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Preface

This volume contains the description of the HOL system. It is one of three volumes
making up the documentation for HOL:

(i) TUTORIAL: a tutorial introduction to HOL, with case studies.

(ii) DESCRIPTION: a description of higher order logic, the ML programming lan-
guage, and theorem proving methods in the HOL system;

(iii) REFERENCE: the reference manual for HOL.

These three documents will be referred to by the short names (in small slanted capitals)
given above.

This document, DESCRIPTION, is intended to serve both as a definition of HOL and as
an advanced guide for users with some prior experience of the system. Beginners should
start with the companion document TUTORIAL.

The HOL system is designed to support interactive theorem proving in higher order
logic (hence the acronym ‘HOL’). To this end, the formal logic is interfaced to a general
purpose programming language (ML, for meta-language) in which terms and theorems
of the logic can be denoted, proof strategies expressed and applied, and logical theories
developed. The version of higher order logic used in HOL is predicate calculus with
terms from the typed lambda calculus (i.e. simple type theory). This was originally
developed as a foundation for mathematics [?]. The primary application area of HOL
was initially intended to be the specification and verification of hardware designs. (The
use of higher order logic for this purpose was first advocated by Keith Hanna [?].)
However, the logic does not restrict applications to hardware; HOL has been applied to
many other areas.

This document presents the HOL logic, and it explains the means by which meta-
language functions can be used to generate proofs in the logic.

The approach to mechanizing formal proof used in HOL is due to Robin Milner [?],
who also headed the team that designed and implemented the language ML. That work
centred on a system called LCF (logic for computable functions), which was intended for
interactive automated reasoning about higher order recursively defined functions. The
interface of the logic to the meta-language was made explicit, using the type structure of
ML, with the intention that other logics eventually be tried in place of the original logic.

iii



iv Preface

The HOL system is a direct descendant of LCF; this is reflected in everything from its
structure and outlook to its incorporation of ML, and even to parts of its implementation.
Thus HOL satisfies the early plan to apply the LCF methodology to other logics.

The original LCF was implemented at Edinburgh in the early 1970’s, and is now re-
ferred to as ‘Edinburgh LCF'. Its code was ported from Stanford Lisp to Franz Lisp by
Gérard Huet at INRIA, and was used in a French research project called ‘Formel’. Huet’s
Franz Lisp version of LCF was further developed at Cambridge by Larry Paulson, and
became known as ‘Cambridge LCF'. The HOL system is implemented on top of an early
version of Cambridge LCF and consequently many features of both Edinburgh and Cam-
bridge LCF were inherited by HOL. For example, the axiomatization of higher order logic
used is not the classical one due to Church, but an equivalent formulation influenced
by LCF.

An enhanced and rationalized version of HOL, called HOL88, was released (in 1988),
after the original HOL system had been in use for several years. HOL90 (released in
1990) was a port of HOL88 to SML [?] by Konrad Slind at the University of Calgary. It
has been further developed through the 1990’s. HOL9S8 is the latest version of HOL, and
is also implemented in SML; it features a number of novelties compared to its predeces-
sors. HOL9S8 is intended to serve as a stable platform for a number of research projects
and technology transfer activities that are in progress at Cambridge, and elsewhere, at
the time of writing. It is also the supported version of the system for the international
HOL community. The main differences between the various versions and releases of HOL
are described in Appendix ??.

In this document, the acronym ‘HOL’ refers to both the interactive theorem proving
system and to the version of higher order logic that the system supports; where there is
serious ambiguity, the former is called ‘the HOL system’ and the latter ‘the HOL logic’.
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Chapter 1

Syntax and Semantics

1.1 Introduction

This chapter describes the syntax and set-theoretic semantics of the logic supported
by the HOL system, which is a variant of Church’s simple theory of types [?] and will
henceforth be called the HOL logic, or just HOL. The meta-language for this description
will be English, enhanced with various mathematical notations and conventions. The
object language of this description is the HOL logic. Note that there is a ‘meta-language’,
in a different sense, associated with the HOL logic, namely the programming language
ML. This is the language used to manipulate the HOL logic by users of the system. It
is hoped that because of context, no confusion results from these two uses of the word
‘meta-language’. When ML is the object of study (as in [?]), ML is the object language
under consideration—and English is again the meta-language!

The HOL syntax contains syntactic categories of types and terms whose elements are
intended to denote respectively certain sets and elements of sets. This set theoretic
interpretation will be developed along side the description of the HOL syntax, and in
the next chapter the HOL proof system will be shown to be sound for reasoning about
properties of the set theoretic model.! This model is given in terms of a fixed set of
sets U, which will be called the universe and which is assumed to have the following
properties.

Inhab Each element of I/ is a non-empty set.

Sub If X eldand ) #Y C X, thenY € U.

Prod If X e Y and Y € U, then X x Y € U. The set X x Y is the cartesian product,
consisting of ordered pairs (z,y) with x € X and y € Y, with the usual set-
theoretic coding of ordered pairs, viz. (z,y) = {{z}, {z, y}}.

Pow If X € U, then the powerset P(X) = {Y : Y C X} is also an element of U{.

Infty U contains a distinguished infinite set I.

IThere are other, ‘non-standard’ models of HOL, which will not concern us here.
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Choice There is a distinguished element ch € [[x, X. The elements of the product
[Txey X are (dependently typed) functions: thus for all X € U/, X is non-empty
by Inhab and ch(X) € X witnesses this.

There are some consequences of these assumptions which will be needed. In set theory
functions are identified with their graphs, which are certain sets of ordered pairs. Thus
the set X—Y of all functions from a set X to a set Y is a subset of P(X x Y); and itis a
non-empty set when Y is non-empty. So Sub, Prod and Pow together imply that ¢/ also
satisfies

Fun If X e / and Y € U, then X—=Y € U.

By iterating Prod, one has that the cartesian product of any finite, non-zero number of
sets in U/ is again in Y. U also contains the cartesian product of no sets, which is to
say that it contains a one-element set (by virtue of Sub applied to any set in /—Infty
guarantees there is one); for definiteness, a particular one-element set will be singled
out.

Unit U/ contains a distinguished one-element set 1 = {0}.

Similarly, because of Sub and Infty, I/ contains two-element sets, one of which will be
singled out.

Bool U/ contains a distinguished two-element set 2 = {0, 1}.

The above assumptions on U/ are weaker than those imposed on a universe of sets by
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice (zFC), principally
because U is not required to satisfy any form of the Axiom of Replacement. Indeed, it is
possible to prove the existence of a set ¢/ with the above properties from the axioms of
ZFC. (For example one could take ¢/ to consist of all non-empty sets in the von Neumann
cumulative hierarchy formed before stage w + w.) Thus, as with many other pieces of
mathematics, it is possible in principal to give a completely formal version within zFc
set theory of the semantics of the HOL logic to be given below.

1.2 Types

The types of the HOL logic are expressions that denote sets (in the universe ¢/). Fol-
lowing tradition, o, possibly decorated with subscripts or primes, is used to range over
arbitrary types.

There are four kinds of types in the HOL logic. These can be described informally by
the following BNF grammar, in which « ranges over type variables, c ranges over atomic
types and op ranges over type operators.
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o = a | ¢ | (o1,...,00)0p | o01—09
I V
atomic types compou$nd types l
type variables function types

(domain oy, range o2)

In more detail, the four kinds of types are as follows.

1. Type variables: these stand for arbitrary sets in the universe. In Church’s original
formulation of simple type theory, type variables are part of the meta-language
and are used to range over object language types. Proofs containing type vari-
ables were understood as proof schemes (i.e. families of proofs). To support such
proof schemes within the HOL logic, type variables have been added to the object
language type system.?

2. Atomic types: these denote fixed sets in the universe. Each theory determines
a particular collection of atomic types. For example, the standard atomic types
bool and ind denote, respectively, the distinguished two-element set 2 and the
distinguished infinite set I.

3. Compound types: These have the form (o4, ...,0,)op, where o4, ..., 0, are the
argument types and op is a type operator of arity n. Type operators denote opera-
tions for constructing sets. The type (o4, ...,0,)op denotes the set resulting from
applying the operation denoted by op to the sets denoted by o4, ..., 0,. For ex-
ample, list is a type operator with arity 1. It denotes the operation of forming all
finite lists of elements from a given set. Another example is the type operator prod
of arity 2 which denotes the cartesian product operation. The type (o1, 02)prod is
written as o; X os.

4. Function types: If o; and o, are types, then o,—0o, is the function type with
domain o, and range o,. It denotes the set of all (total) functions from the set
denoted by its domain to the set denoted by its range. (In the literature o;—o5 is
written without the arrow and backwards—i.e. as 020,.) Note that syntactically
— is simply a distinguished type operator of arity 2 written with infix notation. It
is singled out in the definition of HOL types because it will always denote the same
operation in any model of a HOL theory—in contrast to the other type operators
which may be interpreted differently in different models. (See Section 1.2.2.)

It turns out to be convenient to identify atomic types with compound types con-
structed with 0-ary type operators. For example, the atomic type bool of truth-values
can be regarded as being an abbreviation for ()bool. This identification will be made

2This technique was invented by Robin Milner for the object logic PP of his LCF system.
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in the technical details that follow, but in the informal presentation atomic types will
continue to be distinguished from compound types, and ()c will still be written as c.

1.2.1 Type structures

The term ‘type constant’ is used to cover both atomic types and type operators. It is
assumed that an infinite set TyNames of the names of type constants is given. The greek
letter v is used to range over arbitrary members of TyNames, ¢ will continue to be used
to range over the names of atomic types (i.e. 0-ary type constants), and op is used to
range over the names of type operators (i.e. n-ary type constants, where n > 0).

It is assumed that an infinite set TyVars of type variables is given. Greek letters o, 3, . . .,
possibly with subscripts or primes, are used to range over Tyvars. The sets TyNames and
TyVars are assumed disjoint.

A type structure is a set () of type constants. A type constant is a pair (v,n) where
v € TyNames is the name of the constant and n is its arity. Thus 2 C TyNamesx N (where
N is the set of natural numbers). It is assumed that no two distinct type constants have
the same name, i.e. whenever (v,n,) € Q2 and (v, ny) € €, then n; = n,.

The set Typesq, of types over a structure 2 can now be defined as the smallest set such
that:

e TyVars C Typesq.
o If (1,0) € Q then ()v € Types,,.
e If (v,n) € Qand o; € Types, for 1 < i < n, then (oy, ... ,0,)v € Typesg,.
o If oy € Types,, and oy € Types, then o;—05 € Types,.
The type operator — is assumed to associate to the right, so that
01— 09— ... —0,—0
abbreviates
01— (09— ... —=(0p,—0)...)

The notation tyvars(o) is used to denote the set of type variables occurring in o.

1.2.2 Semantics of types

A model M of a type structure () is specified by giving for each type constant (v,n) an
n-ary function

M) -U"—U
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Thus given sets Xj,...,X,, in the universe U, M(v)(Xy,...,X,) is also a set in the
universe. In case n = 0, this amounts to specifying an element M (v) € U for the atomic
type v.

Types containing no type variables are called monomorphic, whereas those that do
contain type variables are called polymorphic. What is the meaning of a polymorphic
type? One can only say what set a polymorphic type denotes once one has instantiated
its type variables to particular sets. So its overall meaning is not a single set, but is
rather a set-valued function, Y" — U, assigning a set for each particular assignment
of sets to the relevant type variables. The arity n corresponds to the number of type
variables involved. It is convenient in this connection to be able to consider a type
variable to be involved in the semantics of a type o whether or not it actually occurs in
o, leading to the notion of a type-in-context.

A type context, as, is simply a finite (possibly empty) list of distinct type variables
a1, ...,0,. A type-in-context is a pair, written as.o, where as is a type context, o is a
type (over some given type structure) and all the type variables occurring in o appear
somewhere in the list as. The list as may also contain type variables which do not occur
in o.

For each o there are minimal contexts as for which as.o is a type-in-context, which
only differ by the order in which the type variables of o are listed in as. In order to select
one such context, let us assume that TyVars comes with a fixed total order and define
the canonical context of the type o to consist of exactly the type variables it contains,
listed in order.?

Let M be a model of a type structure (). For each type-in-context as.o over (), define
a function

[as.o]p U — U
(where n is the length of the context) by induction on the structure of ¢ as follows.

e If o is a type variable, it must be «; for some unique i = 1,...,n and then [as.o]y
is the ith projection function, which sends (X;,..., X,,) e U" to X; € U.

e If o is a function type o;—03, then [as.c] sends Xs € U" to the set of all functions
from [as.o1 ] (Xs) to [as.o2](Xs). (This makes use of the property Fun of ¢/.)

e If 0 is a compound type (o4, ..., 0, )v, then [as.o]y sends Xs to M (v)(Sy,...,Sm)
where each S; is [as.0;]a(Xs).

One can now define the meaning of a type ¢ in a model M to be the function

[[O']]M 2Z/{n —>Z/{

31t is possible to work with unordered contexts, specified by finite sets rather than lists, but we choose
not to do that since it mildly complicates the definition of the semantics to be given below.
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given by [as.o]y, where as is the canonical context of o. If ¢ is monomorphic, then
n = 0 and [o], can be identified with the element [o],,() of &/. When the particular
model M is clear from the context, [_],, will be written [_].

To summarize, given a model in U/ of a type structure (2, the semantics interprets
monomorphic types over () as sets in ¢/ and more generally, interprets polymorphic
types involving n type variables as n-ary functions /" — U on the universe. Function
types are interpreted by full function sets.

Examples Suppose that 2 contains a type constant (b, 0) and that the model M assigns
the set 2 to b. Then:

1. [b—b—b] = 2—2—2 € U.
2. [(a—b)—a] : U — U is the function sending X € U to (X —2)—X € U.

3. [a, B.(a—b)—a] : U* — U is the function sending (X,Y) € U? to (X —2)—X €
U.

Remark A more traditional approach to the semantics would involve giving meanings
to types in the presence of ‘environments’ assigning sets in U/ to all type variables. The
use of types-in-contexts is almost the same as using partial environments with finite
domains—it is just that the context ties down the admissible domain to a particular
finite (ordered) set of type variables. At the level of types there is not much to choose
between the two approaches. However for the syntax and semantics of terms to be given
below, where there is a dependency both on type variables and on individual variables,
the approach used here seems best.

1.2.3 Instances and substitution

If o and 7, ..., 7, are types over a type structure ¢,

olm,..., /B, Byl

will denote the type resulting from the simultaneous substitution for each i = 1,...,p
of 7; for the type variable 3; in 0. The resulting type is called an instance of o. The
following lemma about instances will be useful later; it is proved by induction on the
structure of o.

Lemma 1 Suppose that o is a type containing distinct type variables 3, ..., 3, and that
o' = oln,....,7/B,...,0,) is an instance of 0. Then the types Ti,...,T, are uniquely
determined by o and o’

We also need to know how the semantics of types behaves with respect to substitution:
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Lemma 2 Given types-in-context 3s.c and as.7; (i = 1,...,p, where p is the length of (3s),
let o’ be the instance o[rs/[3s]. Then as.o’ is also a type-in-context and its meaning in any
model M is related to that of (s.c0 as follows. For all Xs € U™ (where n is the length of as)

[os.a'(Xs) = [Bs.0]([as. 7] (Xs), . . ., [as.7,] (Xs))

Once again, the lemma can be proved by induction on the structure of o.

1.3 Terms

The terms of the HOL logic are expressions that denote elements of the sets denoted
by types. The meta-variable ¢ is used to range over arbitrary terms, possibly decorated
with subscripts or primes.

There are four kinds of terms in the HOL logic. These can be described approximately
by the following BNF grammar, in which = ranges over variables and ¢ ranges over
constants.

t o= x | c | tt | vt

~~ ——
constants | L _ A-abstractions
variables function applications

(function ¢, argument t')

Informally, a A\-term Az. ¢ denotes a function v — t[v/z|, where t[v/z| denotes the
result of substituting v for x in t. An application ¢ ¢’ denotes the result of applying the
function denoted by ¢ to the value denoted by #'. This will be made more precise below.

The BNF grammar just given omits mention of types. In fact, each term in the HOL
logic is associated with a unique type. The notation ¢, is traditionally used to range
over terms of type 0. A more accurate grammar of terms is:

te = o | & | (eaoti)e | (AZoy toy)oy—os

In fact, just as the definition of types was relative to a particular type structure (),
the formal definition of terms is relative to a given collection of typed constants over ).
Assume that an infinite set Names of names is given. A constant over 2 is a pair (c, o),
where c € Names and o € Types,,. A signature over () is just a set X, of such constants.

