x′ rather than just x to motivate the use
of SIMPLE ALPHA in the derivation below).

1. ` ∀f. (λx. f x) = f [Appropriately type-instantiated axiom]

2. ` (λx. t x) = t [SPEC 1]

3. ` (λx′. t x′) = (λx. t x) [SIMPLE ALPHA]

4. ` (λx′. t x′) = t [TRANS 3,2]

4SIMPLE_ALPHA is included here because it is used in a subsequent derivation, but it is not actually
in the HOL system, as it is subsumed by other functions.

160 Chapter 8. Derived Inference Rules

8.3.16 Extensionality

EXT : thm -> thm

Γ ` ∀x. t1 x = t2 x

Γ ` t1 = t2

• Where x is not free in t1 or t2.

1. Γ ` ∀x. t1 x = t2 x [Hypothesis]

2. Γ ` t1 x
′ = t2 x

′ [SPEC 1 (x′ is a fresh)]

3. Γ ` (λx′. t1 x
′) = (λx′. t2 x

′) [ABS 2]

4. ` (λx′. t1 x
′) = t1 [ETA CONV]

5. ` t1 = (λx′. t1 x
′) [SYM 4]

6. Γ ` t1 = (λx′. t2 x
′) [TRANS 5,3]

7. ` (λx′. t2 x
′) = t2 [ETA CONV]

8. Γ ` t1 = t2 [TRANS 6,7]

8.3.17 ε-introduction

SELECT_INTRO : thm -> thm

Γ ` t1 t2
Γ ` t1(ε t1)

1. ` ∀P x. P x⇒ P (ε P) [Suitably type-instantiated axiom]

2. ` t1 t2 ⇒ t1(ε t1) [SPEC 1 (twice)]

3. Γ ` t1 t2 [Hypothesis]

4. Γ ` t1(ε t1) [MP 2,3]

8.3. Derivation of the standard rules 161

8.3.18 ε-elimination

SELECT_ELIM : thm -> (term # thm) -> thm

Γ1 ` t1(ε t1) Γ2, t1 v ` t

Γ1 ∪ Γ2 ` t

• Where v occurs nowhere except in the assumption t1 v of the second hypothesis.

1. Γ2, t1 v ` t [Hypothesis]
2. Γ2 ` t1 v ⇒ t [DISCH 1]
3. Γ2 ` ∀v. t1 v ⇒ t [GEN 2]
4. Γ2 ` t1(ε t1)⇒ t [SPEC 3]
5. Γ1 ` t1(ε t1) [Hypothesis]
6. Γ1 ∪ Γ2 ` t [MP 4,5]

8.3.19 ∃-introduction

EXISTS : (term # term) -> thm -> thm

Γ ` t1[t2]

Γ ` ∃x. t1[x]

• Where t1[t2] denotes a term t1 with some free occurrences of t2 singled out, and
t1[x] denotes the result of replacing these occurrences of t1 by x, subject to the
restriction that x doesn’t become bound after substitution.

1. ` (λx. t1[x])t2 = t1[t2] [BETA CONV]
2. ` t1[t2] = (λx. t1[x])t2 [SYM 1]
3. Γ ` t1[t2] [Hypothesis]
4. Γ ` (λx. t1[x])t2 [EQ MP 2,3]
5. Γ ` (λx. t1[x])(ε(λx. t1[x])) [SELECT INTRO 4]
6. ` ∃ = λP. P (ε P) [INST TYPE applied to the definition of ∃]
7. ` ∃(λx. t1[x]) = (λP. P (ε P))(λx. t1[x]) [AP THM 6]
8. ` (λP. P (ε P))(λx. t1[x]) = (λx. t1[x])(ε(λx. t1[x])) [BETA CONV]
9. ` ∃(λx. t1[x]) = (λx. t1[x])(ε(λx. t1[x])) [TRANS 7,8]

10. ` (λx. t1[x])(ε(λx. t1[x])) = ∃(λx. t1[x]) [SYM 9]
11. Γ ` ∃(λx. t1[x]) [EQ MP 10,5]

162 Chapter 8. Derived Inference Rules

8.3.20 ∃-elimination

CHOOSE : (term # thm) -> thm -> thm

Γ1 ` ∃x. t[x] Γ2, t[v] ` t′

Γ1 ∪ Γ2 ` t′

• Where t[v] denotes a term t with some free occurrences of the variable v singled
out, and t[x] denotes the result of replacing these occurrences of v by x, subject to
the restriction that x doesn’t become bound after substitution.

1. ` ∃ = λP. P (ε P) [INST TYPE applied to the definition of ∃]
2. ` ∃(λx. t[x]) = (λP. P (ε P))(λx. t[x]) [AP THM 1]
3. Γ1 ` ∃(λx. t[x]) [Hypothesis]
4. Γ1 ` (λP. P (ε P))(λx. t[x]) [EQ MP 2,3]
5. ` (λP. P (ε P))(λx. t[x]) = (λx. t[x])(ε(λx. t[x])) [BETA CONV]
6. Γ1 ` (λx. t[x])(ε(λx. t[x]) [EQ MP 5,4]
7. ` (λx. t[x])v = t[v] [BETA CONV]
8. ` t[v] = (λx. t[x])v [SYM 7]
9. Γ2, t[v] ` t′ [Hypothesis]

10. Γ2 ` t[v]⇒ t′ [DISCH 9]
11. Γ2 ` (λx. t[x])v ⇒ t′ [SUBST 8,10]
12. Γ2, (λx. t[x])v ` t′ [UNDISCH 11]
13. Γ1 ∪ Γ2 ` t′ [SELECT ELIM 6,12]

8.3.21 Use of a definition

RIGHT_BETA : thm -> thm

Γ ` t = λx. t′[x]

Γ ` t t = t′[t]

• Where t does not contain x.

1. Γ ` t = λx. t′[x] [Suitably type-instantiated hypothesis]
2. Γ ` t t = (λx. t′[x]) t [AP THM 1]
3. ` (λx. t′[x]) t = t′[t] [BETA CONV]
4. Γ ` t t = t′[t] [TRANS 2,3]

8.3. Derivation of the standard rules 163

8.3.22 Use of a definition

RIGHT_LIST_BETA : thm -> thm

Γ ` t = λx1 · · ·xn. t′[x1, . . . , xn]

Γ ` t t1 · · · tn = t′[t1, . . . , tn]

• Where none of the ti contain any of the xi.

1. Γ ` t = λx1 · · ·xn. t′[x1, . . . , xn] [Suitably type-instantiated hypothesis]

2. Γ ` t t1 · · · tn = (λx1 · · ·xn. t′[x1, . . . , xn]) t1 · · · tn [AP THM 1 (n times)]

3. ` (λx1 · · ·xn. t′[x1, . . . , xn]) t1 · · · tn = t′[t1, . . . , tn] [BETA CONV (n times)]

4. Γ ` t t1 · · · tn = t′[t1, . . . , tn] [TRANS 2,3]

8.3.23 ∧-introduction

CONJ : thm -> thm -> thm

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

1. ` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b [Definition of ∧]

2. ` t1 ∧ t2 = ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [RIGHT LIST BETA 1]

3. t1 ⇒ (t2 ⇒ b) ` t1 ⇒ (t2 ⇒ b) [ASSUME]

4. Γ1 ` t1 [Hypothesis]

5. Γ1, t1 ⇒ (t2 ⇒ b) ` t2 ⇒ b [MP 3,4]

6. Γ2 ` t2 [Hypothesis]

7. Γ1 ∪ Γ2, t1 ⇒ (t2 ⇒ b) ` b [MP 5,6]

8. Γ1 ∪ Γ2 ` (t1 ⇒ (t2 ⇒ b))⇒ b [DISCH 7]

9. Γ1 ∪ Γ2 ` ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [GEN 8]

10. Γ1 ∪ Γ2 ` t1 ∧ t2 [EQ MP (SYM 2),9]

164 Chapter 8. Derived Inference Rules

8.3.24 ∧-elimination

CONJUNCT1 : thm -> thm, CONJUNCT2 : thm -> thm

Γ ` t1 ∧ t2
Γ ` t1 Γ ` t2

1. ` ∧ = λb1 b2. ∀b. (b1 ⇒ (b2 ⇒ b))⇒ b [Definition of ∧]
2. ` t1 ∧ t2 = ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 ∧ t2 [Hypothesis]
4. Γ ` ∀b. (t1 ⇒ (t2 ⇒ b))⇒ b [EQ MP 2,3]
5. Γ ` (t1 ⇒ (t2 ⇒ t1))⇒ t1 [SPEC 4]
6. t1 ` t1 [ASSUME]
7. t1 ` t2 ⇒ t1 [DISCH 6]
8. ` t1 ⇒ (t2 ⇒ t1) [DISCH 7]
9. Γ ` t1 [MP 5,8]

10. Γ ` (t1 ⇒ (t2 ⇒ t2))⇒ t2 [SPEC 4]
11. t2 ` t2 [ASSUME]
12. ` t2 ⇒ t2 [DISCH 11]
13. ` t1 ⇒ (t2 ⇒ t2) [DISCH 12]
14. Γ ` t2 [MP 10,13]
15. Γ ` t1 and Γ ` t2 [9,14]

8.3.25 Right ∨-introduction

DISJ1 : thm -> conv

Γ ` t1
Γ ` t1 ∨ t2

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 [Hypothesis]
4. t1 ⇒ b ` t1 ⇒ b [ASSUME]
5. Γ, t1 ⇒ b ` b [MP 4,3]

8.3. Derivation of the standard rules 165

6. Γ, t1 ⇒ b ` (t2 ⇒ b)⇒ b [DISCH 5]
7. Γ ` (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [DISCH 6]
8. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [GEN 7]
9. Γ ` t1 ∨ t2 [EQ MP (SYM 2),8]

8.3.26 Left ∨-introduction

DISJ2 : term -> thm -> thm

Γ ` t2
Γ ` t1 ∨ t2

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t2 [Hypothesis]
4. t2 ⇒ b ` t2 ⇒ b [ASSUME]
5. Γ, t2 ⇒ b ` b [MP 4,3]
6. Γ ` (t2 ⇒ b)⇒ b [DISCH 5]
7. Γ ` (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [DISCH 6]
8. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [GEN 7]
9. Γ ` t1 ∨ t2 [EQ MP (SYM 2),8]

8.3.27 ∨-elimination

DISJ_CASES : thm -> thm -> thm -> thm

Γ ` t1 ∨ t2 Γ1, t1 ` t Γ2, t2 ` t

Γ ∪ Γ1 ∪ Γ2 ` t

1. ` ∨ = λb1 b2. ∀b. (b1 ⇒ b)⇒ (b2 ⇒ b)⇒ b [Definition of ∨]
2. ` t1 ∨ t2 = ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [RIGHT LIST BETA 1]
3. Γ ` t1 ∨ t2 [Hypothesis]
4. Γ ` ∀b. (t1 ⇒ b)⇒ (t2 ⇒ b)⇒ b [EQ MP 2,3]
5. Γ ` (t1 ⇒ t)⇒ (t2 ⇒ t)⇒ t [SPEC 4]
6. Γ1, t1 ` t [Hypothesis]

166 Chapter 8. Derived Inference Rules

7. Γ1 ` t1 ⇒ t [DISCH 6]

8. Γ ∪ Γ1 ` (t2 ⇒ t)⇒ t [MP 5,7]

9. Γ2, t2 ` t [Hypothesis]

10. Γ2 ` t2 ⇒ t [DISCH 9]

11. Γ ∪ Γ1 ∪ Γ2 ` t [MP 8,10]

8.3.28 Classical contradiction rule

CCONTR : term -> thm -> thm

Γ, ¬t ` F

Γ ` t

1. ` ¬ = λb. b⇒ F [Definition of ¬]

2. ` ¬t = t⇒ F [RIGHT LIST BETA 1]

3. Γ, ¬t ` F [Hypothesis]

4. Γ ` ¬t⇒ F [DISCH 3]

5. Γ ` (t⇒ F)⇒ F [SUBST 2,4]

6. t = F ` t = F [ASSUME]

7. Γ, t = F ` (F⇒ F)⇒ F [SUBST 6,5]

8. F ` F [ASSUME]

9. ` F⇒ F [DISCH 8]

10. Γ, t = F ` F [MP 7,9]

11. ` F = ∀b. b [Definition of F]

12. Γ, t = F ` ∀b. b [SUBST 11,10]

13. Γ, t = F ` t [SPEC 12]

14. ` ∀b. (b = T) ∨ (b = F) [Axiom]

15. ` (t = T) ∨ (t = F) [SPEC 14]

16. t = T ` t = T [ASSUME]

17. t = T ` t [EQT ELIM 16]

18. Γ ` t [DISJ CASES 15,17,13]

Chapter 9

Conversions

A conversion in HOL is a rule that maps a term to a theorem expressing the equality of
that term to some other term. An example is the rule for β-conversion:

(\x.t1)t2 7→ |- (\x.t1)t2 = t1[t2/x]

Theorems of this sort are used in HOL in a variety of contexts, to justify the replacement
of particular terms by semantically equivalent terms.