The set Termsy,, of terms over X, is defined to be the smallest set closed under the
following rules of formation:

1. Constants: If (c,0) € ¥ and o’ € Types, is an instance of o, then (c,0’) €
Termsy,,. Terms formed in this way are called constants and are written c,.
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2. Variables: If z € Names and o € Types,, then var z, € Termsy,. Terms formed
in this way are called variables. The marker var is purely a device to distinguish
variables from constants with the same name. A variable var z, will usually be
written as x,, if it is clear from the context that x is a variable rather than a
constant.

3. Function applications: If ¢,,_, € Termsy, and t/, € Termsy,, then (t,/—, t.,), €
Termss,,. (Terms formed in this way are sometimes called combinations.)

4. \-Abstractions: If var z,, € Termsy, and t,, € Termsy,,, then (Az,,. ts,)0, -0, €
Termssy,,.

Note that it is possible for constants and variables to have the same name. It is also
possible for different variables to have the same name, if they have different types.

The type subscript on a term may be omitted if it is clear from the structure of the
term or the context in which it occurs what its type must be.

Function application is assumed to associate to the left, so that ¢ ¢; ¢, ... t, abbrevi-
ates (... ((tt1) ta) ... ty).
The notation A\z; x5 - -- x,.t abbreviates Azy. (Axg. -+ (Azp. t) -+ ).

A term is called polymorphic if it contains a type variable. Otherwise it is called
monomorphic. Note that a term ¢, may be polymorphic even though ¢ is monomorphic—
for example, (f,—p =o)s, Where b is an atomic type. The expression tyvars(t,) denotes
the set of type variables occurring in ¢,.

An occurrence of a variable z, is called bound if it occurs within the scope of a textu-
ally enclosing A\z,, otherwise the occurrence is called free. Note that Az, does not bind
x, if 0 # o’. A term in which all occurrences of variables are bound is called closed.

1.3.1 Terms-in-context

A context as,xs consists of a type context as together with a list s = x4, ..., x,, of distinct
variables whose types only contain type variables from the list as.

The condition that zs contains distinct variables needs some comment. Since a vari-
able is specified by both a name and a type, it is permitted for zs to contain repeated
names, so long as different types are attached to the names. This aspect of the syntax
means that one has to proceed with caution when defining the meaning of type variable
instantiation, since instantiation may cause variables to become equal ‘accidentally’: see
Section 1.3.3.

A term-in-context as,xs.t consists of a context together with a term ¢ satisfying the
following conditions.

e s contains any type variable that occurs in xs and t¢.
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e 15 contains any variable that occurs freely in .
e 15 does not contain any variable that occurs bound in ¢.

The context as,zs may contain (type) variables which do not appear in ¢. Note that the
combination of the second and third conditions implies that a variable cannot have both
free and bound occurrences in ¢. For an arbitrary term, there is always an a-equivalent
term which satisfies this condition, obtained by renaming the bound variables as nec-
essary.* In the semantics of terms to be given below we will restrict attention to such
terms. Then the meaning of an arbitrary term is taken to be the meaning of some
a-variant of it having no variable both free and bound. (The semantics will equate a-
variants, so it does not matter which is chosen.) Evidently for such a term there is a
minimal context as,xs, unique up to the order in which variables are listed, for which
as,rs.t is a term-in-context. As for type variables, we will assume given a fixed total
order on variables. Then the unique minimal context with variables listed in order will
be called the canonical context of the term t¢.

1.3.2 Semantics of terms

Let X be a signature over a type structure €2 (see Section 1.3). A model M of X is
specified by a model of the type structure plus for each constant (c,o) € ¥ an element

M(c,o) € ] lo]m(Xs)
Xseun

of the indicated cartesian product, where n is the number of type variables occurring in
o. In other words M (c, o) is a (dependently typed) function assigning to each Xs € U"
an element of [o],/(Xs). In the case that n = 0 (so that ¢ is monomorphic), [¢], was
identified with a set in ¢/ and then M (¢, o) can be identified with an element of that set.

The meaning of HOL terms in such a model will now be described. The semantics
interprets closed terms involving no type variables as elements of sets in I/ (the partic-
ular set involved being derived from the type of the term as in Section 1.2.2). More
generally, if the closed term involves n type variables then it is interpreted as an ele-
ment of a product [] e Y (Xs), where the function Y : 4™ — U is derived from the
type of the term (in a type context derived from the term). Thus the meaning of the
term is a (dependently typed) function which, when applied to any meanings chosen
for the type variables in the term, yields a meaning for the term as an element of a set
in ¢. On the other hand, if the term involves m free variables but no type variables,
then it is interpreted as a function Y; x --- x Y,,—Y where the sets Y;,...,Y,, in U are
the interpretations of the types of the free variables in the term and the set Y € U is

“Recall that two terms are said to be a-equivalent if they differ only in the names of their bound
variables.
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the interpretation of the type of the term; thus the meaning of the term is a function
which, when applied to any meanings chosen for the free variables in the term, yields
a meaning for the term. Finally, the most general case is of a term involving n type
variables and m free variables: it is interpreted as an element of a product

II Yi(Xs) x - x ¥,(Xs) — Y(Xs)
XseUm
where the functions Y;,...,Y,,,Y : U" — U are determined by the types of the free
variables and the type of the term (in a type context derived from the term).
More precisely, given a term-in-context as,xs.t over Y suppose

e ¢ has type 7
® 15 =14,...,%, and each z; has type o;
® as=ay,..., Q.

Then since as,xs.t is a term-in-context, as.7 and os.o; are types-in-context, and hence
give rise to functions [as.7] s and [as.o;] s from U™ to U as in section 1.2.2. The mean-
ing of as,zs.t in the model M will be given by an element

los.as.t]m € ] (T_n [[as.aj]]M(Xs)> —[as. 7] (Xs).

Xseun

In other words, given

Xs = (Xi,...,X,) eU"
w5 = (Y1, Ym) € [os.o1]pm(Xs) x -+ X [as.0m]a(Xs)

one gets an element [as,zs.t]y (Xs)(ys) of [as. 7] (Xs). The definition of [as,xs.t] s pro-
ceeds by induction on the structure of the term ¢, as follows. (As before, the subscript
M will be dropped from the semantic brackets [_] when the particular model involved
is clear from the context.)

e If t is a variable, it must be z; for some unique j = 1,...,m, so 7 = 0; and then
[as,zs.t](Xs)(ys) is defined to be y;.

e Suppose t is a constant c,/, where (c,0) € ¥ and ¢’ is an instance of ¢. Then
by Lemma 1 of 1.2.3, ¢/ = o[n,..., 7/, ..., 5, for uniquely determined types
Ty,...,7, (Where (3;,..., 3, are the type variables occurring in ¢). Then define
[as,xs.t](Xs)(ys) to be M(c,o)([as.1](Xs),. .., [as.7,](Xs)), which is an element
of [as.7](Xs) by Lemma 2 of 1.2.3 (since 7 is 0”).
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e Suppose ¢ is a function application term (¢; ¢,) where t; is of type 7'—7 and ¢, is
of type 7. Then f = [as,xs.t1](Xs)(ys), being an element of [as.7’—7](Xs), is a
function from the set [as.7'](Xs) to the set [as.7](Xs) which one can apply to the
element y = [as,zs.t2](Xs)(ys). Define [as,zs.t](Xs)(ys) to be f(y).

e Suppose t is the abstraction term A\z.towhere z is of type 7, and ¢, of type .
Thus 7 = 71— and [as.7[(Xs) is the function set [as.7;](Xs)—[as.72] (Xs). Define
[as,xs.t](Xs)(ys) to be the element of this set which is the function sending y €
[as.1](Xs) to [as,xs,z.t2] (Xs)(ys,y). (Note that since as,xs.t is a term-in-context,
by convention the bound variable x does not occur in xs and thus as,zs,z.t, is also
a term-in-context.)

Now define the meaning of a term ¢, in a model M to be the dependently typed function

XseUn

t1e II (f_"l[[%.ajyxs)) —Jos.71(X5)

given by [as,xs.t. ], where as,xs is the canonical context of ¢,. So n is the number of type
variables in ., as is a list of those type variables, m is the number of ordinary variables
occurring freely in ¢, (assumed to be distinct from the bound variables of ¢.) and the o,
are the types of those variables. (It is important to note that the list as, which is part of
the canonical context of ¢, may be strictly bigger than the canonical type contexts of o,
or 7. So it would not make sense to write just [o;] or [7] in the above definition.)

If ¢, is a closed term, then m = 0 and for each Xs € U™ one can identify [¢,] with the
element [t.](Xs)() € [as.7](Xs). So for closed terms one gets

[t-] € I los.7](Xs)
XseUn
where as is the list of type variables occurring in ¢, and n is the length of that list. If
moreover, no type variables occur in ¢,, then n = 0 and [¢,] can be identified with the
element [t.]() of the set [7] € U.

The semantics of terms appears somewhat complicated because of the possible de-
pendency of a term upon both type variables and ordinary variables. Examples of how
the definition of the semantics works in practice can be found in Section 2.4.2, where
the meaning of several terms denoting logical constants is given.

1.3.3 Substitution

Since terms may involve both type variables and ordinary variables, there are two dif-
ferent operations of substitution on terms which have to be considered—substitution of
types for type variables and substitution of terms for variables.
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Substituting types for type variables in terms

Suppose ¢ is a term, with canonical context as,zs say, where as = ay,...,q,, 15 =
x1,...,T, and where for j = 1,...,m the type of the variable z; is o;. If as’.7; (i =
1,...,n) are types-in-context, then substituting the types 7; for the type variables «; in

the list xs, one obtains a new list of variables xs’. Thus the jth entry of x5’ has type
o’ = oj[rs/as]. Only substitutions with the following property will be considered.

In instantiating the type variables as with the types 7s, no two distinct vari-
ables in the list 2s become equal in the list zs'.>

This condition ensures that as’, 25’ really is a context. Then one obtains a new term-in-
context as’,zs’.t’ by substituting the types 7s = 71,...,7, for the type variables as in ¢
(with suitable renaming of bound occurrences of variables to make them distinct from
the variables in xs’). The notation

t[rs/as]

is used for the term t'.

Lemma 3 The meaning of as’,xs’.t’ in a model is related to that of t as follows. For all
Xs' € U™ (where n' is the length of as')

Jas',as' ] (Xs") = [t]([as 7] (XsS), ..., [Jas". 7] (XS)).

Lemma 2 in 1.2.3 is needed to see that both sides of the above equation are elements
of the same set of functions. The validity of the equation is proved by induction on the
structure of the term ¢.

Substituting terms for variables in terms

Suppose ¢ is a term, with canonical context as,zs say, where as = ay,...,q,, 15 =
x1,..., T, and where for j = 1,...,m the type of the variable z; is o;. If one has terms-
in-context as,xs’.t; for j = 1,...,m with ¢; of the same type as x;, say o;, then one
obtains a new term-in-context as,zs’.t” by substituting the terms ts = t,...,t,, for the
variables zs in ¢ (with suitable renaming of bound occurrences of variables to prevent
the free variables of the ¢; becoming bound after substitution). The notation

tlts/as]

is used for the term t”.

>Such an identification of variables could occur if the variables had the same name component and
their types became equal on instantiation.
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Lemma 4 The meaning of as,xs’.t” in a model is related to that of t as follows. For all
XseU™ and all i’ € [as.oq] X - -+ X [as.0;,/] (where o is the type of x’)

[os,zs".t"](Xs) (15") = [t](Xs)([os,zs"- 1] (Xs) (1), - .., [as,a5 ] (X5) (357))

Once again, this result is proved by induction on the structure of the term t.

1.4 Standard notions

Up to now the syntax of types and terms has been very general. To represent the
standard formulas of logic it is necessary to impose some specific structure. In particular,
every type structure must contain an atomic type bool which is intended to denote the
distinguished two-element set 2 € U, regarded as a set of truth-values. Logical formulas
are then identified with terms of type bool. In addition, various logical constants are
assumed to be in all signatures. These requirements are formalized by defining the
notion of a standard signature.

1.4.1 Standard type structures

A type structure () is standard if it contains the atomic types bool (of booleans or truth-
values) and ind (of individuals). (In the literature, the symbol o is often used instead of
bool and . instead of ind.)

A model M of Q is standard if M (bool) and M (ind) are respectively the distinguished
sets 2 and I in the universe U.

It will be assumed from now on that type structures and their models are standard.

1.4.2 Standard signatures

A signature X, is standard if it contains the following three primitive constants:

= bool—bool—bool
—a—a—bool

€(a—bool)—a

The intended interpretation of these constants is that = denotes implication, =, ., _jo0
denotes equality on the set denoted by o, and €, _.4001)—.» denotes a choice function on
the set denoted by 0. More precisely, a model M of ¥ will be called standard if
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e M (=, bool—bool—bool) € (2—2—2) is the standard implication function, sending
bl €2 to

n_J O ifb=Tand?d =0
(b="¥)= { 1 otherwise
o M(=,a—a—bool) € []xg, -X—X—2 is the function assigning to each X € U/ the
equality test function, sending =, 2’ € X to

(r=x ') = 1 ife=24a'
~X7) 71 0 otherwise
o M(e, (a—bool)—a) € [Ixey -(X—2)—X is the function assigning to each X € U
the choice function sending f € (X—2) to

h(f=H{1}) if f7{1} #0
chx(f) = { Eh(X ) t)therwise

where f~1{1} = {z € X : f(z) = 1}. (Note that f~'{1} is in &/ when it is non-
empty, by the property Sub of the universe U/ given in Section 1.1. The function
ch is given by property Choice.)

It will be assumed from now on that signatures and their models are standard.

Remark This particular choice of primitive constants is arbitrary. The standard collec-
tion of logical constants includes T (‘true’), F (‘false’), = (‘implies’), A (‘and’), V (‘or),
= (‘not’), V (‘for all’), 3 (‘there exists’), = (‘equals’), ¢« (‘the’), and ¢ (‘@’). This set is
redundant, since it can be defined (in a sense explained in Section 2.5.1) from various
subsets. In practice, it is necessary to work with the full set of logical constants, and the
particular subset taken as primitive is not important. The interested reader can explore
this topic further by reading Andrews’ book [?] and the references it contains.

Terms of type bool are called formulas.
The following notational abbreviations are used:

Notation | Meaning

ta = tir —o—o—bool ta ti;

t = t/ = bool—bool—bool tbool t;;ool
EXg. T CC5(0—>bool)—>a<)\‘7;0' t)

These notations are special cases of general abbreviatory conventions supported by the
HOL system. The first two are infixes and the third is a binder (see Section 3.5.1).
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Theories

2.1 Introduction

The result, if any, of a session with the HOL system is an object called a theory. This
object is closely related to what a logician would call a theory, but there are some dif-
ferences arising from the needs of mechanical proof. A HOL theory, like a logician’s
theory, contains sets of types, constants, definitions and axioms. In addition, however, a
HOL theory, at any point in time, contains an explicit list of theorems that have already
been proved from the axioms and definitions. Logicians have no need to distinguish
theorems actually proved from those merely provable; hence they do not normally con-
sider sets of proven theorems as part of a theory; rather, they take the theorems of a
theory to be the (often infinite) set of all consequences of the axioms and definitions. A
related difference between logicians’ theories and HOL theories is that for logicians, the-
ories are static objects, but in HOL they can be thought of as potentially extendable. For
example, the HOL system provides tools for adding to theories and combining theories.
A typical interaction with HOL consists in combining some existing theories, making
some definitions, proving some theorems and then saving the new results.

The purpose of the HOL system is to provide tools to enable well-formed theories
to be constructed. The HOL logic is typed: each theory specifies a signature of type
and individual constants; these then determine the sets of types and terms as in the
previous chapter. All the theorems of such theories are logical consequences of the
definitions and axioms of the theory. The HOL system ensures that only well-formed
theories can be constructed by allowing theorems to be created only by formal proof.
Explicating this involves defining what it means to be a theorem, which leads to the
description of the proof system of HOL, to be given below. It is shown to be sound for
the set theoretic semantics of HOL described in the previous chapter. This means that a
theorem is satisfied by a model if it has a formal proof from axioms which are themselves
satisfied by the model. Since a logical contradiction is not satisfied by any model, this
guarantees in particular that a theory possessing a model is necessarily consistent, i.e.
a logical contradiction cannot be formally proved from its axioms.

This chapter also describes the various mechanisms by which HOL theories can be
extended to new theories. Each mechanism is shown to preserve the property of pos-
sessing a model. Thus theories built up from the initial HOL theory (which does possess

19
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a model) using these mechanisms are guaranteed to be consistent.

2.2 Sequents

The HOL logic is phrased in terms of hypothetical assertions called sequents. Fixing a
(standard) signature X, a sequent is a pair (I', t) where I is a finite set of formulas over
Yo and t is a single formula over Xq.! The set of formulas I" forming the first component
of a sequent is called its set of assumptions and the term ¢ forming the second component
is called its conclusion. When it is not ambiguous to do so, a sequent ({}, ¢) is written as
just t.

Intuitively, a model M of Y satisfies a sequent (I', ¢) if any interpretation of relevant
free variables as elements of M/ making the formulas in I" true, also makes the formula
t true. To make this more precise, suppose I' = {¢;,...,%,} and let as,as be a context
containing all the type variables and all the free variables occurring in the formulas
t,t1,...,t,. Suppose that as has length n, that 2s = 24, ..., z,, and that the type of z; is
;. Since formulas are terms of type bool, the semantics of terms defined in the previous
chapter gives rise to elements [as,zs.t]y and [as,zs.tx ]y (K =1,...,p) in

H (:rll[[as.ajﬂM(Xs)) — 2

XseUn

Say that the model M satisfies the sequent (I, ¢) and write
't

if for all Xs € U™ and all ys € [as.o1]p(Xs) X - -+ X [as.0,]a(Xs) with
[os,s.te]ar (Xs) (1) = 1

forallk =1,...,p, it is also the case that
[ st (Xs) (ys) = 1.

(Recall that 2 is the set {0,1}.)
In the case p = 0, the satisfaction of ({},¢) by M will be written |=,; ¢t. Thus = ¢
means that the dependently typed function

Xseun \j=1

e 11 (ﬁﬂ%-aj]]M(Xs)> 2

is constant with value 1 € 2.

INote that the type subscript is omitted from terms when it is clear from the context that they are
formulas, i.e. have type bool.
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2.3 Logic

A deductive system D is a set of pairs (L, (I',¢)) where L is a (possibly empty) list of
sequents and (I',¢) is a sequent.

A sequent (I, t) follows from a set of sequents A by a deductive system D if and only
if there exist sequents (I'y,¢1), ..., (I'y, t,) such that:

1. (T',t) = (T'y, t,), and
2. forallisuchthatl1 <i<n

(a) either (I';, ;) € A or
(b) (L;, (T';,t;)) € D for some list L; of members of A U {(T'y,t1),..., (Ti_1,ti1)}

The sequence (I'y,t),-- -, (I',, t,,) is called a proof of (I',t) from A with respect to D.

Note that if (I',¢) follows from A, then (I';¢) also follows from any A’ such that
A C A. This property is called monotonicity.

The notation ¢4, ...,t, Fp A t means that the sequent ({t,...,t,}, t) follows from A
by D. If either D or A is clear from the context then it may be omitted. In the case that
there are no hypotheses (i.e. n = 0), just - ¢ is written.

In practice, a particular deductive system is usually specified by a number of (schematic)
rules of inference, which take the form

-t r, Ft,
' =t

The sequents above the line are called the hypotheses of the rule and the sequent be-
low the line is called its conclusion. Such a rule is schematic because it may contain
metavariables standing for arbitrary terms of the appropriate types. Instantiating these
metavariables with actual terms, one gets a list of sequents above the line and a single
sequent below the line which together constitute a particular element of the deductive
system. The instantiations allowed for a particular rule may be restricted by imposing a
side condition on the rule.

2.3.1 The HOL deductive system

The deductive system of the HOL logic is specified by eight rules of inference, given
below. The first three rules have no hypotheses; their conclusions can always be de-
duced. The identifiers in square brackets are the names of the ML functions in the HOL
system that implement the corresponding inference rules (See Section 3.9). Any side
conditions restricting the scope of a rule are given immediately below it.
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Assumption introduction [ASSUME]

t -t
Reflexivity [REFL]
Ft=t

Beta-conversion [BETA_CONV]

H ()\I t1>t2 = tl[tQ/(L’]

e Where t¢,[ty/z] is the result of substituting ¢, for x in ¢;, with suitable renaming of
variables to prevent free variables in ¢, becoming bound after substitution.

Substitution [SUBST]

Iy Bty =t r, -t, =t U tlty,. .. )]
Hu---ur,ul F ¢t ... ¢]

e Where t[ty,...,t,] denotes a term ¢ with some free occurrences of subterms ¢,
..., t, singled out and t[t],...,t, ] denotes the result of replacing each selected
occurrence of ¢; by ¢, (for 1<i<n), with suitable renaming of variables to prevent
free variables in ¢; becoming bound after substitution.

Abstraction [ABS]

F |_ tl - tz

e Provided zx is not free in .

Type instantiation [INST TYPE]

=t
I' + t[O'l,...,O'n/Oél,...7CYn]
e Where t[oy,...,0,/a,...,a,] is the result of substituting, in parallel, the types o1,

..., o, for type variables a4, ..., a,, in ¢, with the restrictions:

(i) none of the type variables a4, ..., a,, occur in I;

(i) no distinct variables in ¢ become identified after the instantiation.?

2The ML function implementing INST_TYPE in the HOL system fails if side condition (i) is violated, but
instead of failing if (ii) is violated, it automatically renames any variable whose type is instantiated if the
variable is preceded in ¢ by a different variable with the same name.
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Discharging an assumption [DISCH]

I' F ¢
P—{tl} F t1 = 19

e Where I' — {¢,} is the set subtraction of {¢;} from I

Modus Ponens [MP]

Flktlﬁtg F2|_t1
I'ul'y F ¢y

In addition to these eight rules, there are also five axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP), since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q,, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined
in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the
hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties of
the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3 are
needed for rules BETA_CONV, SUBST and INST_TYPE.? The fact that = and = are interpreted
standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST, ABS, DISCH
and MP.

3Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.
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2.4 HOL Theories
A HOL theory T is a 4-tuple:
7 = (Strucr,Sigs, Axiomsz, Theoremsz)
where
(i) Strucs is a type structure called the type structure of 7;
(i) Sig; is a signature over Strucy called the signature of 7;
(iii) Axiomsr is a set of sequents over Sig, called the axioms of 7

(iv) Theoremss is a set of sequents over Sig, called the theorems of 7, with the
property that every member follows from Axiomss by the HOL deductive sys-
tem.

The sets Types; and Terms7 of types and terms of a theory 7 are, respectively, the
sets of types and terms constructable from the type structure and signature of 7, i.e.:

Types; = Typessyc,
Termsy = Termsg;,

A model of a theory 7 is specified by giving a (standard) model M of the underlying
signature of the theory with the property that M satisfies all the sequents which are
axioms of 7. Because of the Soundness Theorem 2.3.2, it follows that M also satisfies
any sequents in the set of given theorems, Theoremsy.

2.4.1 The theory MIN

The minimal theory MIN is defined by:

MIN = <{(b0017 0)7 (anu 0)}7 {:>bool~>bool~>boola —a—a—bool 5(a—>bool)—>a}7 {}7 {}>

Since the theory MIN has a signature consisting only of standard items and has no ax-
ioms, it possesses a unique standard model, which will be denoted Min.

Although the theory MIN contains only the minimal standard syntax, by exploiting the
higher order constructs of HOL one can construct a rather rich collection of terms over
it. The following theory introduces names for some of these terms that denote useful
logical operations in the model Min.
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2.4.2 The theory LOG

The theory L0G has the same type structure as MIN. Its signature contains the constants
in MIN and the following constants:

Tbaol

v(a—>bool)—>bool
EI(oz—>bool)—>bool

Fbool

“Tbool—bool
Nbool—bool—bool

V bool—bool—bool
One_O ne(a_,ﬁ)_)bool
Onto(a—p8)—bool
Type_Definition(a_)bool)_,(ﬁ_)a)_)bool

The following special notation is used in connection with these constants:

Notation Meaning

Vi, t V(Az,. t)

Vg xg o0 xp. t | Vo Vg -+ (Yo, t) ---)
dx,. t I(A\z,. t)

Jry 9 -+ xp. t | 3y, (Fxe. -0 (Fzp. t) )
A 1o At to

t1 V 1o V 11 tg

The axioms of the theory L0G consist of the following sequents:

FT= ((/\xbool- ZE) = (Axbool' ZE))

F V= )\Pa—>bool' P= ()\l’ T)

F d= )\Pa—>bool' P(€ P)

F F=Vbyo. b

F ==X b=F

F V= Aby by. Vb. (by = b) = ((by = b) = b)

- One_One = Afy_p. V1 2a. (f 21 = f 22) = (21 = 22)

F Onto=Afp—p. Vy. dz.y = f 2

= Type_Definition = AP, _pooi 7€P3—q.One_One rep A
(Ve. Pz = (Jy.x =repy))
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Finally, as for the theory MIN, the set Theoremsy g is taken to be empty.

Note that the axioms of the theory L.0G are essentially definitions of the new constants
of LOG as terms in the original theory MIN. (The mechanism for making such extensions
of theories by definitions of new constants will be set out in general in Section 2.5.1.)
The first seven axioms define the logical constants for truth, universal quantification,
existential quantification, falsity, negation, conjunction and disjunction. Although these
definitions may be obscure to some readers, they are in fact standard definitions of these
logical constants in terms of implication, equality and choice within higher order logic.
The next two axioms define the properties of a function being one-one and onto; they
will be used to express the axiom of infinity (see Section 2.4.3), amongst other things.
The last axiom defines a constant used for type definitions (see Section 2.5.4).

The unique standard model Min of MIN gives rise to a unique standard model of L0G.
This is because, given the semantics of terms set out in Section 1.3.2, to satisfy the
above equations one is forced to interpret the new constants in the following way:

° HTboolﬂ =1¢e€2

® [V(a—boot)—boot] € [Txeyy(X—2)—2sends X € Y and f € X—2to

1 if {1l =X
0 otherwise

WMXKﬂ={

[3(a—boot)—boot] € Tlxeu(X—2)—2sends X € Y and f € X—2to

waxﬂ:{]'ﬁf*“}#w

0 otherwise

[Fooot] =0 € 2
° [{_\boolﬂbool]] €2—2sendsb e 2to

1 ifb=0
0 otherwise

o) - {

[[/\bool—>bool—>bool]] € 2—2—2 sends b, b e2to

1 ifo=1="¥
0 otherwise

MM@@U={

L4 [{vboolﬂbool—»bool]] €222 sends b, v €2to

0 ifb=0="
1 otherwise

WMwwvz{
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e [One_One(q—p)—boot] € I(x,v)cz(X—=Y)—2sends (X,Y) e Y*and f € (X—=Y) to

0 if f(x) = f(2') for some x # 2/ in X
1 otherwise

[One_One](X,Y)(f) = {

o [Onto(a—g)—boot] € IT(xyyeuz(X—Y)—2sends (X,Y) e y? and f € (X—=Y) to

1 if{f(x):z2eX}=Y
0 otherwise

[Onto] (X, Y)(f) = {

e [Type Definition ,_ oo —(s—a)—booll € [xy)err (X —2)—= (Y —X)—2
sends (X,Y) eU? fe (X—2)and g € (Y—X) to

1 if [One_One(Y, X)(g) =1

[Type_Definition] (X, Y')(f)(g) = { and f~{1} = {g(y) :y € Y}
0 otherwise.

Since these definitions were obtained by applying the semantics of terms to the left
hand sides of the equations which form the axioms of L0G, these axioms are satisfied
and one obtains a model of the theory L0G.

2.4.3 The theory INIT

The theory INIT is obtained by adding the following five axioms to the theory L0G.

BOOL_CASES_AX FYb. (b=T)V (b=F)

IMP_ANTISYM_AX F by by. (by = bo) = (by = by) = (by = bo)

ETA_AX FVfasup Az fx)=f
SELECT_AX =V Py—bool ©. P x = P(e P)
INFINITY_AX F 3find—ina- One_One f A —(Onto f)

The unique standard model of LG satisfies these five axioms and hence is the unique
standard model of the theory INIT. (For axiom SELECT_AX one needs to use the definition
of [¢] given in Section 1.4.2; for axiom INFINITY_AX one needs the fact that [ind] = is
an infinite set.)

The theory INIT is the initial theory of the HOL logic. A theory which extends INIT
will be called a standard theory.
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2.4.4 Consistency

A (standard) theory is consistent if it is not the case that every sequent over its signature
can be derived from the theory’s axioms using the HOL logic, or equivalently, if the
particular sequent ~ F cannot be so derived.

The existence of a (standard) model of a theory is sufficient to establish its consis-
tency. For by the Soundness Theorem 2.3.2, any sequent that can be derived from
the theory’s axioms will be satisfied by the model, whereas the sequent ~ F is never
satisfied in any standard model. So in particular, the initial theory INIT is consistent.

However, it is possible for a theory to be consistent but not to possess a standard
model. This is because the notion of a standard model is quite restrictive—in particular
there is no choice how to interpret the integers and their arithmetic in such a model.
The famous incompleteness theorem of Godel ensures that there are sequents which are
satisfied in all standard models (i.e. which are ‘true’), but which are not provable in the
HOL logic.

2.5 Extensions of theories

A theory 77 is said to be an extension of a theory 7 if:
(i) Strucy C Strucy.
(i) Sigy C Sigs.
(iii)) Axiomsy C Axiomsy.
(iv) Theoremsy C Theoremsy.

In this case, any model M’ of the larger theory 7’ can be restricted to a model of the
smaller theory 7 in the following way. First, M’ gives rise to a model of the structure
and signature of 7 simply by forgetting the values of M’ at constants not in Strucy or
Sigy. Denoting this model by M, one has for all ¢ € Types;, t € Terms7 and for all
suitable contexts that

[as.oly = [as.o]ur
[[()AS,JLS.t]]]V[ = [[O/S,JLS’.t]]M/.
Consequently if (I, t) is a sequent over Sig; (and hence also over Sig;,), then I =), t if
and only if I" = t. Since Axiomsy C Axiomsz and M’ is a model of 77, it follows that

M is a model of 7. M will be called the restriction of the model M’ of the theory 7’ to
the subtheory 7.

There are two main mechanisms for making extensions of theories in HOL:
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¢ Extension by a constant specification (see Section 2.5.2).
¢ Extension by a type specification (see Section 2.5.5).4

The first mechanism allows ‘loose specifications’ of constants as in the Z notation [?];
the latter allows new types and type-operators to be introduced. As special cases (when
the thing being specified is uniquely determined) one also has:

e Extension by a constant definition (see Section 2.5.1).
e Extension by a type definition (see Section 2.5.4).

These mechanisms are described in the following sections. They all produce definitional
extensions in the sense that they extend a theory by adding new constants and types
which are defined in terms of properties of existing ones. Their key property is that the
extended theory possesses a (standard) model if the original theory does. So a series of
these extensions starting from the theory INIT is guaranteed to result in a theory with a
standard model, and hence in a consistent theory. It is also possible to extend theories
simply by adding new uninterpreted constants and types. This preserves consistency,
but is unlikely to be useful without additional axioms. However, when adding arbitrary
new axioms, there is no guarantee that consistency is preserved. The advantages of
postulation over definition have been likened by Bertrand Russell to the advantages of
theft over honest toil.> As it is all too easy to introduce inconsistent axiomatizations,
users of the HOL system are strongly advised to resist the temptation to add axioms, but
to toil through definitional theories honestly.

2.5.1 Extension by constant definition

A constant definition over a signature Xq, is a formula of the form c, = ¢,, such that:
(i) cis not the name of any constant in Xg;
(ii) ¢, a closed term in Termsy,,.
(iii) all the type variables occurring in ¢, also occur in o

Given a theory 7 and such a constant definition over Sig;, then the definitional exten-
sion of T by ¢, = t, is the theory 7 +4.(c, = t,) defined by:

T +aef(co =t,) = ( Strucy, Sigr U{(c,0)},
Axiomsy U {c, = t,}, Theoremsz)

4This theory extension mechanism is not implemented in Version 2.0 of the HOL system.
>See page 71 of Russell’s book Introduction to Mathematical Philosophy.
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Note that the mechanism of extension by constant definition has already been used
implicitly in forming the theory L0G from the theory MIN in Section 2.4.2. Thus with the
notation of this section one has

LOG = MIN +4e (T = ((AZboot- T) = (AZpool- X)))
Faef(V = APasspoor. P = (Az. T))
+def<§| = APa—bool- P(E P)>
+aef (F = Vbpoor- b)
+def<_' = Ab. b=F)
+def</\ = )\bl bz. Vb. (b1 = (bg = b)) = b>
_'_def(\/ = by by. Vb. (bl = b) = ((bg = b) =0 >
+4ef(One_One = Afo_g. Va1 2o, (f 21 = f 23) = (z1 = 22))
+aef(Onto = Afy_p. Vy. 2.y = f )
+4ef (Type_Definition = AP,_po01 T€DG—a-

One Onerep A
(Ve. Px = (Jy.z =repy)))

If 7 possesses a standard model then so does the extension 7 +4;(c, = t,). This
will be proved as a corollary of the corresponding result in Section 2.5.2 by showing
that extension by constant definition is in fact a special case of extension by constant
specification. (This reduction requires that one is dealing with standard theories in
the sense of section 2.4.3, since although existential quantification is not needed for
constant definitions, it is needed to state the mechanism of constant specification.)