The ML type of conversions is conv:

conv = term -> thm

For example, BETA_CONV is an ML function of type conv (i.e. a conversion) that expresses
β-conversion in HOL. It produces the appropriate equational theorem on β-redexes and
fails elsewhere.

1#BETA_CONV;;
- : conv

#BETA_CONV "(\x. (\y. (\z. x + y + z)3)2) 1";;
|- (\x. (\y. (\z. x + (y + z))3)2)1 = (\y. (\z. 1 + (y + z))3)2

#BETA_CONV "(\y. (\z. 1 + (y + z))3) 2";;
|- (\y. (\z. 1 + (y + z))3)2 = (\z. 1 + (2 + z))3

#BETA_CONV "(\z. 1 + (2 + z)) 3";;
|- (\z. 1 + (2 + z))3 = 1 + (2 + 3)

#BETA_CONV "1 + (2 + 3)";;
evaluation failed BETA_CONV

The basic conversions, as well as a number of those commonly used, are provided in
HOL. There are also groups of application-specific conversions to be found in some of
the libraries. (Of those provided, some are derived and some, like BETA_CONV are taken
as axiomatic1.) In addition, HOL provides a collection of ML functions enabling users
to define new conversions (as well as new rules and tactics) as functions of existing

1A list of the axiomatic rules was supplied in Section 8.3.

167

168 Chapter 9. Conversions

ones. Some of these are described in Sections 9.1 and 9.2. The notion of conversions is
inherited from Cambridge LCF; the underlying principles are described in [?, ?].

Conversions such as BETA_CONV represent infinite families of equations2. They are par-
ticularly useful in cases in which it is impossible to state, within the logic, a single axiom
or theorem instantiable to every equation in a family.3 Instead, an ML procedure returns
the instance of the desired theorem for any given term. This is also the reason that quite
a few of the other rules in HOL are not stated instead as axioms or theorems. As rules,
conversions are distinguished with an ML type abbreviation simply because there are
relatively many of them with the same type, and because they return equational theo-
rems that lend themselves directly to term rewriting.4 In many HOL applications, the
main use of conversions is to produce these equational theorems. A few examples of
conversions are illustrated below.

1#NOT_FORALL_CONV "~!x. (f:*->*) x = g x";;
|- ~(!x. f x = g x) = (?x. ~(f x = g x))

#CONTRAPOS_CONV "(!x. f x = g x) ==> ((f:*->*) = g)";;
|- (!x. f x = g x) ==> (f = g) = ~(f = g) ==> ~(!x. f x = g x)

#SELECT_CONV "(@f:*->*. f x = g x)x = g x";;
|- ((@f. f x = g x)x = g x) = (?f. f x = g x)

#EXISTS_UNIQUE_CONV "?!z. (f:*->*) z = g z";;
|- (?! z. f z = g z) =

(?z. f z = g z) /\ (!z z’. (f z = g z) /\ (f z’ = g z’) ==> (z = z’))

An example of an application specific conversion is num_CONV:

1#num_CONV "2";;
|- 2 = SUC 1

#num_CONV "1";;
|- 1 = SUC 0

#num_CONV "0";;
evaluation failed num_CONV: argument less than 1

Another application of conversions, related to the first, is in the implementation of
the existing rewriting tools, REWRITE_CONV (Section 9.4), REWRITE_RULE (Section 8.2) and

2This was also mentioned in Section 8.3.
3In the case of β-conversion specifically, it is the substitution of one term for another in a context that

is inexpressible; but in general, there is a variety of reasons that arise.
4In fact, some ML functions have names with the suffix ‘ CONV’ but do not have the type conv;

SUBST CONV, for example, has type (thm # term) list -> term -> conv. Those that eventually pro-
duce conversion are thought of as ‘conversion schemas’.

9.1. Conversion combining operators 169

REWRITE_TAC (Chapter 10), which are central to theorem proving in HOL. This use is
explained in Section 9.4, both as an example and because users may have occasion to
construct rewriting tools of their own design, by similar methods. The next section
introduces the conversion-building tools in general.

9.1 Conversion combining operators

A term u is said to reduce to a term v by a conversion c if there exists a finite sequence
of terms t1, t2, . . ., tn such that:

(i) u = t1 and v = tn;

(ii) c ti evaluates to the theorem |- ti = ti+1 for 1 ≤ i < n;

(iii) The evaluation of c tn fails.

The first session of this chapter illustrates the reduction of the term

(\x. (\y. (\z. x + y + z)3)2)1

to 1 + (2 + 3) by the conversion BETA_CONV, in a reduction sequence of length four:

(\x. (\y. (\z. x + (y + z))3)2)1
(\y. (\z. 1 + (y + z))3)2
(\z. 1 + (2 + z))3
1 + (2 + 3)

That is, BETA_CONV applies to each term of the sequence, except the fourth and last,
to give a theorem equating that term to the next term. Therefore, each term of the
sequence, from the second on, can be extracted from the theorem for the previous term;
namely, it is the right hand side of the conclusion. The whole reduction can therefore
be accomplished by repeated application of BETA_CONV to the terms of the sequence as
they are generated.

To transform BETA_CONV to achieve this effect, two operators on conversions are intro-
duced. The first one, infixed, is THENC, which sequences conversions.

$THENC : conv -> conv -> conv

If c1 t1 evaluates to Γ1 |- t1=t2 and c2 t2 evaluates to Γ2 |- t2=t3, then (c1 THENC c2) t1
evaluates to Γ1 ∪ Γ2 |- t1=t3. If the evaluation of c1 t1 or the evaluation of c2 t2 fails,
then so does the evaluation of c1 THENC c2. THENC is justified by the transitivity of equality.

The second, also infixed, is ORELSEC; this applies a second conversion if the application
of the first one fails.

170 Chapter 9. Conversions

$ORELSEC : conv -> conv -> conv

(c1 ORELSEC c2) t evaluates to c1 t if that evaluation succeeds, and to c2 t otherwise. (The
failure to evaluate is detected via the ML failure construct.)

The functions THENC and ORELSEC are used to define the desired operator, REPEATC,
which successively applies a conversion until it fails:

REPEATC : conv -> conv

REPEATC c is intuitively equivalent to:

(c THENC c THENC ... THENC c THENC ...) ORELSEC ALL_CONV

It is defined recursively:5

letrec REPEATC c t = ((c THENC (REPEATC c)) ORELSEC ALL_CONV) t

The current example term can thus be completely reduced by use of BETA_CONV trans-
formed by the REPEATC operator:

1#REPEATC BETA_CONV;;
- : conv

#REPEATC BETA_CONV "(\x. (\y. (\z. x + y + z)3)2)1";;
|- (\x. (\y. (\z. x + (y + z))3)2)1 = 1 + (2 + 3)

BETA_CONV applies to terms of a certain top level form only, namely to β-redexes, and
fails on terms of any other form. In addition, no number of repetitions of BETA_CONV will
β-reduce arbitrary β-redexes embedded in terms. For example, the term shown below
fails even at the top level because it is not a β-redex:

1#BETA_CONV "(((\x.(\y.(\z. x + y + z))) 1) 2) 3";;
evaluation failed BETA_CONV

#is_abs "(((\x.(\y.(\z. x + y + z))) 1) 2)";;
false : bool

The β-redex (\w.w)3 is not affected in the third input of the session shown below, be-
cause of its position in the structure of the whole term. This is so even though the whole
term is reduced, and the subterm at top level could be reduced:

5Note that because ML is a call-by-value language, the extra argument t is needed in the definition of
REPEATC; without it the definition would loop. There is a similar problem with the tactical REPEAT; see
Chapter 10.

9.1. Conversion combining operators 171

1#BETA_CONV "(\z. x + y + z)3";;
|- (\z. x + (y + z))3 = x + (y + 3)

#BETA_CONV "(\w.w)3";;
|- (\w. w)3 = 3

#REPEATC BETA_CONV "(\z. x + y + z)((\w.w)3)";;
|- (\z. x + (y + z))((\w. w)3) = x + (y + ((\w. w)3))

To produce, from a conversion c, a conversion that applies c to every subterm of a
term, the function DEPTH_CONV can be applied to c:

DEPTH_CONV : conv -> conv

DEPTH_CONV c is a conversion

t 7→ |- t = t′

where t′ is obtained from t by replacing every subterm u by v if u reduces to v by c.
(Subterms for which c u fails are left unchanged.) The definition leaves open the search
strategy; in fact, DEPTH_CONV c traverses a term6 ‘bottom up’, once, and left-to-right,
repeatedly applying c to each subterm until no longer applicable. This helps with the
two problems thus far:

1#DEPTH_CONV BETA_CONV "(((\x.(\y.(\z. x + y + z))) 1) 2) 3";;
|- (\x y z. x + (y + z))1 2 3 = 1 + (2 + 3)

#DEPTH_CONV BETA_CONV "(\z. x + y + z)((\w.w)3)";;
|- (\z. x + (y + z))((\w. w)3) = x + (y + 3)

It may happen, however, that the result of such a conversion still contains subterms
that could themselves be reduced at top level. For example:

1#let t = "(\f.\x.f x)(\n.n+1)";;
t = "(\f x. f x)(\n. n + 1)" : term

#DEPTH_CONV BETA_CONV t;;
|- (\f x. f x)(\n. n + 1) = (\x. (\n. n + 1)x)

The function TOP_DEPTH_CONV does more searching and reduction than DEPTH_CONV: it
replaces every subterm u by v′ if u reduces to v by c and v recursively reduces to v′ by
TOP DEPTH CONV c.7

6That is, it traverses the abstract parse tree of the term.
7Readers interested in characterizing the search strategy of TOP DEPTH CONV should study the ML

definitions near the end of this section.

172 Chapter 9. Conversions

TOP_DEPTH_CONV : conv -> conv

Thus:

2#TOP_DEPTH_CONV BETA_CONV t;;
|- (\f x. f x)(\n. n + 1) = (\x. x + 1)

Finally, the simpler function ONCE_DEPTH_CONV is provided:

ONCE_DEPTH_CONV : conv -> conv

ONCE_DEPTH_CONV c t applies c once to the first term (and only the first term) on which it
succeeds in a top-down traversal:

3#ONCE_DEPTH_CONV BETA_CONV t;;
|- (\f x. f x)(\n. n + 1) = (\x. (\n. n + 1)x)

#ONCE_DEPTH_CONV BETA_CONV "(\x. (\n. n + 1)x)";;
|- (\x. (\n. n + 1)x) = (\x. x + 1)

The equational theorems returned by conversions are not always useful in equational
form. To make the results more useful for theorem proving, a conversion can be con-
verted to a rule or a tactic, using the functions CONV_RULE or CONV_TAC, respectively.

CONV_RULE : conv -> thm -> thm
CONV_TAC : conv -> tactic

CONV_RULE c (|- t) returns |- t′, where c t evaluates to the equation |- t=t′. CONV_TAC c
is a tactic that converts the conclusion of a goal using c. CONV_RULE is defined by:

let CONV_RULE c th = EQ_MP (c(concl th)) th

(The validation of CONV_TAC also uses EQ_MP8.) For example, the built-in rule BETA_RULE

reduces some of the β-redex subterms of a term.

BETA_RULE : thm -> thm

It is defined by:

let BETA_RULE = CONV_RULE(DEPTH_CONV BETA_CONV)

The search invoked by BETA_RULE is adequate for some purposes but not others; for
example, the first use shown below but not the second:

8For EQ_MP, see 8.3.7.

9.2. Writing compound conversions 173

4#BETA_RULE(ASSUME "(((\x.(\y.(\z. x + y + z))) 1) 2) 3 < 10");;
. |- (1 + (2 + 3)) < 10

#let th = ASSUME "NEXT = ^t";;
th = . |- NEXT = (\f x. f x)(\n. n + 1)

#BETA_RULE th;;
. |- NEXT = (\x. (\n. n + 1)x)

#BETA_RULE(BETA_RULE th);;
. |- NEXT = (\x. x + 1)

A more powerful β-reduction rule that used the second search strategy could be defined
as shown below (this is not built into HOL).

5#let TOP_BETA_RULE = CONV_RULE(TOP_DEPTH_CONV BETA_CONV);;
TOP_BETA_RULE = - : (thm -> thm)

#TOP_BETA_RULE th;;
. |- NEXT = (\x. x + 1)

TOP_DEPTH_CONV is the traversal strategy used by the HOL rewriting tools described in
Section 9.4.

9.2 Writing compound conversions

There are several other conversion operators in HOL, which, together with THENC, ORELSEC
and REPEATC are available for building more complex conversions, as well as rules, tac-
tics, and so on. These are described below; several are good illustrations themselves of
how functions are built using conversions. The section culminates with the explanation
of how DEPTH_CONV, TOP_DEPTH_CONV, and ONCE_DEPTH_CONV are built.

The conversion NO_CONV is an identity for ORELSEC, useful in building functions.

NO_CONV : conv

NO_CONV t always fails.
The function FIRST_CONV returns c t for the first conversion c, in a list of conversions,

for which the evaluation of c t succeeds.

FIRST_CONV : conv list -> conv

FIRST_CONV [c1; . . . ;cn] is equivalent, intuitively, to:

c1 ORELSEC c2 ORELSEC . . . ORELSEC cn

174 Chapter 9. Conversions

It is defined by:

let FIRST_CONV cl t =
itlist $ORELSEC cl NO_CONV t ? failwith ‘FIRST_CONV‘;;

The conversion ALL_CONV is an identity for THENC, useful in building functions.

ALL_CONV : conv

ALL_CONV t evaluates to |- t=t. It is defined as being identical to REFL.
The function EVERY_CONV applies a list of conversions in sequence.

EVERY_CONV : conv list -> conv

EVERY_CONV [c1; . . . ;cn] is equivalent, intuitively, to:

c1 THENC c2 THENC . . . THENC cn

It is defined by:

let EVERY_CONV cl t =
itlist $THENC cl ALL_CONV t ? failwith ‘EVERY_CONV‘

The operator CHANGED_CONV converts one conversion to another that fails on arguments
that it cannot change.

CHANGED_CONV : conv -> conv

If c t evaluates to |- t=t′, then CHANGED_CONV c t also evaluates to |- t=t′, unless t and t′

are the same (up to α-conversion), in which case it fails.
The operator TRY_CONV maps one conversion to another that always succeeds, by re-

placing failures with the identity conversion.

TRY_CONV : conv

If c t evaluates to |- t=t′, then TRY_CONV c t also evaluates to |- t=t′. If c t fails, then
TRY_CONV c t evaluates to |- t=t. TRY_CONV is implemented by:

let TRY_CONV c = c ORELSEC ALL_CONV

It is used in the implementation of TOP_DEPTH_CONV (given later).
There are a number of operators for applying conversions to the immediate subterms

of a term. These use the ML functions:

MK_COMB : thm # thm -> thm
MK_ABS : thm -> thm

9.2. Writing compound conversions 175

MK_COMB and MK_ABS implement the following derived rules:

Γ1 |- u1=v1 Γ2 |- u2=v2

Γ1 ∪ Γ2 |- u1 u2=v1 v2

MK_COMB

Γ |- !x.u=v

Γ |- (\x.u) = (\x.v)
MK_ABS

The function SUB_CONV applies a conversion to the immediate subterms of a term.

SUB_CONV : conv

In particular:

• SUB_CONV c "x" = |- x=x;

• SUB_CONV c "u v" = |- u v=u′ v′, if c u = |- u=u′ and c v = |- v=v′;

• SUB_CONV c "\x.u" = |- (\x.u) = (\x.u′), if c u = |- u=u′.

SUB_CONV is implemented in terms of MK_COMB and MK_ABS:

let SUB_CONV c t =
if is_comb t then

(let rator,rand = dest_comb t in
MK_COMB (c rator, c rand))

if is_abs t then
(let bv,body = dest_abs t in
let bodyth = c body in
MK_ABS (GEN bv bodyth))

else (ALL_CONV t)

SUB_CONV, too, is used in the definitions of DEPTH_CONV and TOP_DEPTH_CONV.
Three other useful conversion operators, also for applying conversions to the imme-

diate subterms of a term, are as follows:

RATOR_CONV : conv -> conv
RAND_CONV : conv -> conv
ABS_CONV : conv -> conv

RATOR_CONV c converts the operator of an application using c; RAND_CONV c converts the
operand of an application; and ABS_CONV c converts the body of an abstraction. Combi-
nations of these are useful for applying conversions to particular subterms. These are
implemented by:

176 Chapter 9. Conversions

let RATOR_CONV c t =
(let rator,rand = dest_comb t in
MK_COMB (c rator, REFL rand)) ? failwith ‘RATOR_CONV‘

let ABS_CONV c t =
(let bv,body = dest_abs t in
let bodyth = c body in
MK_ABS (GEN bv bodyth)) ? failwith ‘ABS_CONV‘

The following is an example session illustrating these immediate subterm conversions
(recalling that the expression t1+t2 actually parses as + t1 t2).

1#let t = "(\x.x+1)m + (\x.x+2)n";;
t = "((\x. x + 1)m) + ((\x. x + 2)n)" : term

#RAND_CONV BETA_CONV t;;
|- ((\x. x + 1)m) + ((\x. x + 2)n) = ((\x. x + 1)m) + (n + 2)

#RATOR_CONV (RAND_CONV BETA_CONV) t;;
|- ((\x. x + 1)m) + ((\x. x + 2)n) = (m + 1) + ((\x. x + 2)n)

Finally, the definitions of DEPTH_CONV and TOP_DEPTH_CONV are given below.

letrec DEPTH_CONV c t =
(SUB_CONV (DEPTH_CONV c) THENC (REPEATC c)) t

letrec TOP_DEPTH_CONV c t =
(REPEATC c THENC
(TRY_CONV

(CHANGED_CONV (SUB_CONV (TOP_DEPTH_CONV c)) THENC
TRY_CONV(c THENC TOP_DEPTH_CONV c)))) t

letrec ONCE_DEPTH_CONV c t =
(c ORELSEC (SUB_CONV (ONCE_DEPTH_CONV c))) t

Note that the extra argument t is needed to stop these definitions looping (because ML
is a call-by-value language). Note also that the actual definition of ONCE_DEPTH_CONV

used in the system has been optimised to use failure to avoid rebuilding unchanged
subterms.

9.3 Built in conversions

Many conversions are predefined in HOL; only those likely to be of general interest are
listed here.

9.3. Built in conversions 177

9.3.1 Generalized beta-reduction

The conversion:

PAIRED_BETA_CONV : conv

does generalized beta-conversion of tupled lambda abstractions applied to tuples.
Given the term:

"(\(x1, ... ,xn).t) (t1, ... ,tn)"

PAIRED_BETA_CONV proves that:

|- (\(x1, ... ,xn). t[x1,...,xn]) (t1, ... ,tn) = t[t1, ... ,tn]

The conversion works for arbitrarily nested tuples. For example:

1#PAIRED_BETA_CONV "(\((a,b),(c,d)). [a;b;c;d]) ((1,2),(3,4))";;
|- (\((a,b),c,d). [a;b;c;d])((1,2),3,4) = [1;2;3;4]

9.3.2 Arithmetical conversions

The conversion:

ADD_CONV : conv

does addition by formal proof. If n and m are numerals then ADD_CONV "n + m" returns
the theorem |- n + m = s, where s is the numeral denoting the sum of n and m. For
example:

1#ADD_CONV "1 + 2";;
|- 1 + 2 = 3

#ADD_CONV "0 + 1000";;
|- 0 + 1000 = 1000

#ADD_CONV "101 + 102";;
|- 101 + 102 = 203

The next conversion decides the equality of natural number constants.

num_EQ_CONV : conv

If n and m are terms constructed from numeral constants and the successor function
SUC, then: num_EQ_CONV "n=m" returns:

|- (n=m) = T if n and m represent the same number
|- (n=m) = F if n and m represent different numbers

In addition, num_EQ_CONV "t = t" returns: |- (t=t) = T

178 Chapter 9. Conversions

9.3.3 List processing conversions

There are two useful built-in conversions for lists:

LENGTH_CONV : conv
list_EQ_CONV: conv

LENGTH_CONV: computes the length of a list. A call to:

LENGTH_CONV "LENGTH[t1;. . .;tn]"

generates the theorem:

|- LENGTH [t1;. . .;tn] = n

The other conversion, list_EQ_CONV, proves or disproves the equality of two lists,
given a conversion for deciding the equality of elements. A call to:

list_EQ_CONV conv "[u1;. . .;un] = [v1;. . .;vm]"

returns: |- ([u1;. . .;un] = [v1;. . .;vm]) = F if:

(i) ~(n=m) or

(ii) conv proves |- (ui = vi) = F for any 1 ≤ i ≤ m.

|- ([u1;. . .;un] = [v1;. . .;vm]) = T is returned if:

(i) (n=m) and ui is syntactically identical to vi for 1 ≤ i ≤ m, or

(ii) (n=m) and conv proves |- (ui=vi)=T for 1 ≤ i ≤ n.

9.3.4 Simplifying let-terms

A conversion for reducing let-terms is now provided.

let_CONV : conv

Given a term:

"let v1 = t1 and · · · and vn = tn in t[v1, . . . , vn]"

let_CONV proves that:

|- let v1 = t1 and · · · and vn = tn in t[v1, . . . , vn] = t[t1, . . . , tn]

9.3. Built in conversions 179

The vi’s can take any one of the following forms:

(i) Variables: x etc.

(ii) Tuples: (x,y), (a,b,c), ((a,b),(c,d)) etc.

(iii) Applications: f (x,y) z, f x etc.

Variables are just substituted for. With tuples, the substitution is done component-wise,
and function applications are effectively rewritten in the body of the let-term.

1#let_CONV "let x = 1 in x+y";;
|- (let x = 1 in x + y) = 1 + y

#let_CONV "let (x,y) = (1,2) in x+y";;
|- (let (x,y) = 1,2 in x + y) = 1 + 2

#let_CONV "let f x = 1 and f y = 2 in (f 10) + (f 20)";;
|- (let f x = 1 and f y = 2 in (f 10) + (f 20)) = 2 + 2

#let_CONV "let f x = x + 1 and g x = x + 2 in f(g(f(g 0)))";;
|- (let f x = x + 1 and g x = x + 2 in f(g(f(g 0)))) =
(((0 + 2) + 1) + 2) + 1

#CONV_RULE(DEPTH_CONV ADD_CONV)it;;
|- (let f x = x + 1 and g x = x + 2 in f(g(f(g 0)))) = 6

#let_CONV "let f x y = x+y in f 1";; % NB: partial application %
|- (let f x y = x + y in f 1) = (\y. 1 + y)

9.3.5 Skolemization

Two conversions are provided for a higher-order version of Skolemization (using exis-
tentially quantified function variables rather than first-order Skolem constants).

The conversion

X_SKOLEM_CONV : term -> conv

takes a variable parameter, f say, and proves:

|- (!x1 . . . xn. ?y. t[x1, . . . , xn, y] = (?f. !x1 . . . xn. t[x1, . . . , xn, f x1 . . . xn]

for any input term !x1 . . . xn. ?y. t[x1, . . . , xn, y]. Note that when n = 0, this is equiv-
alent to alpha-conversion:

|- (?y. t[y]) = (?f. t[f])

180 Chapter 9. Conversions

and that the conversion fails if there is already a free variable f of the appropriate type
in the input term. For example:

X_SKOLEM_CONV "f:num->*" "!n:num. ?x:*. x = (f n)"

will fail. The conversion SKOLEM_CONV is like X_SKOLEM_CONV, except that it uses a primed
variant of the name of the existentially quantified variable as the name of the skolem
function it introduces. For example:

SKOLEM_CONV "!x. ?y. P x y"

proves that:

|- ?y. !x. P x (y x)

9.3.6 Quantifier movement conversions

A complete and systematically-named set of conversions for moving quantifiers inwards
and outwards through the logical connectives ~, /\, \/, and ==> is provided. The naming
scheme is based on the following atoms:

<quant> := FORALL | EXISTS
<conn> := NOT | AND | OR | IMP
[dir] := LEFT | RIGHT (optional)

The conversions for moving quantifiers inwards are called:

<quant>_<conn>_CONV

where the quantifier <quant> is to be moved inwards through <conn>.
The conversions for moving quantifiers outwards are called:

[dir]_<conn>_<quant>_CONV

where <quant> is to be moved outwards through <conn>, and the optional [dir] identifies
which operand (left or right) contains the quantifier. The complete set is:

NOT_FORALL_CONV |- ~(!x.P) = ?x.~P
NOT_EXISTS_CONV |- ~(?x.P) = !x.~P
EXISTS_NOT_CONV |- (?x.~P) = ~!x.P
FORALL_NOT_CONV |- (!x.~P) = ~?x.P

FORALL_AND_CONV |- (!x. P /\ Q) = (!x.P) /\ (!x.Q)
AND_FORALL_CONV |- (!x.P) /\ (!x.Q) = (!x. P /\ Q)
LEFT_AND_FORALL_CONV |- (!x.P) /\ Q = (!x’. P[x’/x] /\ Q)
RIGHT_AND_FORALL_CONV |- P /\ (!x.Q) = (!x’. P /\ Q[x’/x])

9.3. Built in conversions 181

EXISTS_OR_CONV |- (?x. P \/ Q) = (?x.P) \/ (?x.Q)
OR_EXISTS_CONV |- (?x.P) \/ (?x.Q) = (?x. P \/ Q)
LEFT_OR_EXISTS_CONV |- (?x.P) \/ Q = (?x’. P[x’/x] \/ Q)
RIGHT_OR_EXISTS_CONV |- P \/ (?x.Q) = (?x’. P \/ Q[x’/x])

FORALL_OR_CONV
|- (!x.P \/ Q) = P \/ !x.Q [x not free in P]
|- (!x.P \/ Q) = (!x.P) \/ Q [x not free in Q]
|- (!x.P \/ Q) = (!x.P) \/ (!x.Q) [x not free in P or Q]

OR_FORALL_CONV
|- (!x.P) \/ (!x.Q) = (!x.P \/ Q) [x not free in P or Q]

LEFT_OR_FORALL_CONV |- (!x.P) \/ Q = !x’. P[x’/x] \/ Q
RIGHT_OR_FORALL_CONV |- P \/ (!x.Q) = !x’. P \/ Q[x’/x]