Remark Condition (iii) in the definition of what constitutes a correct constant definition
is an important restriction without which consistency could not be guaranteed. To see
this, consider the term 3f, ... One_One f A —(Onto f), which expresses the proposition
that (the set of elements denoted by the) type « is infinite. The term contains the type
variable «, whereas the type of the term, bool, does not. Thus by (iii)

Chool = Ifa—a- One_One f A —(Onto f)

is not allowed as a constant definition. The problem is that the meaning of the right
hand side of the definition varies with «, whereas the meaning of the constant on the
left hand side is fixed, since it does not contain «. Indeed, if we were allowed to extend
the consistent theory INIT by this definition, the result would be an inconsistent theory.
For instantiating « to ind in the right hand side results in a term that is provable from
the axioms of INIT, and hence ¢;,,; = T is provable in the extended theory. But equally,
instantiating « to bool makes the negation of the right hand side provable from the
axioms of INIT, and hence ¢, = F is also provable in the extended theory. Combining
these theorems, one has that T = F, i.e. F is provable in the extended theory.
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2.5.2 Extension by constant specification

Constant specifications introduce constants (or sets of constants) that satisfy arbitrary
given (consistent) properties. For example, a theory could be extended by a constant
specification to have two new constants b; and by of type bool such that —(b; = bs).
This specification does not uniquely define b; and b, since it is satisfied by either b; = T
and b, = F, or by = F and b, = T. To ensure that such specifications are consistent,
they can only be made if it has already been proved that the properties which the new
constants are to have are consistent. This rules out, for example, introducing three
boolean constants by, by and bs such that b; # bs, by # bs and by # bs.

Suppose Jz; - - - z,. t is a formula, with x4, ..., x, distinct variables. If - Jz;---x,. t,
then a constant specification allows new constants cy, .. ., ¢, to be introduced satisfying:

= t[cla"'acn/mla"'axn]
where t[cy, -+, ¢, /21, - -, z,] denotes the result of simultaneously substituting cy, ..., c,
for zq,...,x, respectively. Of course the type of each constant c¢; must be the same

as the type of the corresponding variable z;. To ensure that this extension mechanism
preserves the property of possessing a model, a further more technical requirement is
imposed on these types: they must each contain all the type variables occurring in ¢.
This condition is discussed further in Section 2.5.3 below.

Formally, a constant specification for a theory 7 is given by

Data
((c1, .4 Cn)y AT1gys - -+ s T, - thool)
Conditions
(i) c,...,c, are distinct names that are not the names of any constants in Sig.

(i) AZig, - Tngy,- thoor € Termsr.
(iii) tyvars(tpee) = tyvars(o;) for 1 <i < n.
(iv) Fz1,, - Tpy,.t € Theoremsr.
The extension of a standard theory 7 by such a constant specification is denoted by

T+sp€c<(cl, Ce 7Cn)7 )\1'10.1, RN ,,Z'no.n. tbool)

and is defined to be the theory:

(Strucr,
Sigr U{Cisys---+Cno,
Axiomsy U {t[c1,...,cp/x1, ..., xp]},

Theoremsz)
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Proposition The theory T+ ,e.((C1,.--,Cn), AZ1gys - - - s Tno, - thoot) has a standard model if
the theory T does.

Proof Suppose M is a standard model of 7. Let as = ay, ..., o, be the list of distinct
type variables occurring in the formula ¢. Then as,zs.t is a term-in-context, where s =
x1,...,T,. (Change any bound variables in ¢ to make them distinct from xs if necessary.)
Interpreting this term-in-context in the model M yields

los,as.t]a € ] (H[[oas.ai]]M(Xs)> —2
XseU™ \i=1

Now dzs. t is in Theoremss and hence by the Soundness Theorem 2.3.2 this sequent is

satisfied by M. Using the semantics of 3 given in Section 2.4.2, this means that for all

Xs € U™ the set

S(Xs) = {ys € Jas.o1]pm(Xs) x -+ X [as.op]pm(Xs) : [as,as.t]p(Xs)(ys) = 1}

is non-empty. Since it is also a subset of a finite product of sets in i, it follows that it is
an element of ¢/ (using properties Sub and Prod of the universe). So one can apply the
global choice function ch € [Ty, X to select a specific element

(51(Xs), ..., 5,(Xs)) = ch(S(Xs)) € [[los.oi]m(Xs)
=1
at which [as,xs.t]y(Xs) takes the value 1. Extend M to a model M’ of the signature
of T+pec{(C1,---5Cn)s AZ1g,, - - - Tng, - thoot) Dy defining its value at each new constant
(Ci, 0'2') to be

M'(ci,00) =s; € ][] [os]m(Xs).
XselUm
Note that the Condition (iii) in the definition of a constant specification ensures that as
is the canonical context of each type o;, so that [o;] = [as.0;] and thus s; is indeed an
element of the above product.
Since ¢t is a term of the subtheory 7 of T+,..((c1,...,Cn), AZ1gy, - -+ Tng,- thool)> aS
remarked at the beginning of Section 2.5, one has that [as,zs.t] ) = [as,xs.t]y,. Hence
by definition of the s;, for all Xs € U™

[as,xs.t]ar (Xs)(s1(Xs), ..., $.(Xs)) =1

Then using Lemma 4 in Section 1.3.3 on the semantics of substitution together with the
definition of [c;] s, one finally obtains that for all Xs € U™

[tler, . scn/m, o mp)ar (Xs) =1

or in other words that M’ satisfies t[cy,...,c,/x1,...,2,]. Hence M’ is a model of
T+opec((Cly- -, Cn)s AT1gys - - s Tng, - thool), S Tequired.
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The constants which are asserted to exist in a constant specification are not neces-
sarily uniquely determined. Correspondingly, there may be many different models of
T +spec((C1y- -1 Cn), A1y s - - - s Tng, - thoot) Whose restriction to 7 is M; the above con-
struction produces such a model in a uniform manner by making use of the global
choice function on the universe.

Extension by a constant definition, ¢, = t,, is a special case of extension by constant
specification. For let ¢’ be the formula z, = ¢,, where x, is a variable not occurring in
ty. Then clearly + 3Jz,.t' and one can apply the method of constant specification to
obtain the theory

T +spec(C, A\xy. t')

But since t'[c,/x,]| is just ¢, = t,, this extension yields exactly 7+ (c, = t,). So as
a corollary of the Proposition, one has that for each standard model M of 7, there is
a standard model M’ of 7+ 4. (c, = t,) whose restriction to 7 is M. In contrast with
the case of constant specifications, M’ is uniquely determined by M and the constant
definition.

2.5.3 Remarks about constants in HOL

Note how Condition (iii) in the definition of a constant specification was needed in the
proof that the extension mechanism preserves the property of possessing a standard
model. Its role is to ensure that the introduced constants have, via their types, the
same dependency on type variables as does the formula loosely specifying them. The
situation is the same as that discussed in the Remark in Section 2.5.1. In a sense, what
is causing the problem in the example given in that Remark is not so much the method
of extension by introducing constants, but rather the syntax of HOL which does not
allow constants to depend explicitly on type variables (in the way that type operators
can). Thus in the example one would like to introduce a ‘polymorphic’ constant ¢y, ()
explicitly depending upon «, and define it to be 3f,_.,. One_One f A —(Onto f). Then
in the extended theory one could derive ¢y, (ind) = T and cpo0(bool) = F, but now no
contradiction results since ¢,y (ind) and cy,e (bool) are different.

In the current version of HOL, constants are (name,type)-pairs. One can envision
a slight extension of the HOL syntax with ‘polymorphic’ constants, specified by pairs
(c,as.0) where now as.o is a type-in-context and the list as may well contain extra type
variables not occurring in ¢. Such a pair would give rise to the particular constant
term c,(as), and more generally to constant terms c,(7s) obtained from this one by
instantiating the type variables «; with types 7; (so ¢’ is the instance of o obtained by
substituting 7s for as). This new syntax of polymorphic constants is comparable to the
existing syntax of compound types (see section 1.2): an n-ary type operator op gives
rise to a compound type (o, ..., a,)op depending upon n type variables. Similarly, the
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above syntax of polymorphic constants records how they depend upon type variables
(as well as which generic type the constant has).

However, explicitly recording dependency of constants on type variables makes for a
rather cumbersome syntax which in practice one would like to avoid where possible. It
is possible to avoid it if the type context as in (c, as.o) is actually the canonical context
of o, i.e. contains exactly the type variables of o. For then one can apply Lemma 1
of Section 1.2.3 to deduce that the polymorphic constant c./(7s) can be abbreviated to
the ordinary constant c,, without ambiguity—the missing information 7s can be recon-
structed from ¢’ and the information about the constant ¢ given in the signature. From
this perspective, the rather technical side Conditions (iii) in Sections 2.5.1 and 2.5.2
become rather less mysterious: they precisely ensure that in introducing new constants
one is always dealing just with canonical contexts, and so can use ordinary constants
rather than polymorphic ones without ambiguity. In this way one avoids complicat-
ing the existing syntax at the expense of restricting somewhat the applicability of these
theory extension mechanisms.

2.5.4 Extension by type definition

Every (monomorphic) type o in the initial theory INIT determines a set [o] in the uni-
verse U{. However, there are many more sets in U/ than there are types in INIT. In
particular, whilst ¢/ is closed under the operation of taking a non-empty subset of [o],
there is no corresponding mechanism for forming a ‘subtype’ of o. Instead, subsets are
denoted indirectly via characteristic functions, whereby a closed term p of type c—bool
determines the subset {x € [o] : [p](z) = 1} (which is a set in the universe provided it is
non-empty). However, it is useful to have a mechanism for introducing new types which
are subtypes of existing ones. Such types are defined in HOL by introducing a new type
constant and asserting an axiom that characterizes it as denoting a set in bijection (i.e.
one-to-one correspondence) with a non-empty subset of an existing type (called the rep-
resenting type). For example, the type num is defined to be equal to a countable subset of
the type ind, which is guaranteed to exist by the axiom INFINITY AX (see Section 2.4.3).

As well as defining types, it is also convenient to be able to define type operators.
An example would be a type operator inj which mapped a set to the set of one-to-
one (i.e. injective) functions on it. The subset of o—o representing (o)inj would be
defined by the predicate One_One. Another example would be a binary cartesian product
type operator prod. This is defined by choosing a representing type containing two
type variables, say o[aq;as], such that for any types o; and o5, a subset of o[oy;09]
represents the cartesian product of o; and o,. The details of such a definition are given
in Section 4.3.

Types in HOL must denote non-empty sets. Thus it is only consistent to define a new
type isomorphic to a subset specified by a predicate p, if there is at least one thing for
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which p holds, i.e. = Jz. p z. For example, it would be inconsistent to define a binary
type operator iso such that (oy, 03)iso denoted the set of one-to-one functions from o
onto o, because for some values of o; and o, the set would be empty; for example
(ind, bool)iso would denote the empty set. To avoid this, a precondition of defining a
new type is that the representing subset is non-empty.

To summarize, a new type is defined by:

1. Specifying an existing type.

2. Specifying a subset of this type.

3. Proving that this subset is non-empty.

4. Specifying that the new type is isomorphic to this subset.
In more detail, defining a new type (a4, ..., a,)op consists in:

1. Specifying a type-in-context, «;, ..., a,.c say. The type o is called the representing
type, and the type (a4, ..., a,)op is intended to be isomorphic to a subset of o.

2. Specifying a closed term-in-context, o, ..., a,, .p say, of type c—bool. The term p
is called the characteristic function. This defines the subset of o to which (a, ..., a,)op
is to be isomorphic.®

3. Proving + dz,.p .

4. Asserting an axiom saying that («g,...,«,)op is isomorphic to the subset of o
selected by p.

To make this formal, the theory L0G provides the polymorphic constant Type_Definition
defined in Section 2.4.2. The formula 3f,,,  a.)op—o- Type-Definition p f asserts that
there exists a one-to-one map f from (a4, ..., a,)op onto the subset of elements of ¢ for
which p is true. Hence, the axiom that characterizes (o, ..., «,)op is:

l_ Hf(()él ..... Ozn)op—>g-- Type_Deflnition p f

Defining a new type (a4, ..., a,)op in a theory 7 thus consists of introducing op as a
new n-ary type operator and the above axiom as a new axiom. Formally, a type definition
for a theory 7 is given by

Data

<(a17 s ,Oén)Op, g, pa%bool>

Conditions

5The reason for restricting p to be closed, i.e. to have no free variables, is that otherwise for consis-
tency the defined type operator would have to depend upon (i.e. be a function of) those variables. Such
dependent types are not (yet!) a part of the HOL system.
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(i) (op,n) is not the name of a type constant in Strucy.
(i) ay,...,a,.0 is a type-in-context with o € Types.
(i) po_poor is @ closed term in Termsy whose type variables occur in oy, . . ., a;,.

(iv) dx,. px € Theoremss.
The extension of a standard theory 7 by a such a type definition is denoted by

T+tydef<(a17 s 70%)0]77 U7p>

and defined to be the theory

(Strucy U {(op,n)},

Sig’]’v
Axiomsy U {3 fa,,....an)op—o- Type-Definition p f},
Theoremsr)

Proposition The theory 7 +y4ef (a1, . . ., ay)op, o, p) has a standard model if the theory T
does.

Instead of giving a direct proof of this result, it will be deduced as a corollary of the
corresponding proposition in the next section.

2.5.5 Extension by type specification’

The type definition mechanism allows one to introduce new types by giving a concrete
representation of the type as a ‘subtype’ of an existing type. One might instead wish
to introduce a new type satisfying some property without having to give an explicit
representation for the type. For example, one might want to extend INIT with an atomic
type one satisfying b Vfo_one Ja—one. f = g without choosing a specific type in INIT and
saying that one is in bijection with a one-element subset of it. (The idea being that the
choice of representing type is irrelevant to the properties of one that can be expressed
in HOL.) The mechanism described in this section provides one way of achieving this
while at the same time preserving the all-important property of possessing a standard
model and hence maintaining consistency.

Each closed formula ¢ involving a single type variable o can be thought of as specify-
ing a property ¢[7/«] of types 7. Its interpretation in a model is of the form

la,.q] € ] [a-bool](X) = ] 2 = U—2

"This theory extension mechanism is not implemented in Version 2.0 of the HOL system. It was
proposed by T. Melham and refines a suggestion from R. Jones and R. Arthan.
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which is a characteristic function on the universe, determining a subset {X € U :
[e, .q](X) = 1} consisting of those sets in the universe for which the property ¢ holds.
The most general way of ensuring the consistency of introducing a new atomic type v
satisfying ¢[v/a] would be to prove ‘Ja. ¢’. However, such a formula with quantification
over types is not® a part of the HOL logic and one must proceed indirectly—replacing
the formula by (a logically weaker) one that can be expressed formally with HOL syntax.
The formula used is

(Ffa—o. Type_Definition p f) = ¢

where o is a type, p,_1o0 1S @ closed term and neither involve the type variable a. This
formula says ‘q holds of any type which is in bijection with the subtype of o determined
by p’. If this formula is provable and if the subtype is non-empty, i.e. if

dz,. px

is provable, then it is consistent to introduce an extension with a new atomic type v
satisfying ¢[v/a].

In giving the formal definition of this extension mechanism, two refinements will
be made. Firstly, o is allowed to be polymorphic and hence a new type constant of
appropriate arity is introduced, rather than just an atomic type. Secondly, the above
existential formulas are permitted to be proved (in the theory to be extended) from
some hypotheses.® Thus a type specification for a theory 7 is given by

Data
((aq,...,an)op,0,p,, T, q)
Conditions
(i) (op,n) is a type constant that is not in Strucy.
(i) aq,...,a,.0 is a type-in-context with o € Types.
(iii) p,_poor is @ closed term in Terms whose type variables occurin as = aq, . .., a,.
(iv) « is a type variable distinct from those in os.
(v) T'is a list of closed formulas in Termsz not involving the type variable a.

(vi) g is a closed formula in Termsy.

8yet!
This refinement increases the applicability of the extension mechanism without increasing its expres-
sive power. A similar refinement could have be made to the other theory extension mechanisms.
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(vii) The sequents

(T, Jz,.px)
(I' ', (3fa—o- Type_Definition p f) = q)

are in Theoremsy.