EXISTS_AND_CONV
|- (?x.P /\ Q) = P /\ ?x.Q [x not free in P]
|- (?x.P /\ Q) = (?x.P) /\ Q [x not free in Q]
|- (?x.P /\ Q) = (?x.P) /\ (?x.Q) [x not free in P or Q]

AND_EXISTS_CONV
|- (?x.P) /\ (?x.Q) = (?x.P /\ Q) [x not free in P or Q]

LEFT_AND_EXISTS_CONV |- (?x.P) /\ Q = ?x’. P[x’/x] /\ Q
RIGHT_AND_EXISTS_CONV |- P /\ (?x.Q) = ?x’. P /\ Q[x’/x]

FORALL_IMP_CONV
|- (!x.P ==> Q) = P ==> !x.Q [x not free in P]
|- (!x.P ==> Q) = (?x.P) ==> Q [x not free in Q]
|- (!x.P ==> Q) = (?x.P) ==> (!x.Q) [x not free in P or Q]

LEFT_IMP_FORALL_CONV |- (!x.P) ==> Q = !x’. P[x/’x] ==> Q
RIGHT_IMP_FORALL_CONV |- P ==> (!x.Q) = !x’. P ==> Q[x’/x]

EXISTS_IMP_CONV
|- (?x.P ==> Q) = P ==> ?x.Q [x not free in P]
|- (?x.P ==> Q) = (!x.P) ==> Q [x not free in Q]
|- (?x.P ==> Q) = (!x.P) ==> (?x.Q) [x not free in P or Q]

LEFT_IMP_EXISTS_CONV |- (?x.P) ==> Q = !x’. P[x/’x] ==> Q
RIGHT_IMP_EXISTS_CONV |- P ==> (?x.Q) = ?x’. P ==> Q[x’/x]

182 Chapter 9. Conversions

9.4 Rewriting tools

The rewriting tool REWRITE_RULE was introduced in Chapter 8. There are also rewriting
conversion like REWRITE_CONV. All of the various rewriting tools provided in HOL are
implemented by use of conversions. Certain new tools could also be built in a similar
way.

The rewriting primitive in HOL is REWR_CONV:

REWR_CONV : thm -> conv

REWR_CONV (Γ |- u=v) t evaluates to a theorem Γ |- t=t′ if t is an instance (by type
and/or variable instantiation) of u and t′ is the corresponding instance of v. The first
argument to REWR_CONV can be quantified. Below is an illustration.

1#REWR_CONV ADD1 "SUC 0";;
Theorem ADD1 autoloaded from theory ‘arithmetic‘.
ADD1 = |- !m. SUC m = m + 1

|- SUC 0 = 0 + 1

All subterms of t can be rewritten according to an equation th using

DEPTH_CONV(REWR_CONV th)

as shown below. The function "PRE" is the usual predecessor function.

2#DEPTH_CONV (REWR_CONV ADD1) "SUC(SUC 0) = PRE(SUC 2)";;
|- (SUC(SUC 0) = PRE(SUC 2)) = ((0 + 1) + 1 = PRE(2 + 1))

In itself, this is not a very useful rewriting tool, but a collection of others have been
developed for use in HOL. All of the rewriting tools are, in fact, logically derived, and
are based on conversions similar to DEPTH_CONV. They have been optimized in various
ways, so their implementation is in some cases rather complex and is not given here.
The conversions, rules and tactics for rewriting all take a list of theorems to be used as
rewrites. The theorems in the list need not be in simple equational form (e.g. a conjunc-
tion of equations is permissible); but are converted to equational form automatically
(and internally). (For example, a conjunction of equations is split into its constituent
conjuncts.) There are also a number of standard equations (representing common tau-
tologies) held in the ML variable basic_rewrites, and these are used by some of the
rewriting tools. All the built-in rewriting tools are listed below, for reference, beginning
with the rules. (All are fully described in REFERENCE.)

The prefix ‘PURE_’ indicates that the built-in equations in basic_rewrites are not used,
(i.e. only those given explicitly are used). The prefix ‘ONCE_’ indicates that the tool makes
only one rewriting pass through the expression (this is useful to avoid divergence). It is
based on ONCE_DEPTH_CONV, while the other tools traverse using TOP_DEPTH_CONV.

The rewriting converions are:

9.4. Rewriting tools 183

REWRITE_CONV : thm list -> conv
PURE_REWRITE_CONV : thm list -> conv
ONCE_REWRITE_CONV : thm list -> conv
PURE_ONCE_REWRITE_CONV : thm list -> conv

The basic rewriting rules are:

REWRITE_RULE : thm list -> thm -> thm
PURE_REWRITE_RULE : thm list -> thm -> thm
ONCE_REWRITE_RULE : thm list -> thm -> thm
PURE_ONCE_REWRITE_RULE : thm list -> thm -> thm

The prefix ‘ASM_’ indicates that the rule rewrites using the assumptions of the theorem
as rewrites.

ASM_REWRITE_RULE : thm list -> thm -> thm
PURE_ASM_REWRITE_RULE : thm list -> thm -> thm
ONCE_ASM_REWRITE_RULE : thm list -> thm -> thm
PURE_ONCE_ASM_REWRITE_RULE : thm list -> thm -> thm

The prefix ‘FILTER_’ indicates that the rule only rewrites with those assumptions of the
theorem satisfying the predicate supplied.

FILTER_ASM_REWRITE_RULE : (term -> bool) -> thm list -> thm -> thm
FILTER_PURE_ASM_REWRITE_RULE : (term -> bool) -> thm list -> thm -> thm
FILTER_ONCE_ASM_REWRITE_RULE : (term -> bool) -> thm list -> thm -> thm
FILTER_PURE_ONCE_ASM_REWRITE_RULE : (term -> bool) -> thm list -> thm -> thm

Tactics are introduced in Chapter 10, but are listed here for reference. The tactics
corresponding to the above rules are the following:

REWRITE_TAC : thm list -> tactic
PURE_REWRITE_TAC : thm list -> tactic
ONCE_REWRITE_TAC : thm list -> tactic
PURE_ONCE_REWRITE_TAC : thm list -> tactic

The prefix ‘ASM_’ indicates that the tactic rewrites using the assumptions of the goal as
rewrites.

ASM_REWRITE_TAC : thm list -> tactic
PURE_ASM_REWRITE_TAC : thm list -> tactic
ONCE_ASM_REWRITE_TAC : thm list -> tactic
PURE_ONCE_ASM_REWRITE_TAC : thm list -> tactic

The prefix ‘FILTER_’ indicates that the tactic only rewrites with those assumptions of the
goal satisfying the predicate supplied.

FILTER_ASM_REWRITE_TAC : (term -> bool) -> thm list -> tactic
FILTER_PURE_ASM_REWRITE_TAC : (term -> bool) -> thm list -> tactic
FILTER_ONCE_ASM_REWRITE_TAC : (term -> bool) -> thm list -> tactic
FILTER_PURE_ONCE_ASM_REWRITE_TAC : (term -> bool) -> thm list -> tactic

184 Chapter 9. Conversions

Chapter 10

Goal Directed Proof: Tactics and
Tacticals

There are three primary devices that together make theorem proving practical in HOL.
All three originate with Milner for Edinburgh LCF. The first is the theory as a record
of (among other things) facts already proved and thence available as lemmas without
having to be re-proved. The second, the subject of Chapter 8, is the derived rule of
inference as a meta-language procedure that implements a broad pattern of inference,
but that also, at each application, generates every primitive step of the proof. The third
device is the tactic as a means of organizing the construction of proofs; and the use of
tacticals for composing tactics.

Even with recourse to derived inference rules, it is still surprisingly awkward to work
forward, to find a chain of theorems that culminates in a desired theorem. This is in
part because chains have no structure, while ‘proof efforts’ do. For instance, if within
one sequence, two chains of steps are to be combined in the end by conjunction, then
one chain must follow or be interspersed with the other in the overall sequence. It can
also be difficult to direct the proof toward its object when starting from only hypotheses
(if any), lemmas (if any), axioms, and theorems following from no hypotheses (e.g. by
ASSUME or REFL). Likewise, it can be equally difficult to reconstruct the plan of the proof
effort after the fact, from the linear sequence of theorems; the sequence is unhelpful as
documentation.

The idea of goal directed proof is a simple one, well known in artificial intelligence:
to organize the search as a tree, and to reverse the process and begin with the objective.
The goal is then decomposed, successively if necessary, into what one hopes are more
tractable subgoals, each decomposition accompanied by a plan for translating the solu-
tion of subgoals into a solution of the goal. The choice of decomposition is an explicit
way of expressing a proof ‘strategy’.

Thus, for example, instead of the linear sequencing of two branches of the proof of
the conjunction, each branch starting from scratch, the proof task is organized as a
tree search, starting with a conjunctive goal and decomposing it into the two conjunct
subgoals (undertaken in optional order), with the intention of conjoining the two solu-
tions when and if found. The proof itself, as a sequence of steps, is the same however
it is found; the difference is in the search, and in the preservation, if required, of the

185

186 Chapter 10. Goal Directed Proof: Tactics and Tacticals

structured proof plan.
The representation of this idea in LCF was Milner’s inspiration; the idea is similarly

central to theorem proving in HOL. Although subgoaling theorem provers had already
been built at the time, Milner’s particular contribution was in formalizing the method
for translating subgoals solutions to solutions of goals.

10.1 Tactics, goals and justifications

A tactic is an ML function that when applied to a goal reduces it to (i) a list1 of (sub)goals,
along with (ii) a justification function mapping a list of theorems to a theorem. The idea
is that the function justifies the decomposition of the goal. A goal is an ML value whose
type is isomorphic to, but distinct from, the ML abstract type thm of theorems. That
is, a goal is a list of terms (assumptions) paired with a term. These two components
correspond, respectively, to the list of hypotheses and the conclusion of a theorem. The
list of assumptions is a working record of facts that may be used in decomposing the
goal.

The relation of theorems to goals is achievement: a theorem achieves a goal if the
conclusion of the theorem is equal to the term part of the goal (up to α-conversion),
and if each hypothesis of the theorem is equal (up to α-conversion, again) to some
assumption of the goal. This definition assures that the theorem purporting to satisfy a
goal does not depend on assumptions beyond the working assumptions of the goal.

A justification is (rather confusingly) called a proof in HOL following the LCF usage;
it is, as mentioned, an ML function from a theorem list to a theorem. The ML ‘proof’
function corresponds to a proof in the logical sense (of a sequence of theorems depend-
ing on inference rules) only in that it must evaluate the ML function corresponding to
each inference rule on which the sequence depends in order to compute its thm-valued
result. (‘Justification’, or ‘validation’, as is sometimes used, are less confusing terms for
the ML function in question.) The proof function, or justification, returned by a tactic is
intended to map the list of theorems respectively achieving the subgoals to the theorem
achieving the original goal; it justifies the decomposition into subgoals.

A tactic is said to solve a goal if it reduces the goal to the empty set of subgoals. This
depends, obviously, on there being at least one tactic that maps a goal to the empty
subgoal list. The simplest tactic that does this is one that can recognize when a goal
is achieved by an axiom or an existing theorem; in HOL, the function ACCEPT_TAC does
this. ACCEPT_TAC takes a theorem th and produces a tactic that maps a value of type thm

to the empty list of subgoals. It justifies this ‘decomposition’ by a proof function that
maps the empty list of theorems to the theorem th. The use of this technical device, or
other such tactics, ends the decomposition of subgoals, and allows the proof to be built

1The ordering is necessary for selecting a tree search strategy.

10.1. Tactics, goals and justifications 187

up.
Unlike theorems, goals need not be defined as an abstract type; they are transparent

and can be constructed freely. Thus, an ML type abbreviation is introduced for goals.2.
The operations on goals are therefore just the ordinary pair selectors and constructor.
Likewise, type abbreviations are introduced for justifications (proofs) and tactics. Con-
ceptually, the following abbreviations are made in HOL:

goal = term list # term
tactic = goal -> goal list # proof
proof = thm list -> thm

In fact, the type goal list # proof is abbreviated in ML to subgoals, and the abbre-
viation of tactic made indirectly through it. Thus, if T is a tactic and g is a goal, then
applying T to g (i.e. evaluating the ML expression T g) results in an ML value of type
subgoals, i.e. a pair whose first component is a list of goals and whose second com-
ponent has ML type proof. (The word ‘tactic’ is occasionally used loosely to mean a
tactic-valued function.)

It does not follow, of course, from the type tactic that a particular tactic is well-
behaved. For example, suppose that T g = ([g1;. . .;gn],p), and that the subgoals g1 ,
. . ., gn have been solved. That means that some theorems th1 , . . ., thn have been proved
such that each thi (1 ≤ i ≤ n) achieves the goal gi. The justification p is intended to be
a function that when applied to the list [th1;. . .;thn], succeeds in returning a theorem,
th, achieving the original goal g; but, of course, it might sometimes not succeed. If p
succeeds for every list of achieving theorems, then the tactic T is said to be valid. This
does not guarantee, however, that the subgoals are solvable in the first place. If, in
addition to being valid, a tactic always produces solvable subgoals from a solvable goal,
it is called strongly valid.

Tactics can be perfectly useful without being strongly valid, or without even being
valid; in fact, some of the most basic theorem proving strategies, expressed as tactics,
are invalid or not strongly valid.3 An invalid tactic cannot result in the proof of false
theorems; theorems in HOL are always the result of performing a proof in the basic
logic, whether the proof is found by goal directed search or forward search.4 However,
an invalid tactic may produce an unintended theorem—one that does not achieve the
original goal. The typical case is when a theorem purporting to achieve a goal actually
depends on hypotheses that extend beyond the assumptions of the goal. The inconve-
nience to the HOL user in this case is that the problem may be not immediately obvious;

2However, if goals were an abstract type, the print abbreviation could be avoided where not intended.
3The subgoal package, discussed later in the chapter, prevents the use of invalid tactics when they are

liable to result in unexpected theorem results, but the HOL system used directly allows it.
4‘Invalid’ is perhaps a misleading term, since there is nothing logically amiss in the use of invalid

tactics or the theorems produced thereby; but the term has stuck over time.

188 Chapter 10. Goal Directed Proof: Tactics and Tacticals

the default print format of theorems has hypotheses abbreviated as dots. Invalidity may
also be the result of the failure of the proof function, in the ML sense of failure, when
applied to a list of theorems (if, for example, the function were defined incorrectly); but
again, no false theorems can result. Likewise, a tactic that is not strongly valid cannot
result in a false theorem; the worst outcome of applying such a tactic is the production
of unsolvable subgoals.

Tactics are specified using the following notation:

goal

goal1 goal2 . . . goaln

For example, the tactic for decomposing conjunctions into two conjunct subgoals is
called CONJ_TAC. It is described by:

t1 /\ t2

t1 t2

This indicates that CONJ_TAC reduces a goal of the form (Γ,t1/\t2) to subgoals (Γ,t1) and
(Γ,t2). The fact that the assumptions of the original goal are propagated unchanged
to the two subgoals is indicated by the absence of assumptions in the notation. The
notation gives no indication of the proof function.

Another example is INDUCT_TAC, the tactic for performing mathematical induction on
the natural numbers:

!n.t[n]

t[0] {t[n]} t[SUC n]

INDUCT_TAC reduces a goal of the form (Γ,!n.t[n]) to a basis subgoal (Γ,t[0]) and an
induction step subgoal (Γ ∪ {t[n]},t[SUC n]). The induction assumption is indicated in
the tactic notation with set brackets.

Tactics fail (in the ML sense) if they are applied to inappropriate goals. For example,
CONJ_TAC will fail if it is applied to a goal whose conclusion is not a conjunction. Some
tactics never fail; for example ALL_TAC

t

t

is the identity tactic; it reduces a goal (Γ,t) to the single subgoal (Γ,t)—i.e. it has
no effect. ALL_TAC is useful for writing compound tactics, as discussed later (see Sec-
tion 10.4).

10.1. Tactics, goals and justifications 189

In just the way that the derived rule REWRITE_RULE is central to forward proof (Sec-
tion 8.2), the corresponding function REWRITE_TAC is central to goal directed proof.
Given a goal and a list of equational theorems, REWRITE_TAC transforms the term compo-
nent of the goal by applying the equations as left-to-right rewrites, recursively and to all
depths, until no more changes can be made. Unless not required, the function includes
as rewrites the same standard set of pre-proved tautologies that REWRITE_RULE uses. By
use of the tautologies, some subgoals can be solved internally by rewriting, and in that
case, an empty list of subgoals is returned. The transformation of the goal is justified in
each case by the appropriate chain of inferences. Rewriting often does a large share of
the work in goal directed proof searches.

A simple example from list theory (Section 4.9) illustrates the use of tactics. A con-
junctive goal is declared, and CONJ_TAC applied to it:

1#let g = ([]:term list),"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])";;
g = ([], "(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])") : goal

#let gl1,p1 = CONJ_TAC g;;
gl1 = [([], "HD[1;2;3] = 1"); ([], "TL[1;2;3] = [2;3]")] : goal list
p1 = - : proof

The subgoals are each rewritten, using the definitions of "HD" and "TL":

2#HD;;
Definition HD autoloaded from theory ‘list‘.
HD = |- !h t. HD(CONS h t) = h

|- !h t. HD(CONS h t) = h

#TL;;
Definition TL autoloaded from theory ‘list‘.
TL = |- !h t. TL(CONS h t) = t

|- !h t. TL(CONS h t) = t

#let gl1_1,p1_1 = REWRITE_TAC[HD;TL](hd gl1);;
gl1_1 = [] : goal list
p1_1 = - : proof

#let gl1_2,p1_2 = REWRITE_TAC[HD;TL](hd(tl gl1));;
gl1_2 = [] : goal list
p1_2 = - : proof

Both of the two subgoals are now solved, so the decomposition is complete and the
proof can be built up in stages. First the theorems achieving the subgoals are proved,
then from those, the theorem achieving the original goal:

190 Chapter 10. Goal Directed Proof: Tactics and Tacticals

3#let th1 = p1_1[];;
th1 = |- HD[1;2;3] = 1

#let th2 = p1_2[];;
th2 = |- TL[1;2;3] = [2;3]

#p1[th1;th2];;
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])

Although only the theorems achieving the subgoals are ‘seen’ here, the proof functions
of the three tactic applications together perform the entire chain of inferences leading
to the theorem achieving the goal. The same proof could be constructed by forward
search, starting from the definitions of "HD" and "TL", but not nearly as easily.

The HOL system provides a collection of pre-defined tactics (and tactic-valued func-
tions) that includes CONJ_TAC, INDUCT_TAC, ALL_TAC and REWRITE_TAC. The pre-defined
tactics are adequate for many applications. In addition, there are two means of defining
new tactics. Since a tactic is an ML function, the user can define a new tactic directly
in ML. Definitions of this sort use ML functions to construct the term part of the sub-
goals from the term part of the original goal (if any transformation is required); and
they specify the justification, which expects a list of theorems achieving the subgoals
and returns the theorem achieving (one hopes) the goal. The proof of the theorem is
encoded in the definition of the justification function; that is, the means for deriving the
desired theorem from the theorems given. This typically involves references to axioms
and primitive and defined inference rules, and is usually the more difficult part of the
project.

A simple example of a tactic written in ML is afforded by CONJ_TAC, whose definition
in HOL is as follows:

let CONJ_TAC : tactic (asl,w) =
(let l,r = dest_conj w in

[(asl,l);(asl,r)],(\[th1;th2].CONJ th1 th2)
) ? failwith ‘CONJ_TAC‘;;

This shows how the subgoals are constructed, and how the proof function is specified
in terms of the derived rule CONJ (Section 8.3.23).

The second method is to compose existing tactics by the use of ML functions called
tacticals. The tacticals provided in HOL are listed in Section 10.4. For example, two
existing tactics can be sequenced by use of the tactical THEN: if T1 and T2 are tactics,
then the ML expression T1 THEN T2 evaluates to a tactic that first applies T1 to a goal
and then applies T2 to each subgoal produced by T1. The tactical THEN is an infixed
ML function. Complex and powerful tactics can be constructed in this way; and new
tacticals can also be defined, although this is unusual.

The example from earlier is continued, to illustrate the use of the tactical THEN:

10.1. Tactics, goals and justifications 191

4#let gl2,p2 = (CONJ_TAC THEN REWRITE_TAC[HD;TL])g;;
gl2 = [] : goal list
p2 = - : proof

#p2[];;
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])

The single tactic CONJ_TAC THEN REWRITE_TAC[HD;TL] solves the goal in one single ap-
plication. The chain of inference computed, however, is exactly the same as in the
interactive proof; only the search is different.

In general, the second method is both easier and more reliable. It is easier because
it does not involve writing ML procedures (usually rather complicated procedures); and
more reliable because the composed tactics are valid when the constituent tactics are
valid, as a consequence of the way the tacticals are defined. Tactics written directly in
ML may fail in a variety of ways, and although, as usual, they cannot cause false the-
orems to appear, the failures can be difficult to understand and trace.5 On the other
hand, there are some proof strategies that cannot be implemented as compositions of
existing tactics, and these have to be implemented directly in ML. Certain sorts of in-
ductions are an example of this; as well as tactics to support some personal styles of
proof.

10.1.1 Details of proving theorems

When a theorem is proved that the user wishes to preserve for future use, it can be
stored in the current theory by using the function save_thm (see Section 3.7.1).

To simplify the use of tactics there are three standard functions

TAC_PROOF : (goal # tactic) -> thm
prove_thm : (string # term # tactic) -> thm
PROVE : (term # tactic) -> thm

TAC_PROOF takes a goal and a tactic, and applies the tactic to the goal; the goal can have
assumptions. Executing prove_thm(‘foo‘,t,T) proves the goal ([],t) (i.e. the goal with
no assumptions and conclusion t) using tactic T and saves the resulting theorem with
name foo on the current theory. Executing PROVE(t,T) proves the goal ([],t) using T
and returns the result without saving it. In all cases the evaluation fails if T does not
solve the goal ([],t).

In short, HOL provides a very general framework in which proof strategies can be
designed, implemented, applied and tested. Tactics range from the very simple to the
very advanced; in theory, a conventional automatic theorem prover could be expressed
as a tactic or group of tactics. In contrast, some users never have need to go beyond

5A possible extension to HOL would be a ‘debugging environment’ for this class of tactic.

192 Chapter 10. Goal Directed Proof: Tactics and Tacticals

the built in tactics of the system. The vital support that HOL provides in all cases is the
assurance that only theorems of the deductive system can be represented as theorems
of the HOL system—security is always preserved.

10.2 The subgoal package

It was mentioned earlier that goal directed proof is a way of organizing the construction
of a proof as a tree search. For any tactic and goal, the tactic implicitly determines
a tree of subgoals for that goal: each node is a subgoal, and each edge is a tactic.
Associated with each node in a successful proof effort is also an achieving theorem—
the theorem that achieves that subgoal. That is, the tree is traversed in two phases:
from the root (the original goal) to the final layer of subgoals; and from the theorems
achieving the final subgoals back to the theorem achieving the goal at the root. The
first phase is the decomposition phase, in which goals are reduced to subgoals (and
eventually to trivial subgoals). The second phase is the computation of the proof,
through each primitive step, culminating in the desired theorem. The tree, however, is
not explicitly represented in the HOL system, so each proof effort requires some amount
of book-keeping: application of tactics to goals, naming of subgoals and proof functions,
application of the appropriate proof functions to theorem lists, naming of theorems, and
so on.

When conducting a proof that involves many subgoals and tactics, it is difficult to keep
track of this book-keeping. While it is actually feasible for the user to take responsibility,
even in large proofs, it is tedious and error-prone. Therefore HOL provides a package
traversing the tree of subgoals once through, stacking the subgoals and proof functions,
and applying the proof functions automatically, when appropriate to do so. This package
was originally implemented for Cambridge LCF by Paulson.

The subgoal package implements a simple framework for interactive proof, and this
is adequate for most users in most applications. The tree is traversed depth first. The
current goal can be expanded into subgoals and a proof function by supplying it with
a tactic; the subgoals are pushed onto a goal stack and the justifications onto a proof
stack. Subgoals at the same depth in the tree can be considered in any order by rotating
through them, but one otherwise has to work through the tree depth first. When a tactic
solves a subgoal (i.e. returns an empty subgoal list), then the package computes a part
of the proof, and presents the user with the next subgoal.

For many users, the subgoal package is the primary interface to HOL for proving
theorems. As mentioned, it is very convenient to be relieved of all the book-keeping
labour. However, there is some cost in that the subgoal-proof tree cannot be inspected;
it only exists ephemerally for the user during an interaction, and can only be viewed
at the current top subgoal of the stack. Achieving-theorems are only displayed at the

10.2. The subgoal package 193

moment they are proved; there is no naming or preserving of subgoals or justifications.
If there is any reason to view other subgoals, this can only be accomplished by undoing
segments of the proof effort (backing up). Likewise, intermediate achieving-theorems
cannot be inspected after they have been displayed at proof time. One situation in
which it is necessary to have the tree available is in the debugging of tactics written
by the user directly in ML. It is planned in future versions of HOL to implement a more
sophisticated subgoal management package.

Finally, the application of certain tactics to certain goals generates a failure in ML
where the tactic is invalid; this does not happen when using HOL directly.

The example from earlier is continued below. In the session below, the conjunction
proof is generated again, but using the subgoal package, in which a goal is ‘set’ using the
function set_goal and ‘expanded’ using the function expand. The side effects of these
functions on the subgoal package’s stacks can be inferred.

5#set_goal([],"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])");;
"(HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])"

() : void

#expand CONJ_TAC;;
OK..
2 subgoals
"TL[1;2;3] = [2;3]"

"HD[1;2;3] = 1"

() : void

#expand(REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- HD[1;2;3] = 1

Previous subproof:
"TL[1;2;3] = [2;3]"

() : void

#expand(REWRITE_TAC[HD;TL]);;
OK..
goal proved
|- TL[1;2;3] = [2;3]
|- (HD[1;2;3] = 1) /\ (TL[1;2;3] = [2;3])

The following functions are available for interacting with the subgoal package. The
function

194 Chapter 10. Goal Directed Proof: Tactics and Tacticals

set_goal: goal -> void

initializes the subgoal package with a new goal.
The function

expand : tactic -> void

applies a tactic to the top goal on the stack, then pushes the resulting subgoals onto
the goal stack and prints them. If there are no resulting subgoals (i.e. if the current
goal was just solved), then the appropriate proof function is applied to the empty list of
theorems and the resulting theorems are printed.