The extension of a standard theory 7 by such a type specification is denoted

T+tyspec<(a17 R an)opa a,p, &, F? q>

and is defined to be the theory

(Strucr U {(op,n)},

SigT7

Axiomss U {(F, Q[(ala S 7an)0p/a])}v
Theoremsr)

Example To carry out the extension of INIT mentioned at the start of this section, one
forms

INITHgyspec () onre, bool, p, a, 0, q)

where p is the term Abo,. b and ¢ is the formula Vfs_., gs—a. f = g. Thus the re-
sult is a theory extending INIT with a new type constant one satisfying the axiom
V fs—one 98—one- f = g-

To verify that this is a correct application of the extension mechanism, one has to
check Conditions (i) to (vii) above. Only the last one is non-trivial: it imposes the
obligation of proving two sequents from the axioms of INIT. The first sequent says that
p defines an inhabited subset of bool, which is certainly the case since T witnesses this
fact. The second sequent says in effect that any type « that is in bijection with the subset
of bool defined by p has the property that there is at most one function to it from any
given type [3; the proof of this from the axioms of INIT is left as an exercise.

Proposition The theory T+ yspec((Q, ..., an)op, 0,p, o, T',q) has a standard model if the
theory T does.

Proof Write as for aq,...,a,, and suppose that as’ = o/y,...,a/,, is the list of type
variables occurring in I" and ¢, but not already in the list as, .

Suppose M is a standard model of 7. Since as, .p is a term-in-context of type c—bool,
interpreting it in M yields

los, plar €[] [as.o—bool]a(Xs) = ][] los.o]u(Xs)—2.

XseUum XseUum
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There is no loss of generality in assuming that I consists of a single formula ~. (Just
replace I' by the conjunction of the formulas it contains, with the convention that this
conjunction is T if I' is empty.) By assumption on as’ and by Condition (iv), as, as’, .y is
a term-in-context. Interpreting it in M yields

[os, as’ .~ € 11 [as, as’.bool] pr (Xs, Xs') = U™ —2
(Xs,Xs')eUn+m
Now (v, 3z,. p x) is in Theoremss and hence by the Soundness Theorem 2.3.2 this
sequent is satisfied by M. Using the semantics of 3 given in Section 2.4.2 and the
definition of satisfaction of a sequent from Section 2.2, this means that for all (Xs, Xs') €
U™ if Jas, as’.y]m(Xs, Xs') = 1, then the set

{y € [os.o]nr = [os, .p](Xs)(y) = 1}

is non-empty. (This uses the fact that p does not involve the type variables as’, so that by
Lemma 4 in Section 1.3.3 [as, as’.p]a (Xs, Xs') = [as, .p]a(Xs).) Since it is also a subset
of a set in U, it follows by property Sub of the universe that this set is an element of /.
So defining

S(Xs) = { {y € [os.o]u : [os,.p](Xs)(y) = 1} if Jas, 4] u(Xs, Xs') = 1, some X5’
1 otherwise

one has that S is a function #4"—U. Extend M to a model of the signature of 7' by
defining its value at the new n-ary type constant op to be this function S. Note that
the values of o, p, v and ¢ in M’ are the same as in M, since these expressions do not
involve the new type constant op.

For each Xs € U™ define ix, to be the inclusion function for the subset S(Xs) C
[as.o]ar if Jos, as’ y]am(Xs, Xs') = 1 for some Xs', and otherwise to be the function
1—]as.o]y sending 0 € 1 to ch(Jas.o]ar). Then ixs € (S(Xs)—[as.o]ar(Xs)) because
[as.o] = [as.o]y. Using the semantics of Type Definition given in Section 2.4.2, one
has that for any (Xs, Xs') € U™, if [as, as’.y] ym(Xs, Xs') = 1 then

[Type_Definition] s ([as.c]ar, S(Xs))([as, .p]ar) (ixs) = 1.
Thus M’ satisfies the sequent
(75 If(as)op—o- Type-Definition p f).

But since the sequent (v, (3 fo—o. Type_Definition p f) = ¢) is in Theoremsr, it is satisfied
by the model M and hence also by the model M’ (since the sequent does not involve the
new type constant op). Instantiating « to (as)op in this sequent (which is permissible
since by Condition (iv) « does not occur in ), one thus has that M’ satisfies the sequent

(v, (3f(as)op—o- Type_Definition p f) = q[(as)op/a]).
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Applying Modus Ponens, one concludes that M’ satisfies (v, ¢[(as)op/a]) and therefore
M’ is a model of 7", as required.

An extension by type definition is in fact a special case of extension by type specifica-
tion. To see this, suppose ((a, ..., ,)op, 0, Ps—iool) i @ type definition for a theory 7.
Choosing a type variable « different from a4, ..., «,, let ¢ denote the formula

Ifaro. Type_Definition p f

Then ((ay, ..., a,)op, 0,p, a, (), ¢) satisfies all the conditions necessary to be a type spec-
ification for 7. Since ¢[(av,...,a,)op/a] is just 3f(a,, . anop—o- Type_Definition p f, one
has that

.....

T+tydef<(ala s 7an)0p7 J7p> = T+tyspec<<0417 s 704n)0p7 g,p,Q, (Da Q>

Thus the Proposition in Section 2.5.4 is a special case of the above Proposition.

In an extension by type specification, the property ¢ which is asserted of the newly
introduced type constant need not determine the type constant uniquely (even up to
bijection). Correspondingly there may be many different standard models of the ex-
tended theory whose restriction to 7 is a given model M. By contrast, a type definition
determines the new type constant uniquely up to bijection, and any two models of the
extended theory which restrict to the same model of the original theory will be isomor-
phic.
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Chapter 3

The HOL Logic in ML

In this chapter, the concrete representation of the HOL logic is described. This involves
describing the ML functions that comprise the interface to the logic (up to and including
Section 3.3); the quotation, printing and parsing of logical terms (Section 3.4); the
representation of theorems (Section 3.6); the representation of theories (Section 3.7);
some useful HOL theories (Sections ?? and 3.9); the methods for extending theories
(throughout Section ?? and in Section 5.7); and the ML system functions concerning
the logic (Section 6.3). It is assumed that the reader is familiar with ML. If not, the
introduction to ML in Getting Started with HOL in TUTORIAL should be read first.

The HOL system provides ML types hol_type and term to represent types and terms of
the HOL logic, as defined in Sections 1.2 and 1.3, respectively. It also provides primitive
ML functions for creating and manipulating values of these types. The key idea of
the HOL system, due to Robin Milner, and discussed in this chapter, is that theorems
are represented as an abstract ML type whose only pre-defined values are axioms, and
whose only operations are rules of inference. This means that the only way to construct
theorems in HOL is to apply rules of inference to axioms or existing theorems; hence the
consistency of the logic is preserved.

The purpose of the meta-language ML is to provide a programming environment in
which to build theorem proving tools to assist in the construction of proofs. When
the HOL system is built, a range of useful theorems is pre-proved and a set of tools
pre-defined. The basic system thus offers a rich initial environment; users can further
enrich it by implementing their own application specific tools and building their own
application specific theories.

3.1 Lexical matters

The name of a HOL variable can be any ML string, but the quotation mechanism will
parse only names that are identifiers (see Section 3.1.1 below). The use of non-identifiers
as variable names is discouraged except in special circumstances (for example, when
writing derived rules that generate variables with names that are guaranteed to be dif-
ferent from existing names). The name of a type variable in the HOL logic is formed
by a prime (’) followed by an alphanumeric which itself contains no prime (see Sec-
tion 3.1.1.3 for examples). The name of a type constant or a term constant in the HOL
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logic can be any identifier, although some names are treated specially by the HOL parser
and printer and should therefore be avoided.

3.1.1 Identifiers
A HOL identifier can be of two forms:
(i) A finite sequence of alphanumerics starting with a letter.

(i) A symbolic identifier, i.e., a finite sequence formed by any combination of the
following characters:

# 7 + x / \N = < > & Y% @ v , = -
A letter is a member of the list:
abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWIXYZ

HOL is case-sensitive: upper and lower case letters are considered to be different.
Alphanumerics are letters or digits or underscores (_) or primes (’). A digit is one of
0,1,2,3,4,5,6,7,8, or 9. A number is a string of one or more digits.

3.1.1.1 Separators

The separators used by the HOL lexical analyser are (with ascii codes in brackets):

space (32), carriage return (13), line feed (10), tab ("I, 9), form feed ("L, 12)

3.1.1.2 Special identifiers

The following valid identifiers should not be used as the name of a variable or a con-
stant.

let in and \ ; => | : := with wupdated_by

3.1.1.3 Type variable names

The name of a type variable in the HOL logic is a string beginning with a prime ()
followed by an alphanumeric which itself contains no prime; for example all of the
following are valid type variable names except for the last:

’a ’b ’cat ’A11 ’g_a_p ’f’00
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3.2 Types

The allowed types depend on which type constants have been declared in the current
theory. See Section 3.7 for details of how such declarations are made.
There are two primitive constructor functions for values of type hol_type:

mk_vartype : string -> hol_type
mk_type : (string * hol_type list) -> hol_type

The function mk_vartype constructs a type variable with a given name; it fails if the
name is not an allowable type variable name (i.e. not a ’ followed by an alphanumeric).

The function mk_type constructs a compound type from a string representing the name
of the type operator and a list of types representing the arguments to the operator.
Function types o;—o5 of the logic are represented in ML as though they were com-
pound types (01, 02)fun (in Section 1.2, however, function types were not regarded as
compound types).

The evaluation of mk_type("name", [oy,---,0,]) fails if

(i) name is not a type operator of the current theory;
(i) name is a type operator of the current theory, but its arity is not n.

For example, mk_type ("bool", []) evaluates to an ML value of type term representing
the type bool and mk_type("fun", [mk_type("ind",[]), mk_type("bool",[])]) evalu-
ates to a value representing ind—bool. (These types are introduced in Section ??).

There are two primitive destructor functions for values of type hol_type:

dest_vartype : hol_type -> string
dest_type : hol_type -> (string * hol_type list)

The function dest_vartype extracts the name of a type variable. The function dest_type
destructs a compound type into the name of the type operator and a list of the argument
types; dest_vartype and dest_type are thus the inverses of mk_vartype and mk_type,
respectively. The destructors fail on arguments of the wrong form.

Types are printed in the form ¢: --- ¢ using the quotation syntax described in Sec-
tion 3.4. For example, the ML value of type hol_type representing ind— (ind—bool)
would be printed as ¢:ind -> ind -> bool®.

3.3 Terms

The four primitive kinds of terms of the logic are described in Section 1.3. The ML
functions for manipulating these are described in this section. There are also various
derived terms that are described in Section 3.5.1.
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The allowed terms depend on which constants have been declared in the current
theory. See Section 3.7 for details of how such declarations are made.
There are four primitive constructor functions for values of type term:

’ mk_var : (string * hol_type) -> term ‘

mk_var (x,0) evaluates to a variable with name z and type o; it always succeeds.

‘ mk_const : (string * hol_type) -> term ‘

mk_const(c,0) evaluates to a term representing the constant with name ¢ and type o; it
fails if:

(i) cis not the name of a constant in the current theory;

(i) o is not an instance of the generic type of ¢ (the generic type of a constant is
established when the constant is defined; see Section 3.7).

‘ mk_comb : (term * term) -> term

mk_comb (¢1,%;) evaluates to a term representing the combination ¢; t,. It fails if:
(i) the type of t; does not have the form ¢'->c;

(ii) the type of t; has the form o’'->0, but the type of ¢, is not equal to ¢’.

’ mk_abs : (term * term) -> term

mk_abs (z,t) evaluates to a term representing the abstraction Az. ¢; it fails if = is not a
variable.
There are four primitive destructor functions on terms:

dest_var : term -> (string * hol_type)
dest_const : term -> (string * hol_type)
dest_comb : term -> (term * term)
dest_abs : term -> (term * term)

These are the inverses of mk_var, mk_const, mk_comb and mk_abs, respectively. They fail
when applied to terms of the wrong form. Other useful destructor functions are rator,
rand, bvar, body, 1hs and rhs. See REFERENCE for details.

The function

’ type_of : term -> hol_type
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returns the type of a term. It could be defined (recursively) in terms of the destructors
but is predefined for convenience.

Terms are printed in the form ¢ --- ¢ using the quotation syntax described in Sec-
tion 3.4. For example, the term representing

Vey. z<y=3dz.x+z=y

would be printed as:

‘lIx y. x<y==>7%z. x+z=y5°
Note that a colon is used to distinguish type quotation from term quotation; the
former have the form : --- ¢ and the latter have the form « --- .

3.4 Quotation

HOL types and terms can be input to the system in two ways: by using constructor
functions, or by using quotation. The former allows some terms to be built which cannot
be constructed using quotation. For example, a term containing two variables with the
same name but different types, e.g. the term x5y = (Zynum = 1), can be built only by
using constructors.

It would be tedious, however, to always have to input types and terms using the
constructor functions. The HOL system, adapting the approach taken in LCF, , has special
quotation parsers for HOL types and terms (named Type and Term, respectively) which
enables types and terms to be input using a fairly standard syntax. The HOL printer also
outputs types and terms using this syntax.

For example, the ML expression

Type ‘:bool -> boolf
denotes exactly the same value (of ML type type) as
mk_type("fun", [mk_type("bool", []), mk_type("bool",[1)])
and
Term ‘\x.x+1°

can be used instead of!

'In order to be processed successfully, the latter quotation (which features a numeral) requires the the-
ory of arithmetic to have already been loaded. This can be accomplished by 1load "arithmeticTheory".
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mk_abs
(mk_var ("x" ,mk_type("num", [1)),
mk_comb
(mk_comb
(mk_const
"+,
mk_type ("fun", [mk_type ("num", [1),
mk_type("fun", [mk_type("num", []1),
mk_type ("num", [1)1)1)),
mk_var ("x", mk_type("num",[]))),
mk_numeral (Arbnum.fromString "1")))

It should be noted that there is no explicit type information in \x.x+1. The HOL
type checker knows that 1 has type num and + has type num->(num->num). From this
information it can infer that both occurrences of x in \x.x+1 could have type num. This is
not the only possible type assignment; for example, the first occurrence of x could have
type bool and the second one have type num. In that case there would be two different
variables with name x, namely xp0,; and x,.,, the second of which is free. In fact, as
mentioned, the only way to construct a term with this second type assignment is by
using constructors, since the type checker uses the heuristic that all variables in a term
with the same name have the same type. This is illustrated in the following session.

- Term ‘x = (x =1)°¢; [ 1]

Type inference failure: unable to infer a type for the application of

$= (x :num)
which has type
:num -> bool
to
(x :num) = (1 :num)
which has type
:bool
unification failure message: unify failed
- mk_eq
(mk_var ("x" ,mk_type("bool", [1)),
mk_eq
(mk_var ("x" ,mk_type("num", [1)),

mk_numeral (Arbnum.fromString "1")));
> val it = ‘x = x = 1 : term
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The original quotation type checker was designed and implemented by Robin Milner.
It employs heuristics like the one above to infer a sensible type for all variables occurring
in a term.

At times, the user may want to control the exact type of a subterm. To support
such functionality, types can be explicitly indicated by following any subterm with a
colon and then a type. For example, Term ‘f(x:num) :bool‘ will type check with f and x
getting types num->bool and num respectively. This treatment of types within quotations
is inherited from LCF.

The type inference algorithm used for the HOL logic is almost identical to that used
for ML. For example, the ML expression fn x => x will be ascribed ML type ’a -> ’a,
and the HOL term constructed by Term ‘\x.x‘ will get an analogous type, as shown in
the session below. This session also shows that a HOL term has both an ML type (namely
hol_type) and a HOL type (: ’a -> ’ain this case).

- Term ‘\x. x°; 2
<<HOL message: inventing new type variable names: ’a.>>

> val it = ‘\x. x‘ : term

- type_of it;

> val it = ‘:’a -> ’a‘ : hol_type

For terms of polymorphic type, i.e., terms whose types have type variables, the type
checker will invent names for the type variables (as in the above session). This is further
shown in the following session (in which we first tell the HOL printer to output type
information):

- show_types := true; 3
> val it = () : unit

- Term ‘f x°;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘(f :’a => ’b) (x :’a)‘ : term

In this example, x is unconstrained in the term £ x, since it appears only as an argument.
The system assigns it the type variable *a. On the other hand, £ is a function, since it is
applied to x. Thus f has a function type, the domain of which is ’a; moreover, since the
result of the application is also unconstrained, the range of the function type is chosen
to be the next type variable different from ’a, i.e., ’b.

Allowing the system to invent type variables introduces a degree of non-determinism
that may not be suitable for some applications. In such cases, explicit type constraints
should be used. The system can be prevented from inventing type variables by setting
the flag Globals.guessing_tyvars to false.
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3.4.1 Overloading

A limited amount of overloading resolution is performed by the quotation parser for
terms. For example, the tilde symbol (~) denotes boolean negation in the initial theory
of HOL and it also denotes the additive inverse in the integer and real theories. If
we load the integer theory and enter an ambiguous term featuring -, the system will
inform us that overloading resolution is being performed.