The function

backup : void -> void

allows backing up from last state-change. The assignable variable backup_limit, initially
set to 12, determines the maximum number of proof states saved on the backup list.
The function backup can be repeated until the list is exhausted; backing up discards the
current state irretrievably.

The function

rotate : int -> void

rotates the order of subgoals on the stack. Calling rotate on n rotates by n steps the set
of subgoals on top of the stack. This enables subgoals at a given depth in the subgoal
tree to be considered in any order. However, subgoals deeper in the stack cannot be
worked on, nor can subgoals higher in the tree.

The function

top_goal : void -> goal

returns the top goal on the stack.
The function

top_thm : * -> thm

returns the theorem on top of the theorem stack. It is used to access the result of an
interactive proof session with the subgoal package.

The function

save_top_thm : string -> thm

10.3. Some tactics built into HOL 195

saves the top theorem on the goal stack in the current theory, and also returns it as a
value. (It is generally used only to save the final theorem, rather than the intermediate
theorems in the proof search.)

The function

get_state : void -> goalstack

returns the current proof state, which can then be assigned to a variable for additional
backup.

The function

set_state : goalstack -> void

restores the proof state to that saved earlier using get_state.
The function

print_state : int -> void

applied to n, prints n levels of the goal stack.
The following abbreviations are pre-declared for use in the subgoal package:

let g t = set_goal([],t)
and e = expand
and p = print_state
and b = backup
and r = rotate;;

The flag print_all_subgoals affects all operations where the subgoal stack is printed.
If the flag is true, the entire subgoal stack is printed. If the flag is false, only the top
subgoal on the stack is printed. If only the current subgoal is to be printed, the subgoal
package will report the number of subgoals remaining before displaying the subgoal on
the top of the goal stack. The default value of this flag is true.

10.3 Some tactics built into HOL

This section contains a selection of the more commonly used tactics in the HOL system.
(see REFERENCE for the complete list, with fuller explanations.)

It should be recalled that the ML type thm_tactic abbreviates thm->tactic, and the
type conv abbreviates term->thm.

196 Chapter 10. Goal Directed Proof: Tactics and Tacticals

10.3.1 Acceptance of a theorem

ACCEPT_TAC : thm_tactic

• Summary: ACCEPT_TAC th is a tactic that solves any goal that is achieved by th.

• Use: Incorporating forward proofs, or theorems already proved, into goal directed
proofs. For example, one might reduce a goal g to subgoals g1, . . ., gn using a
tactic T and then prove theorems th1 , . . ., thn respectively achieving these goals
by forward proof. The tactic

T THENL[ACCEPT_TAC th1; . . . ;ACCEPT_TAC thn]

would then solve g, where THENL is the tactical that applies the respective elements
of the tactic list to the subgoals produced by T (see Section 10.4.5).

10.3.2 Adding an assumption

ASSUME_TAC : thm_tactic

• Summary: ASSUME_TAC |-u adds u as an assumption.

t

{u}t

• Use: Enriching the assumptions of a goal with definitions or previously proved
theorems.

10.3.3 Specialization

GEN_TAC : tactic

• Summary: Specializes a universally quantified theorem to an arbitrary value.

!x.t[x]

t[x′]

where x′ is a variant of x not free in either goal or assumptions.

• Use: Solving universally quantified goals. GEN_TAC is often the first step of a goal
directed proof. STRIP_TAC (see below) applies GEN_TAC to universally quantified
goals.

10.3. Some tactics built into HOL 197

10.3.4 Conjunction

CONJ_TAC : tactic

• Summary: Splits a goal t1/\t2 into two subgoals, t1 and t2.

t1 /\ t2

t1 t2

• Use: Solving conjunctive goals. CONJ_TAC is invoked by STRIP_TAC (see below).

10.3.5 Discharging an assumption

DISCH_TAC : tactic

• Summary: Moves the antecedant of an implicative goal into the assumptions,
leaving the consequent as the term component.

u ==> v

{u}v

• Use: Solving goals of the form u ==> v by assuming u and then solving v under
the assumption. STRIP_TAC (see below) invokes DISCH_TAC on implicative goals.

10.3.6 Combined simple decompositions

STRIP_TAC : tactic

• Summary: Breaks a goal apart. STRIP_TAC removes one outer connective from
the goal, using CONJ_TAC, DISCH_TAC, GEN_TAC, and other tactics. If the goal has the
form t1/\· · ·/\tn ==> t then DISCH_TAC makes each ti into a separate assumption.

• Use: Useful for splitting a goal up into manageable pieces. Often the best thing to
do first is REPEAT STRIP_TAC, where REPEAT is the tactical that repeatedly applies a
tactic until it fails (see Section 10.4.7).

198 Chapter 10. Goal Directed Proof: Tactics and Tacticals

10.3.7 Substitution

SUBST_TAC : thm list -> tactic

• Summary: SUBST_TAC[|-u1=v1;. . .;|-un=vn] changes each sub-term t[u1, . . . , un]

of the goal to t[v1, . . . , vn] by substitution.

• Use: Useful in situations where REWRITE_TAC does too much, or would loop.

10.3.8 Case analysis on a boolean term

ASM_CASES_TAC : term -> tactic

• Summary: ASM_CASES_TAC u , where u is a boolean-valued term, does case analysis
on u.

t

{u}t {~u}t

• Use: Case analysis.

10.3.9 Case analysis on a disjunction

DISJ_CASES_TAC : thm_tactic

• Summary: DISJ_CASES_TAC |- u \/ v splits a goal into two cases: one with u as
an assumption and the other with v as an assumption.

t

{u}t {v}t

• Use: Case analysis. The tactic ASM_CASES_TAC is defined in ML by

let ASM_CASES_TAC t = DISJ_CASES_TAC(SPEC t EXCLUDED_MIDDLE)

where EXCLUDED_MIDDLE is the theorem |- !t. t \/ ~t.

10.3. Some tactics built into HOL 199

10.3.10 Rewriting

REWRITE_TAC : thm list -> tactic

• Summary: REWRITE_TAC[th1;. . .;thn] transforms the term part of a goal by rewrit-
ing it with the given theorems th1, . . ., thn, and the set of pre-proved standard
tautologies.

{t1, . . . , tm}t
{t1, . . . , tm}t′

where t′ is obtained from t as described.

• Use: Advancing goals by using definitions and previously proved theorems (lem-
mas).

• Some other rewriting tactics (based on REWRITE_TAC) are:

1. ASM_REWRITE_TAC adds the assumptions of the goal to the list of theorems used
for rewriting.

2. PURE_ASM_REWRITE_TAC is like ASM_REWRITE_TAC, but it doesn’t use any built-in
rewrites.

3. PURE_REWRITE_TAC uses neither the assumptions nor the built-in rewrites.

4. FILTER_ASM_REWRITE_TAC p [th1;. . .;thn] simplifies the goal by rewriting it
with the explicitly given theorems th1 , . . ., thn , together with those assump-
tions of the goal which satisfy the predicate p and also the standard rewrites.

10.3.11 Resolution by Modus Ponens

IMP_RES_TAC : thm -> tactic

• Summary: IMP_RES_TAC th does a limited amount of automated theorem proving
in the form of forward inference; it ‘resolves’ the theorem th with the assumptions
of the goal and adds any new results to the assumptions. The specification for
IMP_RES_TAC is:

{t1, . . . , tm}t
{t1, . . . , tm, u1, . . . , un}t

200 Chapter 10. Goal Directed Proof: Tactics and Tacticals

where u1, . . ., un are derived by ‘resolving’ the theorem th with the existing as-
sumptions t1, . . ., tm. Resolution in HOL is not classical resolution, but just Modus
Ponens with one-way pattern matching (not unification) and term and type in-
stantiation. The general case is where th is of the canonical form

|- !x1. . . xp.v1 ==> v2 ==> . . . ==> vq ==> v

IMP_RES_TAC th then tries to specialize x1, . . ., xp in succession so that v1, . . ., vq
match members of {t1, . . . , tm}. Each time a match is found for some antecedent
vi, for i successively equal to 1, 2, . . . , q, a term and type instantiation is made
and the rule of Modus Ponens is applied. If all the antecedents vi (for 1 ≤ i ≤ q)
can be dismissed in this way, then the appropriate instance of v is added to the
assumptions. Otherwise, if only some initial sequence v1, . . . , vk (for some k where
1 < k < q) of the assumptions can be dismissed, then the remaining implication:

|- vk+1 ==> . . . ==> vq ==> v

is added to the assumptions.

For a more detailed description of resolution and IMP_RES_TAC, see REFERENCE.
(See also the Cambridge LCF Manual [?].)

• Use: Deriving new results from a previously proved implicative theorem, in com-
bination with the current assumptions, so that subsequent tactics can use these
new results.

10.3.12 Identity

ALL_TAC : tactic

• Summary: The identity tactic for the tactical THEN (see Section 10.1). Useful for
writing tactics.

• Use:

1. Writing tacticals (see description of REPEAT in Section 10.4).

2. With THENL (see Section 10.4.5); for example, if tactic T produces two sub-
goals T1 is to be applied to the first while nothing is to be done to the second,
then T THENL[T1;ALL_TAC] is the tactic required.

10.3.13 Null

NO_TAC : tactic

• Summary: Tactic that always fails.

• Use: Writing tacticals.

10.4. Tacticals 201

10.3.14 Splitting logical equivalences

EQ_TAC : tactic

• Summary: EQ_TAC splits an equational goal into two implications (the ‘if-case’ and
the ‘only-if’ case):

u = v

u ==> v v ==> u

• Use: Proving logical equivalences, i.e. goals of the form “u=v” where u and v are
boolean terms.

10.3.15 Solving existential goals

EXISTS_TAC : term -> tactic

• Summary: EXISTS_TAC "u" reduces an existential goal !x. t[x] to the subgoal t[u].

!x.t[x]

t[u]

• Use: Proving existential goals.

• Comment: EXISTS_TAC is a crude way of solving existential goals, but it is the
only built-in tactic for this purpose. A more powerful approach uses Prolog-style
‘logic variables’ (i.e. meta-variables) that can be progressively refined towards the
eventual witness. Implementing this requires goals to contain an environment
giving the binding of logic variables to terms. Details (in the context of LCF) are
given in a paper by Stefan Sokołowski [?].

10.4 Tacticals

A tactical is not represented by a single ML type, but is in general an ML function that
returns a tactic (or tactics) as result. Tacticals may take parameters, and this is reflected
in the variety of ML types that the built-in tacticals have. Tacticals are used for building
compound tactics. Some important tacticals in the HOL system are listed below. For a
complete list of the tacticals in HOL see REFERENCE.

202 Chapter 10. Goal Directed Proof: Tactics and Tacticals

10.4.1 Alternation

ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If T1 and T2 are tactics, then the ML expression
T1 ORELSE T2 evaluates to a tactic which applies T1 unless that fails; if it fails, it applies
T2. ORELSE is defined in ML as a curried infix by

(T1 ORELSE T2) g = T1 g ? T2 g

10.4.2 First success

FIRST : tactic list -> tactic

The tactical FIRST applies the first tactic, in a list of tactics, that succeeds.

FIRST [T1;T2;. . .;Tn] = T1 ORELSE T2 ORELSE . . . ORELSE Tn

10.4.3 Change detection

CHANGED_TAC : tactic -> tactic

CHANGED_TAC T g fails if the subgoals produced by T are just [g]; otherwise it is equiv-
alent to T g. It is defined by the following, where set_equal : * list -> * list -> bool

tests whether two lists denote the same set (i.e. contain the same elements).

letrec CHANGED_TAC tac g =
let gl,p = tac g in
if set_equal gl [g] then fail else (gl,p)

10.4.4 Sequencing

THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T1 and T2 are tactics, then the ML expression
T1 THEN T2 evaluates to a tactic which first applies T1 and then applies T2 to each sub-
goal produced by T1. Its definition in ML is complex (and due to Milner) but worth
understanding as an exercise in ML. It is an ML curried infix.

let ((T1:tactic) THEN (T2:tactic)) g =
let gl,p = T1 g
in
let gll,pl = split(map T2 gl)
in
(flat gll, (p o mapshape(map length gll)pl));;

10.4. Tacticals 203

Here are the definitions of the ML functions map, split, o, length, flat and mapshape:

map : (* -> **) -> * list -> ** list

map f [x1;. . .;xn] = [f x1;. . .;f xn]

split : (* # **) list -> (* list # ** list)

split[(x1,y1);. . .;(xn,yn)] = ([x1;. . .;xn],[y1;. . .;yn])

$o : ((* -> **) # (*** -> *)) -> *** -> **$ (an infix)

(f o g) x = f(g x)

length : * list -> int

length[x1;. . .;xn] = n

flat : (* list) list -> * list

flat[[x11;. . .;x1m1
];[x21;. . .;x2m2

];. . .;[xn1;. . .;xnmn]] =
[x11;. . .;x1m1

;x21;. . .;x2m2
; . . . ;xn1;. . .;xnmn]

mapshape : int list -> (* list -> **) list -> * list -> ** list

mapshape
[m1;. . .;mn]
[f1;. . .;fn]
[x11;. . .;x1m1

;x21;. . .;x2m2
; . . . ;xn1;. . .;xnmn] =

[f1[x11;. . .;x1m1
];f2[x21;. . .;x2m2

]; . . . ;fn[xn1;. . .;xnmn]]

Suppose T1 g = (gl,p) where gl=[g1;. . .;gn]. Suppose also that for i between 1 and
n it is the case that T2 gi = ([gi1;. . .;gimi],pi). Then split(map T2 gl) will evaluate to
the pair (gll,pl) of a subgoal list and a proof function, where

gll = [[g11;. . .;g1m1
];[g21;. . .;g2m2

]; . . . ;[gn1;. . .;gnmn]]

and pl = [p1;. . .;pn]. Note that

map length gll = [m1;. . .;mn]

204 Chapter 10. Goal Directed Proof: Tactics and Tacticals

and that

flat gll = [g11;. . .;g1m1
;g21;. . .;g2m2

; . . . ;gn1;. . .;gnmn]

Suppose now that, for i between 1 and n, the theorems thi1, . . ., thimi achieve the
goals gi1, . . ., gimi, respectively. It will follow that if T2 is valid then for i between 1 and
n the result of applying pi to the list of theorems [thi1;. . .;thimi] will be a theorem, thi
say, which achieves gi. Now if T1 is valid then p[th1;. . .;thn] will evaluate to a theorem,
th say, that achieves the goal g. Thus

p
(mapshape
(map length gll)
pl
[th11;. . .;th1m1

;th21;. . .;th2m2
; . . . ;thn1;. . .;thnmn]) =

p([p1[th11;. . .;th1m1
];p2[th21;. . .;th2m2

]; . . . ;pn[thn1;. . .;thnmn]]) =

p([th1;. . .;thn]) =

th

This shows that p o mapshape(map length gll)pl is a function that, when applied to
a list of theorems respectively achieving flat gll, returns a theorem (namely th) that
achieves g.

10.4.5 Selective sequencing

THENL : tactic -> tactic list -> tactic

If tactic T produces n subgoals and T1, . . ., Tn are tactics then T THENL [T1;. . .;Tn] is
a tactic which first applies T and then applies Ti to the ith subgoal produced by T . The
tactical THENL is useful if one wants to apply different tactics to different subgoals.

Here is the definition of THENL:

let ((T:tactic) THENL (Tl:tactic list)) g =
let gl,p = T g
in
let gll,pl = (split(map (\(T,g). T g) Tgl)

where Tgl = combine(Tl,gl) ? failwith ‘THENL‘)
in
(flat gll, (p o mapshape(map length gll)pl))

The understanding of this procedure is left as an exercise!

10.5. Tactics for manipulating assumptions 205

10.4.6 Successive application

EVERY : tactic list -> tactic

The tactical EVERY applies a list of tactics one after the other.

EVERY [T1;T2;. . .;Tn] = T1 THEN T2 THEN . . . THEN Tn

10.4.7 Repetition

REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic that repeatedly applies T until it fails. It is
defined in ML by:

letrec REPEAT T g = ((T THEN REPEAT T) ORELSE ALL_TAC) g

(The extra argument g is needed because ML does not use lazy evaluation.)

10.5 Tactics for manipulating assumptions

There are in general two kinds of tactics in HOL: those that transform the conclusion
of a goal without affecting the assumptions, and those that do (also or only) affect the
assumptions. The various tactics that rewrite are typical of the first class; those that do
‘resolution’ belong to the second. Often, many of the steps of a proof in HOL are carried
out ‘behind the scenes’ on the assumptions, by tactics of the second sort. A tactic that
in some way changes the assumptions must also have a justification that ‘knows how’
to restore the corresponding hypotheses of the theorem achieving the subgoal. All of
this is explicit, and can be examined by a user moving about the subgoal-proof tree.6

Using these tactics in the most straightforward way, the assumptions at any point in a
goal-directed proof, i.e. at any node in the subgoal tree, form an unordered record of
every assumption made, but not yet dismissed, up to that point.

In practice, the straightforward use of assumption-changing tactics, with the tools
currently provided in HOL, presents at least two difficulties. The first is that assumption
sets can grow to an unwieldy size, the number and/or length of terms making them
difficult to read. In addition, forward-search tactics such as resolution often add at least
some assumptions that are never subsequently used, and these have to be carried along
with the useful assumptions; the straightforward method provides no ready way of in-
tercepting their arrival. Likewise, there is no straightforward way of discarding assump-
tions after they have been used and are merely adding to the clutter. Although perhaps

6The current subgoal package makes this difficult, but the point still holds.

206 Chapter 10. Goal Directed Proof: Tactics and Tacticals

against the straightforward spirit, this is a perfectly valid strategy, and requires no more
than a way of denoting the specific assumptions to be discarded. That, however, raises
the more general problem of denoting assumptions in the first place. Assumptions are
also denoted so that they can be manipulated: given as parameters, combined to draw
inferences, etc. The only straightforward way to denote them in the existing system is
to supply their quoted text. Though adequate, this method may result in bulky ML ex-
pressions; and it may take some effort to present the text correctly (with necessary type
information, etc.).

As always in HOL, there are quite a few ways around the various difficulties. One
approach, of course, is the one intended in the original design of Edinburgh LCF, and
advocates the rationale for providing a full programming language, ML, rather than a
simple proof command set: that is for the user to implement new tactics in ML. For
example, resolution tactics can be adapted by the user to add new assumptions more
selectively; and case analysis tactics to make direct replacements without adding case
assumptions. This, again, is adequate, but can involve the user in extensive amounts of
programming, and in debugging exercises for which there is no system support.

Short of implementing new tactics, two other standard approaches are reflected in the
current system. Both were originally developed for Cambridge LCF [?, ?]; both reflect
fresh views of the assumptions; and both rely on tacticals that transform tactics. The
two approaches are partly but not completely complementary.

The first approach, described in this section, implicitly regards the assumption set,
already represented as a list, as a stack, with a pop operation, so that the assumption
at the top of the stack can be (i) discarded and (ii) denoted without explicit quotation.
(The corresponding push adds new assumptions at the head of the list.) The stack can
be generalized to an array to allow for access to arbitrary assumptions.

The other approach, described in Section 10.5.2, gives a way of intercepting and
manipulating results without them necessarily being added as assumptions in the first
place. The two approaches can be combined in HOL interactions.

10.5.1 Theorem continuations with popping

The first proof style, that of popping assumptions from the assumption ‘stack’, is illus-
trated using its main tool: the tactical POP_ASSUM.7

POP_ASSUM : (thm -> tactic) -> tactic

Given a function f:thm -> tactic, the tactic POP_ASSUM f applies f to the (assumed)
first assumption of a goal (i.e. to the top element of the assumption stack) and then
applies the tactic created thereby to the original goal minus its top assumption:

7The type of POP ASSUM is actually more general than the type shown here. The present format is used
simply for readability.

10.5. Tactics for manipulating assumptions 207

POP_ASSUM f ([t1;. . .;tn],t) = f (ASSUME t1) ([t2;. . .;tn],t)

ML functions such as f , with type thm -> tactic, abbreviated to thm_tactic, are called
theorem continuations, suggesting the fact that they take theorems and then continue
the proof.8 The use of POP_ASSUM can be illustrated by applying it to a particular tactic,
namely DISCH_TAC (Section 10.3.5).

DISCH_TAC : tactic

On a goal whose conclusion is an implication u ⇒ v, DISCH_TAC reflects the natural
strategy of attempting to prove v under the assumption u, the discharged antecedent.
For example, suppose it were required to prove that (n = 0)⇒ (n× n = n):

1#g "(n = 0) ==> (n * n = n)";;
"(n = 0) ==> (n * n = n)"

() : void

#e DISCH_TAC;;
OK..
"n * n = n"

["n = 0"]

Application of DISCH_TAC to the goal produces one subgoal, as shown, with the added
assumption. To engage the assumption as a simple substitution, the tactic SUBST1_TAC is
useful (see REFERENCE for details).

SUBST1_TAC : thm_tactic

SUBST1_TAC expects a theorem with an equational conclusion, and substitutes accord-
ingly, into the conclusion of the goal. At this point in the session, the tactical POP_ASSUM
is applied to SUBST1_TAC to form a new tactic. The new tactic is applied to the current
subgoal.

2#top_goal();;
(["n = 0"], "n * n = n") : goal

#e(POP_ASSUM SUBST1_TAC);;
OK..
"0 * 0 = 0"

The result, as shown, is that the assumption is used as a substitution rule and then
discarded. The one subgoal therefore has no assumptions on its stack. The two tactics
used thus far could be combined into one using the tactical THEN:

8There is a superficial analogy with continuations in denotational semantics.

208 Chapter 10. Goal Directed Proof: Tactics and Tacticals

1#g "(n = 0) ==> (n * n = n)";;
"(n = 0) ==> (n * n = 0)"

() : void

#e(DISCH_TAC THEN POP_ASSUM SUBST1_TAC);;
OK..
"0 * 0 = 0"

The goal can now be solved by rewriting with a fact of arithmetic:

2#e(REWRITE_TAC[MULT_CLAUSES]);;
Theorem MULT_CLAUSES autoloaded from theory ‘arithmetic‘.
MULT_CLAUSES =
|- !m n.

(0 * m = 0) /\
(m * 0 = 0) /\
(1 * m = m) /\
(m * 1 = m) /\
((SUC m) * n = (m * n) + n) /\
(m * (SUC n) = m + (m * n))

OK..
goal proved
|- 0 * 0 = 0
|- (n = 0) ==> (n * n = n)

A single tactic can, of course, be written to solve the goal:

1#g "(n = 0) ==> (n * n = n)";;
"(n = 0) ==> (n * n = n)"

() : void

#e(DISCH_TAC THEN POP_ASSUM SUBST1_TAC THEN REWRITE_TAC[MULT_CLAUSES]);;
Theorem MULT_CLAUSES autoloaded from theory ‘arithmetic‘.
MULT_CLAUSES =
|- !m n.

(0 * m = 0) /\
(m * 0 = 0) /\
(1 * m = m) /\
(m * 1 = m) /\
((SUC m) * n = (m * n) + n) /\
(m * (SUC n) = m + (m * n))

OK..
goal proved
|- (n = 0) ==> (n * n = n)

10.5. Tactics for manipulating assumptions 209

This example illustrates how the tactical POP_ASSUM provides access to the top of the
assumption ‘stack’ (a capability that is useful, obviously, only when the most recently
pushed assumption is the very one required). To accomplish this access in the straight-
forward way would require some more awkward construct, with explicit assumptions:

1#g "(n = 0) ==> (n * n = n)";;
"(n = 0) ==> (n * n = n)"

() : void

#e(DISCH_TAC);;
OK..
"n * n = n"

["n = 0"]

() : void

#e(SUBST1_TAC(ASSUME "n = 0"));;
OK..
"0 * 0 = 0"

["n = 0"]

In contrast to the above, the popping example also illustrates the convenient disap-
pearance of an assumption no longer required, by removing it from the stack at the
moment when it is accessed and used. This is valid because any theorem that achieves
the subgoal will still achieve the original goal. Discarding assumptions is a separate
issue from accessing them; there could, if one liked, be another tactical that produced a
similar tactic on a theorem continuation to POP_ASSUM but which did not pop the stack.

Finally, POP_ASSUM f induces case splits where f does. To prove (n = 0 ∨ n = 1) ⇒
(n× n = n), the function DISJ_CASES_TAC can be used. The tactic

DISJ_CASES_TAC |- p \/ q

splits a goal into two subgoals that have p and q, respectively, as new assumptions.
1#g "((n = 0) \/ (n = 1)) ==> (n * n = n)";;

"(n = 0) \/ (n = 1) ==> (n * n = n)"

() : void

#e DISCH_TAC;;
OK..
"n * n = n"

["(n = 0) \/ (n = 1)"]

() : void

#backup();;
"(n = 0) \/ (n = 1) ==> (n * n = n)"

210 Chapter 10. Goal Directed Proof: Tactics and Tacticals

2#e(DISCH_TAC THEN POP_ASSUM DISJ_CASES_TAC);;
OK..
2 subgoals
"n * n = n"

["n = 1"]

"n * n = n"
["n = 0"]

() : void

#backup();;
"(n = 0) \/ (n = 1) ==> (n * n = n)"

() : void

#e(DISCH_TAC THEN POP_ASSUM DISJ_CASES_TAC THEN POP_ASSUM SUBST1_TAC);;
OK..
2 subgoals
"1 * 1 = 1"

"0 * 0 = 0"

As noted earlier, POP_ASSUM is useful when an assumption is required that is still at the
top of the stack, as in the examples. However, it is often necessary to access assumptions
made at arbitrary previous times, in order to give them as parameters, combine them,
etc. The stack approach can be extended to such cases by re-conceiving the stack as an
array, and by use of the tactical ASSUM_LIST:

ASSUM_LIST : (thm list -> tactic) -> tactic

where

ASSUM_LIST f ([t1;...;tn],t) = f([ASSUME t1;...;ASSUME tn])

That is, given a function f , ASSUM_LIST f forms a new tactic by applying f to the list
of (assumed) assumptions of a goal, then applies the resulting tactic to the goal. For
example, a tactic of the form ASSUM_LIST (\thl. f (el i thl)) applies the function f to
the ith assumption of a goal to produce a new tactic, then applies the new tactic to the
goal. Again, ASSUM_LIST REWRITE_TAC is a tactic that engages all of the current assump-
tions as rewrite rules. In this way, the array approach enables arbitrary assumptions to
be accessed; and in particular, specific assumptions to be accessed by location using the
function el.