- load "integerTheory"; L_l_
> val it = () : unit

- Term ‘~"x°¢;

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ‘77x‘ : term

- type_of it;
> val it = ‘:bool‘ : hol_type

A priority mechanism is used to resolve multiple possible choices. In the example,
~ could be consistently chosen to have type :bool -> bool or :int -> int, and the
mechanism has chosen the former. For finer control, explicit type constraints may be
used. In the following session, the ~~x in the first quotation has type :bool, while in the
second, a type constraint ensures that ~~x has type :int.

- show_types := true; 2
> val it = () : unit

- Term ‘"(x = "7x);

<<HOL message: more than one resolution of overloading was possible.>>

> val it = ““((x :bool) = ""x)¢ : term

- Term ‘“(x:int = ""x)°¢;

> val it = ““((x :int) = ""x)¢ : term

Note that the symbol ~ stands for two different constants in the second quotation;
its first occurrence is boolean negation, while the other two occurrences are the ad-
ditive inverse operation for integers. For more information on how to set up and use
overloading, consult REFERENCE.

3.4.2 Antiquotation

Within a quotation, expressions of the form ~(¢) (where ¢ is an ML expression of type
term or type) are called antiquotations. An antiquotation - (¢) evaluates to the ML value
of t. For example, Term ‘x \/ ~(mk_conj(Term‘y:bool¢, Term‘z:bool‘))‘ evaluates to
the same term as Term ‘x \/ (y /\ z)‘. The most common use of antiquotation is
when the term ¢ is just an ML variable z. In this case ~(x) can be abbreviated by ~zx.
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The following session illustrates antiquotation.

- load "arithmeticTheory"; L_l_
> val it = () : unit

-val y = Term ‘x+1°‘;

>val y = ‘x + 1¢ : term
val z = Term ‘y = “y‘;
>val z = ‘y =x + 1° : term

- Term ‘!x:num.?y:num.”z‘;

>val it = ‘!x. ?y. y =x + 1° : term

Types may be antiquoted as well:

val pred = Type ‘:’a -> bool‘; 1
val pred = ‘:’a -> bool‘ : hol_type

A\

- Type‘:"pred -> bool‘;
> val it = ‘:(’a -> bool) -> bool‘ : hol_type

One requirement of the system is that antiquoting a type into a term quotation re-
quires the use of ty_antiq. For example,

- Term ‘!P:"pred. P x ==> Q x°‘; 2

Toplevel input:
Term ‘!P:"pred. P x ==> Q x;
Type clash: expression of type
hol_type
cannot have type
term

- Term ‘!P:"(ty_antiq pred). P x ==> Q x°;
> val it = ‘!P. P x ==> Q x‘ : term

3.5 Ways to construct types and terms

The table below shows ML expressions for various kinds of type quotations. The expres-
sions in the same row are equivalent.
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Types
Kind of type ML quotation Constructor expression
Type variable > alphanum mk_vartype ("’ alphanum")
Type constant S op mk_type ("op", [1)
Function type D01 —> 09 mk_type("fun", [o7, 02 1)
Compound type | : (o, ..., o,)op | mk_type("op", Loy, ..., 0,1)

Equivalent ways of inputting the four primitive kinds of term are shown in the next

table.

Primitive terms

Kind of term | ML quotation | Constructor expression
Variable var:o mk_var ("var",o)
Constant const:o mk_const ("const",o)
Combination | ¢; ¢ mk_comb (t;, t3)
Abstraction | \z.t mk_abs(x, t)

3.5.1 Derived syntactic forms

The HOL quotation parser can translate various standard logical notations into primitive
terms. For example, if + has been declared an infix (as explained in Section 3.7) (as
it is when arithmeticTheory has been loaded), then ‘x+1¢ is translated to ‘$+ x 1°.
The escape character $ suppresses the infix behaviour of + and prevents the quotation
parser getting confused. In general, $ can be used to suppress any special syntactic
behaviour a constant name might have. This is illustrated in the table below, in which
the terms in the column headed ‘ML quotation’ are translated by the quotation parser to
the corresponding terms in the column headed ‘Primitive term’. Conversely, the terms
in the latter column are always printed in the form shown in the former one. The ML
constructor expressions in the rightmost column evaluate to the same values (of type
term) as the other quotations in the same row.
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Non-primitive terms

Kind of term ML quotation | Primitive term | Constructor expression
Negation ~t $~ t mk_neg (1)
Disjunction t1\/12 $\/ t1 to mk_disj(t1,t2)
Conjunction t1/\t2 $/\ 11ty mk_conj (t,t2)
Implication t1==>ty $==> t; ty mk_imp (tq,%2)
Equality t1=t2 $= tl tQ mk_eq(tl ,tQ)
V-quantification | 'x.¢ $'(\z.1) mk_forall(z,t)
J-quantification | 7z.t $7(\z.1) mk_exists(z,t)
e-term Qx.t $a(\z.1) mk_select(x,t)
Conditional t=>t1 1ty) COND ¢ty to mk_cond (t,t1,t2)
let-expression | let x=t; in to | LET(\x.t2)t; mk_let(\z.%¢;,19)

There are constructors, destructors and indicators for all the obvious constructs. (In-
dicators, e.g. is_neg, return truth values indicating whether or not a term belongs to
the syntax class in question.) In addition to the constructors listed in the table there
are constructors, destructors, and indicators for pairs and lists, namely mk_pair, mk_cons
and mk_list (see REFERENCE). The constants COND and LET are explained in Sections ??
and 4.3.2, respectively. The constants \/, /\, ==> and = are examples of infixes and rep-
resent V, A, = and equality, respectively. If c is declared to be an infix, then the HOL
parser will translate ¢; ¢ t5 to $c t; ts.

The constants !, ? and e are examples of binders and represent V, 3 and ¢, respectively.
If ¢ is declared to be a binder, then the HOL parser will translate ¢ x.¢ to the combination
$c(\z.t) (i.e. the application of the constant c to the representation of the abstraction
Ax. 1).

In addition to the kinds of terms in the tables above, the parser also supports the
following syntactic abbreviations.

Syntactic abbreviations
Abbreviated term | Meaning Constructor expression
tt1---t, G---@t)---t,) | list_mk_comb (¢, [t1, ... ,t,1)
\Tqy - x,.1 \r1. -+ \,.t | list_mk_abs([zy, ... ,z,]1,t)
'y X, .t lxy. -+ 'z,.t | list_mk_forall([xzy, ... ,x,],t)
?x1 Ty, L ?x1. -+ ?T,.t | list_mk_exists([zy, ... ,z,]1,1)

There are also constructors 1list_mk_conj, list_mk_disj, list_mk_imp and list_mk_pair
for conjunctions, disjunctions, implications and tuples respectively. The corresponding
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destructor functions are called strip_comb, etc.,

3.6 Theorems

In Chapter 1, the notion of deduction was introduced in terms of sequents, where a
sequent is a pair whose second component is a formula being asserted (a conclusion),
and whose first component is a set of formulas (hypotheses). Based on this was the
notion of a deductive system: a set of pairs, whose second component is a sequent, and
whose first component is a sequent list?. The concept of a sequent following from a set
of sequents via a deductive system was then defined: a sequent follows from a set of
sequents if the sequent is the last element of some chain of sequents, each of whose
elements is either in the set, or itself follows from the set along with earlier elements of
the chain, via the deductive system.

A notation for ‘follows from’ was then introduced. That a sequent ({ty,...,t,}, t)
follows from a set of sequents A, via a deductive system D, is denoted by: ¢,....t, Fp a
t. (It was noted that where either D or A were clear by context, their mention could be
omitted; and where the set of hypotheses was empty, its mention could be omitted.)

A sequent that follows from the empty set of sequents via a deductive system is called
a theorem of that deductive system. That is, a theorem is the last element of a proof (in
the sense of Chapter 1) from the empty set of sequents. When a pair (L, (T, ¢)) belongs
to a deductive system, and the list L is empty, then the sequent (I, ) is called an axiom.
Any pair (L, (', t)) belonging to a deductive system is called a primitive inference of the
system, with hypotheses® L and conclusion (T, ¢).

A formula in the abstract is represented concretely in HOL by a term whose HOL type
is ":bool". Therefore, a term of type ":bool" is used to represent a member of the set of
hypotheses of a sequent; and likewise to represent the conclusion of a sequent. Sets in
this context are represented by lists, so the set of hypotheses of a sequent is represented
by a list of ‘:bool*-typed terms.

A theorem in the abstract is represented concretely in the HOL system by a value with
the ML abstract type thm. The type thm has a primitive destructor function

dest_thm : thm -> (term list * term)

which returns a pair consisting of the hypothesis list and the conclusion, respectively, of
a theorem. From this, two destructor functions are derived

hyp : thm -> term list
concl : thm -> term

2Note that these sequents form a list, not a set; that is, are ordered.
3Note that ‘hypotheses’ and ‘conclusion’ are also used for the components of sequents.
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for extracting the hypothesis list and the conclusion, respectively, of a theorem. The
ML type thm does not have a primitive constructor function. In this way, the ML type
system protects the HOL logic from the arbitrary and unrecorded construction of theo-
rems, which would compromise the consistency of the logic. (Functions which return
theorems as values, e.g. functions representing primitive inferences, are discussed first
in Section 3.9, and further in Chapter8.)

It was mentioned in Chapter 1 that the deductive system of HOL includes five axioms*.
In that Chapter, the axioms were presented in abstract form. The concrete representa-
tion of the axioms in HOL is given in Section ??. To anticipate, the axiom BOOL_CASES_AX
mentioned in Chapter 1 is printed in HOL as follows (where T and F are the HOL logic’s
constants representing truth and falsity, respectively):

|- 1t. (¢t =T) \/ (¢t =F) : thm

Note the special print format, with the approximation to the abstract - notation, |-,
used to indicate ML type thm status; as well as the absence of HOL quotation marks in
the |- context. The session below illustrates the use of the destructor functions:

- val th = BOOL_CASES_AX; 1
>val th = |- !'t. (¢ =T) \/ (¢t =F) : thm

- hyp th;

> val it = [] : term list

- concl th;

>val it = ‘1t. (¢ =T) \/ (¢t =F)° : term

- type_of it;

> val it = ‘:bool‘ : hol_type

In addition to the print conventions mentioned above, the printing of theorems prints
hypotheses as periods (i.e. full stops or dots). The flag show_assums prints theorems
with hypotheses shown in full. These points are illustrated with a theorem inferred, for
example purposes, from another axiom mentioned in Chapter 1: SELECT_AX.

- val th = UNDISCH (SPEC_ALL SELECT_AX); L_l_
>val th = [.] |[-P ($@ P) : thm
- show_assums := true;

> val it = () : unit

- th;
>val it = [P x] |- P ($@ P) : thm

#This is a simplification: the axioms are an extension of the basic logic. See Sections ?? and ??.
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3.7 Theories

In Chapter 1 a theory is described as a 4-tuple
7 = (Strucr, Sigs, Axiomsz, Theoremsy)

where
(i) Strucy is the type structure of 7;
(i) Sigs is the signature of 7;
(iii) Axioms7 is the set of axioms of 7;
(iv) Theoremsy is the set of theorems of 7.

Theories are structured hierarchically to represent sequences of extensions called seg-
ments of an initial theory (see Section 2.5) called min. A theory segment is not really a
logical concept, but rather a concept of the representation of theories in the HOL sys-
tem. Each segment records some types, constants, axioms and theorems, together with
pointers to other segments called its parents. The theory represented by a segment is
obtained by taking the union of all the types, constants, axioms and theorems in the
segment, together with the types, constants, axioms and theorems in all the segments
reachable by following pointers to parents. This collection of reachable segments is
called the ancestry of the segment.

A typical piece of work with the HOL system consists in a number of sessions. In
the first of these, a new theory, 7 say, is created by importing some existing theory seg-
ments, making a number of definitions, and perhaps proving and storing some theorems
in the current segment. Then the current segment (named name say) is exported. The
concrete result will be an ML module nameTheory whose contents is the current theory
segment created during the session and whose ancestry represents the desired logical
theory 7. Subsequent work sessions can access the definitions and theorems of 7 by
importing nameTheory; this avoids having to load the tools and replay the proofs that
created nameTheory in the first place.

The naming of data in theories is based on the names given to segments. Specifi-
cally an axiom, definition, specification or theorem is accessed by an ML long identi-
fier thyTheory.name, where thy is the name of the theory segment current when the
item was declared and name is a specific name supplied by the user (see the functions
new_axiom, new_definition, below). Different items can have the same specific name
if the associated segment is different. Thus each theory segment provides a separate
namespace of ML bindings of HOL items.

Various additional pieces of information are stored in a theory segment, including the
parsing status of the constants (e.g. whether they are infixes or binders).
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There is always a current theory which is the theory represented by the current theory
segment together with its ancestry. The name of the current theory segment is returned
by the ML function:

‘ current_theory : unit -> string ‘

On startup, the current theory segment of HOL is named scratch, which is an empty
theory, having the theory bool as its sole parent. This is a very simple logical setting;
for example, common types such as numbers and pairs are not present. Typically, a user
would begin by loading whatever specific logical context is required.

3.7.1 Primitive ML functions for creating theories

The ML functions for creating theories and manipulating are listed below.

‘ new_theory : string -> unit ‘

One creates a new theory segment by a call to new_theory. This allocates a new ‘area’
where subsequent theory operations take effect. If the current theory (thy; say) at the
time of a call to new_theory thy, is non-empty, i.e., has had an axiom, definition, or
theorem stored in it, then thy, is exported before thys, is allocated. Furthermore, thys
will obtain thy, as a parent. If new_theory thy is called when the current theory segment
is already named thy, then that is interpreted as a request merely to clear the current
theory segment (nothing will be exported).
A call to new_theory "name" fails if:

e name is not an alphanumeric starting with a letter.
e there is a theory already named name in the ancestry of the current segment.

e if it is necessary to export the current segment before creating the new theory and
the export attempt fails.

The current theory segment acts as a kind of scratchpad. Elements stored in the
current segment may be overwritten by subsequent additions, or deleted outright. Any
theory elements that were built from overwritten or deleted elements are now held
to be out-of-date, and will not be included in the theory when it is finally exported.
Out-of-date constants and types are detected by the HOL printer, which will print them
surrounded by odd-looking syntax to alert the user.

In contrast to the current segment, (proper) ancestor segments may not be altered.

Since HOL theories are represented by ML modules, one imports an existing theory
segment by simply importing the corresponding module.



58 Chapter 3. The HOL Logic in ML

‘ load : string -> unit ‘

Executing load nameTheory imports the first file named nameTheory.uo found along
the loadPath into the session. Any unloaded ancestors of name will be loaded before
loading of nameTheory continues.

‘ new_type : int -> string -> unit ‘

Executing new_type n "op" makes op a new n-ary type operator in the current theory.
Failure if:

(i) there already exists a type operator named op in an ancestor theory segment.

(i) opis not an allowed name for a type.

’ new_constant : (string * type) -> unit

Executing new_constant ("c",o) makes c,» a new constant of the current theory, for all
c,» where ¢’ is an instance of . The type o is called the generic type of c. Failure if:

(i) there already exists a constant named ¢ in an ancestor theory segment.

’ new_infix : (string * type) -> unit ‘

Executing new_infix("iz",0) declares ix to be a new constant with generic type ¢ and
infix status. Failure if:

(i) there already exists a constant named ix in an ancestor theory segment;

(ii) o not of the form o;->09->03.

‘ new_binder : (string * type) -> unit ‘

Executing new_binder ("b",0) declares b to be a new constant with generic type ¢ and
binder status. Failure if:

(i) there already exists a constant named b an ancestor theory segment;

(ii) o not of the form (o1->09)->03.

‘ new_axiom : (string * term) -> thm

Executing new_axiom("name",t) declares the sequent ({},t) to be an axiom of the cur-
rent theory with name name. Failure if:

(i) t contains out-of-date constants or types.
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Once a theorem has been proved, it can be saved with the function

save_thm : (string * thm) -> thm

Evaluating save_thm("name",th) will save the theorem th with name name in the cur-
rent theory segment.

Once a theory segment has been constructed, it can be written out to a file, which,
after compilation, can be imported into future sessions.

‘ export_theory : unit -> unit ‘

When export_theory is called, all out-of-date entities are removed from the cur-
rent segment. Also, the parenthood of the theory is computed. The current theory
segment is written to file nameTheory.sml in the current working directory. The file
nameTheory.sig, which documents the contents of name, is also written to the current
working directory. Notice that the exported theory is not compiled by HOL. That is left
to an external tool, Holmake, which maintains dependencies among collections of HOL
theory segments.

3.7.2 Functions for creating definitional extensions

There are three kinds of definitional extensions: constant definitions, constant specifi-
cations and type definitions.

3.7.2.1 Constant definitions

In Section 2.5.1 a constant definition over a signature X, is defined to be an equation,
i.e. a formula of the form ¢, = t,, such that:

(i) cis not the name of any constant in ¥q;
(ii) t, is a closed term in Termsy,,;

(iii) all the type variables occurring in ¢, occur in o.

In HOL, definitions can be slightly more general than this, in that an equation:
cvy - U, =t

is allowed to be a definition where vy, ..., v, are variable structures (i.e. tuples of
distinct variables). Such an equation is logically equivalent to:

c = Avg - vy t

which is a definition in the sense of Section 2.5.1 if (i), (ii) and (iii) hold.
The following ML function creates a new definition in the current theory.
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new_definition : (string * term) -> thm

Evaluating new_definition("name", cv; --- v, = t), where ¢ is not already a con-
stant, declares the sequent ({},\v; --- wv,. t) to be a constant definition of the current
theory. The name associated with the definition in this theory is name. Failure if:

(i) cis already a constant in an ancestor current theory;

(ii) t contains free variables that are not in any of the variable structures vy, ...,
v, (this is equivalent to requiring \v; --- v,. t to be a closed term);

(iii) there is a type variable in vy, ..., v, or ¢t that does not occur in the type of c.

3.7.2.2 Constant specifications
In Section 2.5.2 a constant specification for a theory 7 is defined to be a pair:
((c1,.-yCn)y AT1g, g, - thool)
such that:
(1) cy, ..., ¢, are distinct names.
(1) A1y, Tng,- thoot € Termsr.
(ii)) tyvars(ATig, -+ Tng, - thoot) C tyvars(o;) for 1 <i <n.
(iv) 31,5, -+ Tpy,-t € Theoremss.

The following ML function is used to make constant specifications in the HOL system.

‘ new_specification : string -> ((string*string)list) -> thm -> thm

Evaluating:

new_specification

"name"
[flagl,llclll’ AU nflagnu,ncnn]
|- ?21 ++- x,. tLlry, ... ,Tp]

simultaneously introduces new constants named ¢, . . ., ¢, satisfying the property:
|- tley, .. ,Cnl

If flag; is constant then ¢; is declared an ordinary constant, if it is infixl n then c¢;
is declared a left associative infix with binding strength n, if it is infixr n then ¢; is
declared a right associative infix with binding strength n, and if it is binder then c; is
declared a binder. This theorem is stored, with name name, as a definition in the current
theory segment. A call to new_specification fails if:
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(i) the theorem argument has a non-empty assumption list;
(ii) there are free variables in the theorem argument;
(iii) ¢y, ..., ¢, are not distinct variables;
(iv) some ¢; is already a constant in an ancestor theory;
(v) some ¢; is not an allowed name for a constant;
(vi) some flag; is not either constant, infix Or binder;

(vii) the type of ¢; is not suitable for a constant with the syntactic status specified

by flag:;
(viii) the type of some ¢; does not contain all the type variables which occur in the
tetrm\zy -+ x,. tlry, ... ,T,].

3.7.2.3 Type definitions

In Section 2.5.4 it is explained that defining a new type (ay,...,a,)op in a theory 7
consists of introducing op as a new n-ary type operator and

F 3 f(ar,...an)op—o- Type_Definition p f

as a new axiom, where p is a predicate characterizing a non-empty subset of an existing
type o. Formally, a type definition for a theory 7 is a 3-tuple

(0, (1, Qn)OD; Po—bool)
where:
(i) o € Types; and tyvars(o) € {aq,...,an}.
(ii) op is not the name of a type constant in Strucs.
(iii) p € Termst is a closed term of type o—bool and tyvars(p) C {aq, ..., an}.
(iv) dz,. px C Theoremss.

The following ML function makes a type definition in the HOL system.

‘ new_type_definition : (string * term * thm) -> thm

If ¢ is a term of type o->bool containing n distinct type variables, then evaluating:

new_type_definition("op", ¢, |- ?x.t{ x)
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results in op being declared as a new n-ary type operator characterized by the defini-
tional axiom:

|- ?rep. TYPE DEFINITION ¢ rep

which is stored as a definition with the automatically generated name op_TY_DEF.. The
constant TYPE_DEFINITION is defined in the theory bool by:

|- TYPE_DEFINITION (P:*->bool) (rep:**->%) =
('x? x?’. (rep x’ =rep x’7) ==> (x’ = x"7)) /\
('x. Px=(?x’. x = rep x’))
Executing new_type_definition("op", t, |- 7z. t x) fails if:

(i) op is already the name of a type or type operator in an ancestor theory;

(ii) t does not have a type of the form o->bool.

3.7.2.4 Defining bijections

The result of a type definition using new_type_definition is a theorem which asserts
only the existence of a bijection from the type it defines to the corresponding subset
of an existing type. To introduce constants that in fact denote such a bijection and its
inverse, the following ML function is provided:

‘ define_new_type_bijections : string -> string -> string -> thm -> thm ‘

This function takes three string arguments and a theorem argument. The theorem
argument must be a definitional axiom of the form returned by new_type_definition.
The first string argument is the name under which the constant definition (a constant
specification, in fact) made by define_new_type_bijections will be stored in the current
theory segment, and the second and third string arguments are user-specified names for
the two constants that are to be defined. These constants are defined so as to denote
mutually inverse bijections between the defined type, whose definition is given by the
supplied theorem, and the representing type of this defined type.
Evaluating:

define new type bijections "name" "abs" "rep"
|- ?rep:newty->ty. TYPEDEFINITION P rep

automatically defines two new constants abs:ty->newty and rep:ty->newty such that:

|- (ta. abs(rep a) = a) /\ (‘r. P r = (rep(abs r) = r))
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This theorem, which is the defining property for the constants abs and rep, is stored
under the name "name” in the current theory segment. It is also the value returned
by define_new_type_bijections. The theorem states that abs is the left inverse of rep
and—for values satisfying P—that rep is the left inverse of abs.

A call to define_new_type_bijections name abs rep th fails if:

(i) either abs or rep is already the name of a constant in an ancestor theory;

(i) th is not a theorem of the form returned by new_type_definition.

3.7.2.5 Properties of type bijections

The following ML functions are provided for proving that the bijections introduced by
define_new_type_isomorphisms are injective (one-to-one) and surjective (onto):

prove_rep_fn_one_one : thm -> thm
prove_rep_fn_onto : thm -> thm
prove_abs_fn_one_one : thm -> thm
prove_abs_fn_onto : thm -> thm

The theorem argument to each of these functions must be a theorem of the form re-
turneClby’define_new_type_bijections:

|- (ta. abs(rep a) = a) /\ (‘r. P r = (rep(abs r) = r))

If th is a theorem of this form, then evaluating prove_rep_fn_one_one th proves that the
function rep is one-to-one, and returns the theorem:

|- la a’. (rep a =rep a’) = (a = a’)
Likewise, prove_rep_fn_onto th proves that rep is onto the set of values that satisfy P:
|- 'r. Pr = (?a. r = rep a)

Evaluating prove_abs_fn_one_one th proves that abs is one-to-one for values that satisfy
P, and returns the theorem:

|- 'rr’. Pr==> P r> == ((abs r = abs r’) = (r = r’))
And evaluating prove_abs_fn_onto th proves that abs is onto, returning the theorem:
|- 'a. ?r. (a=abs ) /\ Pr

All four functions will fail if applied to any theorem that does not have the form of a the-
orem returned by define_new_type_bijections. None of these functions saves anything
in the current theory.
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3.7.3 ML functions for accessing theories

The arguments of ML type string to new_axiom, new_definition etc. are the names of the
corresponding axioms and definitions. These names are used when accessing theories
with the functions axiom, definition, etc., described below.

The current theory can be extended by adding new parents, types, constants, axioms
and definitions. Theories that are in the ancestry of the current theory cannot be ex-
tended in this way; they can be thought of as frozen.

There are various functions for loading the contents of theory files:

parents : string -> string list

types : string -> (int * string) list
constants ! string -> term list

infixes ! string -> term list

binders ! string -> term list

axioms : string -> (string * thm) list
definitions : string -> (string * thm) list
theorems : string -> (string * thm) list

The first argument is the name of a theory (which must be in the ancestry of the current
theory segment); the result is a list of the components of the theory. The name of the
current theory can be abbreviated by ‘-¢. For example, parents ‘-¢ returns the parents
of the current theory.

In the case of types a list of arity-name pairs is returned; in the case of axioms,
definitions Or theorems a list of string-theorem pairs is returned, where the string is the
name of the theorem representing the axiom, definition or theorem that was supplied
by the user. Note that constant specifications and type definitions are both retrieved
using the function definitions.

Individual axioms, definitions and theorems can be read from the current theory using
the following ML functions:

axiom : string -> thm
definition : string -> thm
theorem : string -> thm

The first argument is the user supplied name of the axiom, definition or theorem in the
current theory.

The contents of the current theory can be printed in a readable format using the
function print_theory.

3.8 The theory min

The theory min declares the type constant bool of booleans, the binary type operator fun
of functions, and the type constant ind of individuals. Building on this, three primitive
constants are declared in the theory min: equality, implication, and a choice operator.
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Equality ($= : ’a -> ’a -> bool) parses as an infix with low binding precedence
(100).

Implication ($==> : bool -> bool -> bool) parses as a right-associative infix with
binding precedence 200.

Equality and implication are standard predicate calculus notions, but choice is more
exotic: if ¢ is a term having type o->bool, then ex.t x (or, equivalently, $et) denotes
some member of the set whose characteristic function is ¢. If the set is empty, then ex.t x
denotes an arbitrary member of the set denoted by o. The constant @ is a higher order
version of Hilbert’s c-operator; it is related to the constant « in Church’s formulation of
higher order logic. For more details, see Church’s original paper [?], Leisenring’s book
on Hilbert’s e-symbol [?], or Andrews’ textbook on type theory [?].

3.9 Primitive rules of inference of the HOL Logic

The primitive rules of inference of the logic were described abstractly in Section 2.3.1.
The descriptions relied on meta-variables ¢, ¢y, t5, and so on. In the HOL logic, infinite
families of primitive inferences are grouped together and thought of as single primitive
inference schemes. Each family contains all the concrete instances of one particular
inference ‘pattern’. These can be produced, in abstract form, by instantiating the meta-
variables in Section 2.3.1 to concrete terms.

In HOL, primitive inference schemes are represented by ML functions that return the-
orems as values. That is, for particular HOL terms, the ML functions return the instance
of the theorem at those terms. The ML functions are part of the ML abstract type thm:
although thm has no primitive constructors, it has (eight) operations which return theo-
rems as values: ASSUME, REFL, BETA_CONV, SUBST, ABS, INST_TYPE, DISCH and MP.

The ML functions that implement the primitive inference schemes in the HOL system
are described below. The same notation is used here as in Section 2.3.1: hypotheses
above a horizontal line and conclusion beneath. The machine-readable ASCII notation
is used for the logical constants.

3.9.1 Assumption introduction

| ASSUME : term -> thm

t -1

ASSUME ¢ evaluates to t|- t. Failure if ¢ is not of type bool.
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3.9.2 Reflexivity

| REFL : term -> thm

|-t =1
REFL t evaluates to |- ¢ = t. A call to REFL never fails.

3.9.3 Beta-conversion

| BETA_CONV : term -> thm

|_ (\I.tl)tQ = tl[tg/l‘]

e where t,[ty /] denotes the result of substituting ¢, for x in ¢;, with suitable renam-
ing of variables to prevent free variables in ¢, becoming bound after substitution.
The substitution ¢ [ty /x] is always defined.

BETA_CONV (\x.t;)ty evaluates to the theorem |- (\z.t1)ty = t[ty/z|. Failure if the ar-
gument to BETA_CONV is not a $-redex (i.e. is not of the form (\xz.t1)ts).

3.9.4 Substitution

‘ SUBST : (thm * term)list -> term -> thm -> thm

Fl |— t1=t/1 Fn |— tn=t;1 P |— t[tl,...,tn]
Hu---ulL,ull 1= t[th,... 1]

e where t[ty,...,t,] denotes a term ¢ with some free occurrences of the terms ¢y, . . .,
t, singled out and ¢[t/, ..., %/ ] denotes the result of simultaneously replacing each
such occurrences of t; by ¢, (for 1<i<n), with suitable renaming of variables to
prevent free variables in ¢, becoming bound after substitution.

The first argument to SUBST is a list [(|-t;=t}, x1); ... ;(I-t,=t,, x,)]. The second
argument is a template term t¢[z4, .. ., z,| in which occurrences of the variable z; (where
1 <i < n) are used to mark the places where substitutions with |- ¢;=t; are to be done.
Thus

SUBST [(I-ty=ty, x1);...;CU-~t,=1,, )1 tlxy, ...,z T |- tlty,... )

returns ' |- ¢[t},..., ¢ ]. Failure if:

(i) any of the arguments are of the wrong form;

(ii) the type of z; is not equal to the type of ¢; for some 1 < i < n.



3.9. Primitive rules of inference of the HOL Logic 67

3.9.5 Abstraction

| ABS : term -> thm -> thm

F |— tl = t2
I'1- A\z.tp) = (\x.ta)
e where z is not free in I'.
ABS x I' |- ty=t, returns the theorem I' |- (\xz.t;) = (\x.ty). Failure if x is not a vari-

able, or x occurs free in any assumption in I".

3.9.6 Type instantiation

| INST_TYPE : (type*type) list -> thm -> thm

-t
U |- tloy, ... ,on/01, ... o]
e tloy, ... ,0,/a1, ... ,,] denotes the result of substituting (in parallel) the types

o1, ..., o, for the type variables a4, ..., «, in t, with the restriction that none of
i, ..., q,occurin I'.

INST_TYPE[(01,01);...;(0,,a,)] th returns the result of instantiating each occurrence
of a; in the theorem th to o; (for 1 < ¢ < n). Failure if:

(i) arguments of the wrong form (e.g. an «; is not a type variable);

(i) «; (for 1 < i < n) occurs in any assumption in I'.

3.9.7 Discharging an assumption

‘ DISCH : term -> thm -> thm

I'i- t
F_{tl} |- &1 ==> 19

e '—{t;} denotes the set obtained by removing ¢; from I" (note that ¢; need not
occur in I'; in this case '—{¢,} = I').

DISCH t; I' |- ty evaluates to the theorem I'—{¢;} |- t; ==> . DISCH fails if the term
given as its first argument is not of type bool.
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3.9.8 Modus Ponens

| MP : thm -> thm -> thm

Fl |- t1 ==> to FQ |- 14
urly |-ty

MP takes two theorems (in the order shown above) and returns the result of applying
Modus Ponens; it fails if the arguments are not of the right form.

3.10 Oracles

hol98 extends the LCF tradition by allowing the use of an oracle mechanism, enabling
arbitrary formulas to become elements of the thm type. By use of this mechanism, hol98
can utilize the results of arbitrary proof procedures. In spite of such liberalness, one can
still make strong assertions about the security of ML objects of type thm.

To avoid unsoundness, a tag is attached to any theorem coming from an oracle. This
tag is propagated through every inference that the theorem participates in (much as
ordinary assumptions are propagated in the inference rule MP). If it happens that falsity
becomes derived, the offending oracle can be found by examining the tags component
of the theorem. A theorem proved without use of any oracle will have an empty tag,
and can thus be considered to have been proved solely by deductive steps in the HOL
logic.

A tagged theorem can be created via

‘ mk_oracle_thm : tag —-> term list * term -> thm ‘

which directly creates the requested theorem and attaches the given tag to it. Tags
may be created with

’ Tag.read : string -> tag. ‘

As well as providing principled access to the results of external reasoners, tags are
used to implement some useful ‘system’ operations on theorems. For example, one can
directly create a theorem via the function mk_thm. The tag MK_THM gets attached to each
theorem created with this call. This allows users to directly create useful theorems, e.g.,
to use as test data for derived rules of inference. Another tag is used to implement
so-called ‘validity checking’ for tactics.

The tags in a theorem can be viewed by setting Globals.show_tags to true.