To illustrate the use of ASSUM_LIST, suppose it were required to prove something dif-
ferent: that (∀m. m + n = m) ⇒ (n × n = n). Suppose also that the arithmetic fact

10.5. Tactics for manipulating assumptions 211

ADD_INV_0 is already known: namely, that ∀m n. (m + n = m) ⇒ (n = 0). After dis-
charging the assumption, the conclusion of the theorem ADD_INV_0 is imported as an
assumption, occupying first place in the array.

1#g "(!m. m + n = m) ==> (n * n = n)";;
"(!m. m + n = m) ==> (n * n = n)"

() : void

#e(DISCH_TAC);;
OK..
"n * n = n"

["!m. m + n = m"]

() : void

#e(ASSUME_TAC ADD_INV_0);;
Theorem ADD_INV_0 autoloaded from theory ‘arithmetic‘.
ADD_INV_0 = |- !m n. (m + n = m) ==> (n = 0)

OK..
"n * n = n"

["!m. m + n = m"]
["!m n. (m + n = m) ==> (n = 0)"]

The problem is now to combine the two assumptions to produce the obvious conclu-
sion. That requires denoting them, for which ASSUM_LIST provides the means. Finally,
ASSUME_TAC places the conclusion of the new result in the assumptions. (The ML function
el: int -> * list -> * is used here to select a numbered element of a list.)

2#e(ASSUM_LIST(\thl. ASSUME_TAC
(MP (SPECL ["m:num";"n:num"] (el 1 thl))

(SPEC "m:num"(el 2 thl)))));;
##OK..
"n * n = n"

["!m. m + n = m"]
["!m n. (m + n = m) ==> (n = 0)"]
["n = 0"]

The goal can now be solved as in the previous example.
To access the two particular assumptions in the straightforward way would again

require quoting their text. To access all of them (to pass to REWRITE_TAC, for instance)
would require quoting all of them.
ASSUM_LIST addresses the issue of accessing assumptions, but not the issue of discard-

ing them. A related function generalizes POP_ASSUM to discard them as well:

POP_ASSUM_LIST : (thm list -> tactic) -> tactic

212 Chapter 10. Goal Directed Proof: Tactics and Tacticals

POP_ASSUM_LIST resembles ASSUM_LIST except in removing all of the old assumptions
of the subgoal, the way that POP_ASSUM removes the most recent. (Thus POP_ASSUM is
no more than a special case of POP_ASSUM_LIST that selects the first element of those
supplied and re-assumes the others.)

POP_ASSUM_LIST f ([t1; . . . ;tn],t) = f [ASSUME t1; . . . ;ASSUME tn] ([],t)

This is used when the existing assumptions have served their purpose and can be dis-
carded, as in the current example:

3#backup();;
"n * n = n"

["!m. m + n = m"]
["!m n. (m + n = m) ==> (n = 0)"]

() : void

#e(POP_ASSUM_LIST(\thl. ASSUME_TAC
(MP (SPECL ["m:num";"n:num"] (el 1 thl))

(SPEC "m:num"(el 2 thl)))));;
##OK..
"n * n = n"

["n = 0"]

This leaves only the one assumption vital to solving the goal, as before. In some con-
texts, the new result is required as an assumption, but here it can be used immediately:

4#backup();;
"n * n = n"

["!m. m + n = m"]
["!m n. (m + n = m) ==> (n = 0)"]

() : void

#e(POP_ASSUM_LIST(\thl. SUBST1_TAC
(MP (SPECL ["m:num";"n:num"] (el 1 thl))

(SPEC "m:num"(el 2 thl)))));;
##OK..
"0 * 0 = 0"

POP_ASSUM_LIST can, of course, take any function of appropriate type, but is in fact
often used in conjunction with the element-selecting functions. Function composition
occasionally allows a more compact expression to be written.

The array view (of which the stack view is a special case) gives a way in which un-
necessary assumptions can be dropped, and assumptions can be accessed, individually
if necessary, using tacticals. Although this approach can be effective, as illustrated, it

10.5. Tactics for manipulating assumptions 213

does tend to rely on the ordering of the representation of the assumption set. (That
is, POP_ASSUM necessarily does, while the other two provide the temptation!) A minor
drawback of this reliance is that tactics are then sensitive to changes that alter the order
or composition of the assumptions; for example, changes in the implementation of HOL,
modifications of existing tactics, and so on. However, that sensitivity is not so serious
in any one incarnation of HOL; there is a logical viewpoint that regards the assumptions
(sequents) as ordered anyway. A more serious problem is that order-sensitive tactics are
meaningful only during interactive sessions; to reconstruct the assumptions from the ML
text and the original goal alone is generally difficult, and more so when assumptions are
denoted by location. This means that (i) the resulting tactics cannot easily be general-
ized for use in other contexts, and (ii) the ML text does not supply useful documentation
of the solution of the goal. Also, as shown in the last example, it it slightly unsatisfactory
to push and subsequently pop assumptions, especially in immediate succession, where
this could be avoided.

Two other tacticals that can be used to manipulate the assumption list are FIRST_ASSUM

and EVERY_ASSUM. These are characterized by:

FIRST_ASSUM f ([t1; . . . ;tn], t) =
(f(ASSUME t1) ORELSE . . . ORELSE f(ASSUME tn)) ([t1; . . . ;tn], t)

EVERY_ASSUM f ([t1; . . . ;tn], t) =
(f(ASSUME t1) THEN . . . THEN f(ASSUME tn)) ([t1; . . . ;tn], t)

10.5.2 Theorem continuations without popping

The idea of the second approach is suggested by the way the array-style tacticals sup-
ply a list of theorems (the assumed assumptions) to a function. These tacticals use the
function to infer new results from the list of theorems, and then to do something with
the results. In some cases, e.g. the last example, the assumptions need never have been
made in the first place, which suggests a different use of tacticals. The original example
for POP_ASSUM illustrates this: namely, to show that (n = 0)⇒ (n×n = n). Here, instead
of discharging the antecedent by applying DISCH_TAC to the goal, which adds the an-
tecedent as an assumption and returns the consequent as the conclusion, and then sup-
plying the (assumed) added assumption to the theorem continuation SUBST1_TAC and
discarding it at the same time, a tactical called DISCH_THEN is applied to SUBST1_TAC di-
rectly. DISCH_THEN transforms SUBST1_TAC into a new tactic: one that applies SUBST1_TAC

directly to the (assumed) antecedent, and the resulting tactic to a subgoal with no new
assumptions and the consequent as its conclusion:

214 Chapter 10. Goal Directed Proof: Tactics and Tacticals

1#DISCH_THEN;;
- : (thm_tactic -> tactic)

#DISCH_THEN SUBST1_TAC;;
- : tactic

#g "(n = 0) ==> (n * n = n)";;
"(n = 0) ==> (n * n = n)"

() : void

#e(DISCH_THEN SUBST1_TAC);;
OK..
"0 * 0 = 0"

This gives the same result as the stack method, but more directly, with a more compact
ML expression, and with the attractive feature that the term n = 0 is never an assump-
tion, even for an interval of one step. This technique is often used at the moment when
results are available; as above, where the result produced by discharging the antecedent
can be immediately passed to substitution. If the result were only needed later, it would
have to be held as an assumption. However, results can be manipulated when they are
available, and their results either held as assumptions or used immediately. For exam-
ple, to prove (0 = n)⇒ (n× n = n), the result n = 0 could be reversed immediately:

1#g "(0 = n) ==> (n * n = n)";;
"(0 = n) ==> (n * n = n)"

() : void

#e(DISCH_THEN(SUBST1_TAC o SYM));;
OK..
"0 * 0 = 0"

The justification of DISCH_THEN SUBST1_TAC is easily constructed from the justification
of DISCH_TAC composed with the justification of SUBST1_TAC. The term n = 0 is assumed,
to yield the theorem that is passed to the theorem continuation SUBST1_TAC, and it is
accordingly discharged during the construction of the actual proof; but the assumption
happens only internally to the tactic DISCH_THEN SUBST1_TAC, and not as a step in the
tactical proof. In other words, the subgoal tree here has one node fewer than before,
when an explicit step (DISCH_TAC) reflected the assumption.

On the goal with the disjunctive antecedent, this method again provides a compact
tactic:

10.5. Tactics for manipulating assumptions 215

1#g "((n = 0) \/ (n = 1)) ==> (n * n = n)";;
"(n = 0) \/ (n = 1) ==> (n * n = n)"

() : void

#e(DISCH_THEN(DISJ_CASES_THEN SUBST1_TAC));;
OK..
2 subgoals
"1 * 1 = 1"

"0 * 0 = 0"

This avoids the repeated popping and pushing of the stack solution, and likewise, gives
a shorter ML expression. Both give a shorter expression than the direct method, which
is:

DISCH_TAC
THEN DISJ_CASES_TAC(ASSUME "(n = 0) \/ (n = 1)")
THENL[SUBST1_TAC(ASSUME "n = 0");

SUBST1_TAC(ASSUME "n = 1")]

To summarize, there are so far at least five ways to solve a goal (and these are often
combined in one interaction): directly, using the stack view of the assumptions, using
the array view with or without discarding assumptions, and using a tactical to intercept
an assumption step. All of the following work on the goal (n = 0)⇒ (n× n = n):

DISCH_TAC
THEN SUBST1_TAC(ASSUME "n = 0")
THEN REWRITE_TAC[MULT_CLAUSES]

DISCH_TAC
THEN POP_ASSUM SUBST1_TAC
THEN REWRITE_TAC[MULT_CLAUSES]

DISCH_TAC
THEN ASSUM_LIST (SUBST1_TAC o el 1)
THEN REWRITE_TAC[MULT_CLAUSES]

DISCH_TAC
THEN POP_ASSUM_LIST (SUBST1_TAC o el 1)
THEN REWRITE_TAC[MULT_CLAUSES]

DISCH_THEN SUBST1_TAC
THEN REWRITE_TAC[MULT_CLAUSES]

Furthermore, all five induce the same sequence of inferences leading to the desired the-
orem; internally, no inference steps are saved by the economies in the ML text or the

216 Chapter 10. Goal Directed Proof: Tactics and Tacticals

subgoal tree. In this sense, the choice is entirely one of style and taste; of how to or-
ganize the decomposition into subgoals. The first expression illustrates the verbosity of
denoting assumptions by text (the goal with the disjunctive antecedent gave a clearer
example); but also the intelligibility of the resulting expression, which, of course, is
all that is saved of the interaction, aside from the final theorem. The last expression
illustrates both the elegance and the inscrutibility of using functions to manipulate in-
termediate results directly, rather than as assumptions. The middle three expressions
show how results can be used as assumptions (discarded when redundant, if desired);
and how assumptions can be denoted without recourse to their text. It is a strength of
the LCF approach to theorem proving that many different proof styles are supported,
(all in a secure way) and indeed, can be studied in their own right.

HOL provides several other theorem continuation functions analogous to DISCH_THEN

and DISJ_CASES_THEN. (Their names always end with ‘_THEN’, ‘_THENL or ‘_THEN2’.) Some
of these do convenient inferences for the user. For example:

CHOOSE_THEN : thm_tactical

Where thm_tactical abbreviates thm_tactic -> tactic. CHOOSE_THEN f (|- ?x.t[x]) is
a tactic that, given a goal, generates the subgoal obtained by applying f to (t[x]|-t[x]).
The intuition is that if |- ?x.t[x] holds then |- t[x] holds for some value of x (as long as
the variable x is not free elsewhere in the theorem or current goal). This gives an easy
way of using existentially quantified theorems, something that is otherwise awkward.

The new method has other applications as well, including as an implementation tech-
nique. For example, taking DISJ_CASES_THEN as basic, DISJ_CASES_TAC can be defined
by:

let DISJ_CASES_TAC = DISJ_CASES_THEN ASSUME_TAC

Similarly, the method is useful for modifying existing tactics (e.g. resolution tactics)
without having to re-program them in ML. This avoids the danger of introducing tactics
whose justifications may fail, a particularly difficult problem to track down; it is also
much easier than starting from scratch.

The main theorem continuation functions in the system are:

ANTE_RES_THEN
CHOOSE_THEN X_CHOOSE_THEN
CONJUNCTS_THEN CONJUNCTS_THEN2
DISJ_CASES_THEN DISJ_CASES_THEN2 DISJ_CASES_THENL
DISCH_THEN
IMP_RES_THEN
RES_THEN
STRIP_THM_THEN
STRIP_GOAL_THEN

See REFERENCE for full details. For INDUCT_THEN,
see Section 5.7.4 and REFERENCE.