Globals.show_tags := true; L_l_
val it = () : unit

A\

mk_thm([], Term ‘F¢);;
> val it = [oracles: MK_THM] [axioms: ] [] |- F : thm
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There are three elements to the left of the turnstile in the fully printed representation
of a theorem: the first two® comprise the tags component and the third is the standard
assumption list. The tag component of a theorem can be extracted by

‘ Thm.tag : thm -> tag ‘

and prettyprinted by

‘ Tag.pp : ppstream -> tag -> unit. ‘

3.11 The theory bool

At start-up, the initial theory for users of the HOL system is called bool, which is con-
structed when the HOL system is built. The theory bool contains the five axioms for
higher order logic. These axioms, together with the rules of inference described in
Section 3.9, constitute the core of the HOL logic. Because of the way the HOL system
evolved from LCF,® the particular axiomatization of higher order logic it uses differs
from the classical axiomatization due to Church [?]. The biggest difference is that in
Church’s formulation type variables are in the meta-language, whereas in the HOL logic
they are part of the object language.

The logical constants T (truth), F (falsity), ~ (negation), /\ (conjunction), \/ (dis-
junction), ! (universal quantification), ? (existential quantification) and ?! (unique ex-
istence quantifier) can all be defined in terms of equality, implication and choice. The
definitions listed below are fairly standard; each one is preceded by its ML name. (Later
definitions sometimes use earlier ones.)

T_DEF |- T = ((\x:bool. x) = (\x. x))

FORALL_DEF |- $! = \P:’a->bool. P = (\x. T)

EXISTS_DEF |- $7 = \P:’a->bool. P($e P)

AND_DEF [= $/\ = \t1 t2. !t. (t1 ==> t2 ==> t) ==>t

OR_DEF [- $\/ = \t1 t2. 't. (t1 ==> t) ==> (£t2 ==> t) ==> t
F_DEF I-F =1t. t

NOT_DEF [-$ =\t. t ==>F

EXISTS_UNIQUE_DEF |- $7! = (\P. $? P /\ (!xy. Px /\ Py ==> (x = y)))

>Tags are also used for tracking the use of axioms in proofs.

®To simplify the porting of the LCF theorem-proving tools to the HOL system, the HOL logic was made
as like PP\ (the logic built-in to LCF) as possible.
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There are five axioms in the theory bool; the first four are the following:

BOOL_CASES_AX |- !'t. (t =T) \/ (¢t = F)

IMP_ANTISYM_AX |- !t1 t2. (t1 ==> t2) ==> (t2 ==> t1) ==> (t1 = t2)
ETA_AX - 't. (\x. t x) =t

SELECT_AX |- 'P:’a->bool x. P x ==> P($@ P)

The fifth and last axiom of the HOL logic is the Axiom of Infinity. Its statement is phrased
in terms of the function properties ONE_ONE and ONTO. The definitions are:

ONE_ONE_DEF |- ONE_ONE f

(1x1 x2. (f x1 = f x2) ==> (x1 = x2))

ONTO_DEF |- ONTO £ = (ly. ?x. y = £ %)
The Axiom of Infinity is
INFINITY_AX |- ?f:ind->ind. ONE_ONE f /\ ~(ONTO f)

This asserts that there exists a one-to-one map from ind to itself that is not onto. This
implies that the type ind denotes an infinite set.

The four other axioms of the theory bool, the rules of inference in Section 3.9 and
the Axiom of Infinity are, together, sufficient for developing all of standard mathemat-
ics. Thus, in principle, the user of the HOL system should never need to make a non-
definitional theory. In practice, it is often very tempting to take the risk of introducing
new axioms because deriving them from definitions can be tedious—proving that ‘ax-
ioms’ follow from definitions amounts to proving their consistency.

The theory bool also supplies the definitions of a number of useful constants.

LET_DEF |- LET = \f x. f x
COND_DEF |- COND =\t t1 t2.0x.((t=T)==>(x=t1))/\((t=F)==>(x=t2))
ARB_DEF |- ARB =0x. T

The constant LET is used in representing terms containing local variable bindings (i.e.
let-terms. For example, the concrete syntax let v = M in N is translated by the parser
to the term LET (\v.N) M. For the full description of how 1let expressions are translated,
see Section 4.3.

The constant COND is used in representing conditional expressions. The concrete
syntax ‘if t; then t, else t3¢ abbreviates the application COND #; t» t3. The syntax
t1 => t5 | t3 is also permitted. The system alway prints out conditionals in the ”if ¢; then
ty else t3” form.
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The polymorphic constant ARB is used to denote a fixed but arbitrary element in a
type, which is occasionally useful when attempting to deal with the issue of partiality.

A large number of theorems involving the logical constants are pre-proved in the
theory bool. The following are only a selection.

BOTH_EXISTS_AND_THM |- 'P Q. (?x. P /\ Q) = (?x. P) /\ 7x. Q
BOTH_EXISTS_IMP_THM |- !'P Q. (?x. P ==> Q) = (!x. P) ==> 7x. Q
BOTH_FORALL_IMP_THM |- !'P Q. (!'x. P ==> Q) = (?x. P) ==> Ix. Q
BOTH_FORALL_OR_THM |- 'P Q. (!x. P \/ Q) = (!x. P) \/ 'x. Q

COND_ABS |- 'b £ g. (\x. (if b then f x else g x)) = if b then f else g
COND_EXPAND [- 'p t1 t2. (if b then t1 else t2) = (b \/ t1) /\ (b \/ t2)
COND_ID [- 'b t. (if b then t else t) =t

COND_RAND |- !f bxy. £ (if b then x else y) = if b then f x else f y
COND_RATOR |- b £ g x. (if b then f else g) x = if b then f x else g x
DE_MORGAN_THM |- 'AB. ("CA/\B) =" A\ "B) /\ ("(A\/ B) ="A/\ "B)
ETA_THM [- M. (\x. Mx) = M

EXISTS_OR_THM [-'P Q. (?x. Px \/ Qx)=(?x. Px)\/ 7x. Q x
FORALL_AND_THM [-'P Q. ('x. Px/\Qx)=("x.Px)/\ 'x. Qx
LEFT_AND_FORALL_THM |- 'P Q. (!x. Px) /N Q= !'x. Px /\Q
LEFT_EXISTS_AND_THM |- 'P Q. (?x. Px /\ Q@ = (?x. P x) /\ Q
LEFT_EXISTS_IMP_THM |- 'P Q. (?x. P x ==> Q) = (!x. P x) ==> Q
LEFT_FORALL_IMP_THM |- 'P Q. (!'x. P x ==> Q) = (?x. P x) ==>
LEFT_FORALL_OR_THM [-1QP. ('x. Px\/ Q) = (Ux. Px)\/Q
LEFT_OR_EXISTS_THM |- 'P Q. (?x. Px) \/ Q = ?x. P x \/ Q

NOT_EXISTS_THM [- 'P. "(?x. P x) = !x. "P x

NOT_FORALL_THM [- 'P. "('x. P x) = 7x. "P x
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RIGHT_AND_FORALL_THM |- 'P Q. P /\ ('x. Q@ x) = !x. P /\ Q x
RIGHT_AND_OVER_OR |- 'ABC. B\/C /NA=B/\NAN C/\A
RIGHT_EXISTS_AND_THM |- 'P Q. (?x. P /A Q@ x) =P /\ ?x. Q x
RIGHT_EXISTS_IMP_THM |- 'P Q. (?x. P ==> Q x) = P ==> ?x. Q x
RIGHT_FORALL_IMP_THM |- !'P Q. (!x. P ==>Q x) =P ==> Ix. Q x
RIGHT_FORALL_OR_THM |- 'P Q. (!x. P\/ Q@ x) =P \/ !'x. Q x
RIGHT_OR_EXISTS_THM |- !'P Q. (?x. P ==> Q x) = P ==> ?x. Q x
RIGHT_FORALL_IMP_THM |- 'P Q. (!x. P ==>Q x) = P ==> Ix. Q x
RIGHT_FORALL_OR_THM |- 'P Q. (!x. P\/ Q@ x) =P \/ !'x. Q x
RIGHT_OR_EXISTS_THM |- !'P Q. P \/ (?x. Q@ x) = ?x. P \/ Q x
SELECT_REFL |- 'x. (@y. y = x) = x

SELECT_UNIQUE |- 1P x. (lIy. Py=y=x) ==> ($@ P = x)




Chapter 4

Commonly-used Theories

A useful subset of the collection of theories distributed with the HOL system is listed in

Table ??.

In the rest of this section, each of these theories is briefly described. A complete list
of all the definitions and theorems in each theory is not given here; the sections that
follow provide only an overview of the contents of each theory. For a complete list of

all the built-in axioms, definitions and theorems in HOL, see REFERENCE.

minTheory
boolTheory
combinTheory
pairTheory
sumTheory
relationTheory
numTheory

prim _recTheory,
arithmeticTheory
numeralTheory
integerTheory
setTheory
pred_setTheory
bagTheory
listTheory

rich listTheory
optionTheory
finite mapTheory
ltreeTheory
restr_binderTheory
res_quanTheory
asciiTheory
stringTheory
wordTheory
realTheory

the origin theory

definitions of logical operators and basic axioms
combinators

theory of pairs

disjoint sums

transitive closure and wellfoundedness
Peano’s axioms derived from the axiom of infinity
the primitive recursion theorem

Peano arithmetic development

numerals

integers

sets as a separate type (includes finite sets)
sets as predicates (includes finite sets)

bags (also known as multisets)

lists

extended theory of lists

the option type

finite functions

polymorphic finitely branching trees
definitions of binder restrictions

restricted quantifier support

ascii

strings

(plus several others) theory of bitstrings

(plus several others) real numbers and analysis

Table 4.1: Commonly-used Theories

73
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4.1 Combinators and the theory combin

The theory combin contains the definitions of function composition (infixed o) and the
combinators S, K and 1I.

o DEF |- If g. f og= (\x. f(g x))
K_DEF |- K= (\x y. %)
S_DEF |- S = (\f g x. f x(g x))

I_DEF |- I S KK

The following elementary properties are pre-proved in the theory combin:

o_THM |- 'f g x. (f o g)x = f(g %)

0_ASSOC |- 'f gh. fo(goh) =(fog)oh
K_THM |- !'x y. Kxy =x

S_THM |- 'f gx. Sfgx=1fx (g x)

I_THM |- 'x. I x = X

I oID|-1f. (Tof=1)/\({Eo0ol-=*%)

Having the symbols o, S, K and I as built-in constants is sometimes inconvenient
because they are often wanted as mnemonic names for variables (e.g. S to range over
sets and o to range over outputs). Variables (though not constants) with these names
can be used in the current system if o, S, K and I are first hidden (see Section 6.4).

4.2 The theory relation

Mathematical relations can be represented in HOL by the type :’a -> ’b -> bool. The
theory relation is intended to suppport this view of relations, but does not as yet pro-
vide a well-rounded collection of definitions; indeed, it is common to treat relations
directly. For example, R; C R, can be phrased as !x y. R1 x y ==> R2 x y. The theory
relation currently provides definitions and theorems about the transitive closure of a
relation and for wellfounded relations.
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TC_DEF |- IR a b.
TCR ab =
IP.
('xy. Rxy==>Pzxy /\
('xyz. Pxy /\Pyz==>Pxz)

Pab
WF_DEF |- 'R. WF R = 'B. (?w. B w) ==> ?min. B min /\ 'b. R b min ==> "B b

Wellfoundedness is used to justify the principle of wellfounded induction and also a
general recursion theorem. The statement of the recursion theorem requires that the
notion of a function restriction be defined as well.

WF_INDUCTION_THM
|- I'R:’a->’a->bool.

WF R
==> IP. (!x. (!ly. Ry x==>Py) ==>P x)
==> Ix. P x
RESTRICT_DEF |- !f R x. RESTRICT £ R x = \y. if R y x then f y else ARB

WFREC_COROLLARY
|- IMR f. (f = WWREC R M) ==> WF R ==> Ix. f x = M (RESTRICT f R x) x

WF_RECURSION_THM |- !'R. WF R ==> IM. 7!f. !x. f x

M (RESTRICT f R x) x

The theorems WF_INDUCTION_THM and WFREC_COROLLARY are used to automate recursive
definitions. A few basic combinators for wellfounded relations are also provided in this
theory.

Empty_def |- !'x y. Empty x y = F

inv_image_def |- !'R f. inv_image R f = \x y. R (f x) (f y)
WF_Empty |- WF Empty

WF_SUBSET |- IRP. WWR/\ (!xy. Pxy==>Rxy) ==>WF P
WF_TC |- IR. WF R ==> WF (TC R)

WF_inv_image |- IR £. WF R ==> WF (inv_image R f)

4.3 Pairs and the type prod

The Cartesian product type operator prod is defined in the theory pair. Values of type
(01,09)prod are ordered pairs whose first component has type o; and whose second
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component has type 0,. The HOL parser converts type expressions of the form :o #0,°
into (01,09)prod, and the printer inverts this transformation. Pairs are constructed with
an infixed comma symbol

$, : ’a > ’b -> ’a # ’b

so, for example, if ¢, and ¢, have types o, and o, respectively, then ¢,,t, is a term with

type oi#05. It is usual, but not necessary, to write pairs within brackets: (¢;,t,). The

comma symbol associates to the right, so that (¢q,ts,...,t,) means ({1, (t2,...,t,)).
Cartesian products are defined by representing a pair (t;,t;) by the function

\a b. (a=t1) /\ (b=ty)

The representing type of o #05 is thus o1->05->bool. To define pairs this way, the con-
stants MK_PAIR and IS_PAIR are first defined.

MK_PAIR_DEF |- !x y. MK.PAIR x y = (\a b. (a = x) /\ (b = y))
IS_PAIR_DEF |- !p. IS_PAIR p = (?x y. p = MK_PAIR x y)

From these two definitions it is easy to prove that:
|- ?p:’a->’b->bool. IS_PAIR p

since |- IS_PAIR(MK_PAIR x y) follows easily from the definition of 1S_PAIR. The exis-
tence theorem shown above is called PAIR_EXISTS. Given this theorem, the type operator
prod is defined by evaluating:

new_type_definition(‘prod®, "IS_PAIR: (*->**->bool)->bool", PAIR_EXISTS)

which results in the definitional axiom prod_TY_DEF shown below being asserted in the
theory bool.

prod_TY_DEF |- ?rep. TYPE_DEFINITION IS_PAIR rep

Next, a new constant REP_prod is defined, which maps a pair to its representation as
a function:

REP_prod |- REP_prod =
(Grep : ’a # ’b -> ’a -> ’b -> bool.
(!pz pJJ. (rep p7 = rep p))) ==> (pz = p7))) /\
('p. IS_LPAIR p = (?p’. p = rep p’)))

The infix constructor ¢,” and the selectors FST:’a#’b->’a and SND: ’a#’b->’b are then
defined by the equations shown below.
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COMMA_DEF |- !x y. x,y = (@p. REP_prod p = MK_PAIR x y)
FST_DEF |- !p. FST p = (@x. ?y. MK_PAIR x y = REP_prod p)
SND_DEF |- !p. SND p = (@y. 7x. MK_PAIR x y = REP_prod p)

The following standard theorems about pairs follow easily from these definitions and
the axiom prod_TY_DEF.

PAIR |- 'x. (FST x,SND x) = x

FST |- 'x y. FST(x,y) = x

SND |- 'x y. SND(x,y) =y

PAIR_EQ |- (x,y =a,b) = (x=2a) /\ (y = b)

4.3.1 Paired abstractions

The quotation parser will convert! \ (x;,z,) .t to UNCURRY (\; x5.t), where the constant
UNCURRY is defined by:

UNCURRY f (x,y) = fxy
The transformation is done recursively so that, for example,
\(z1,29,23) .1
is converted to
UNCURRY \zj .UNCURRY (\zy,x3.1))
More generally, the quotation parser repeatedly applies the transformation:
\(v;,v2).t  ~» UNCURRY(\vj.\vg.t)
until no more variable structures remain. For example:

\(z,y) .t ~» UNCURRY (\x y.1)
\(x1,29,...,0,) .1 ~» UNCURRY (\x7.\(Z2,...,T,).1)
N1y 5Tn) s Y1s- - s Ym) -€ ~» UNCURRY(\(Z1,...,%pn) \W1,.-.,Ym) - 1)

1Only when the theory of pairs is loaded.
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Note that a variable structure like (x,y) in \ (x,y) .x+y is not a subterm of the abstrac-
tion in which it occurs; it disappears on parsing. This can lead to unexpected errors
(accompanied by obscure error messages). For example:

- Term ‘\(x,y).x+y‘; [ 2 ]
> val it = ‘\(x,y). x + y° : term

Term ¢(x:num,y:num) ‘;
‘(x,y)¢ : term

- val p
>val p

- Lib.try Term ‘\"p.x+y‘;

Exception raised at Term.dest_var:
not a var

! Uncaught exception:

! HOL_ERR <poly>

If b is a binder, then b(xy,25) .t is parsed as b(\(x1,z7) .t), and hence transformed
as above. For example, ! (x,y) .x>y parses to $! (UNCURRY (\x.\y.$> x y)) (where > is