
Summary of the res quan library

W. Wong

15 April 1993

The res quan library privides some basic facilities for manipulate restricted
quantifications. It consists of a single theory, res quan, which contains a num-
ber of theorems about the properties of some restricted quantifiers, and a set of
ML functions for dealing with them. This summary lists all theorem stored in
the res quan theory and ML functions available in the library.

1 The theory res quan

This theory caontains the following theorems.

DISJ RESQ EXISTS DIST (res quan)
|- !P Q R.

(?i :: \i. P i \/ Q i. R i) = (?i :: P. R i) \/ (?i :: Q. R i)

RESQ EXISTS DISJ DIST (res quan)
|- !P Q R. (?i :: P. Q i \/ R i) = (?i :: P. Q i) \/ (?i :: P. R i)

RESQ EXISTS REORDER (res quan)
|- !P Q R. (?i :: P. ?j :: Q. R i j) = (?j :: Q. ?i :: P. R i j)

RESQ EXISTS UNIQUE (res quan)
|- !P j. (?i :: $= j. P i) = P j

RESQ FORALL CONJ DIST (res quan)
|- !P Q R. (!i :: P. Q i /\ R i) = (!i :: P. Q i) /\ (!i :: P. R i)

RESQ FORALL DISJ DIST (res quan)
|- !P Q R.

(!i :: \i. P i \/ Q i. R i) = (!i :: P. R i) /\ (!i :: Q. R i)

RESQ FORALL FORALL (res quan)
|- !P R x. (!x. !i :: P. R i x) = (!i :: P. !x. R i x)

1



RESQ FORALL REORDER (res quan)
|- !P Q R. (!i :: P. !j :: Q. R i j) = (!j :: Q. !i :: P. R i j)

RESQ FORALL UNIQUE (res quan)
|- !P j. (!i :: $= j. P i) = P j

2



2 ML functions in the library

Conditional rewriting tools

• COND_REWRITE1_CONV : (thm list -> thm -> conv)

A simple conditional rewriting conversion.

• COND_REWRITE1_TAC : thm_tactic

A simple conditional rewriting tactic.

• COND_REWR_CANON : thm -> thm

Transform a theorem into a form accepted by COND_REWR_TAC.

• COND_REWR_CONV

: ((term -> term -> ((term # term) list # (type # type) list) list)

-> thm -> conv)

A lower level conversion implementing simple conditional rewriting.

• COND_REWR_TAC

: ((term -> term -> ((term # term) list # (type # type) list) list)

-> thm_tactic)

A lower level tactic used to implement simple conditional rewriting tactic.

Syntax functions

• mk_resq_abstract : ((term # term # term) -> term)

Term constructor for restricted abstraction.

• mk_resq_exists : ((term # term # term) -> term)

Term constructor for restricted existential quantification.

• mk_resq_forall : ((term # term # term) -> term)

Term constructor for restricted universal quantification.

• mk_resq_select : ((term # term # term) -> term)

Term constructor for restricted choice quantification.

• list_mk_resq_exists : ((term # term) list # term) -> term)

Iteratively constructs a restricted existential quantification.

• list_mk_resq_forall : ((term # term) list # term) -> term)

Iteratively constructs a restricted universal quantification.

• dest_resq_abstract : (term -> (term # term # term))

Breaks apart a restricted abstract term into quantified variable, predicate
and body.

3



• dest_resq_exists : (term -> (term # term # term))

Breaks apart a restricted existentially quantified term into quantified vari-
able, predicate and body.

• dest_resq_forall : (term -> (term # term # term))

Breaks apart a restricted universally quantified term into quantified vari-
able, predicate and body.

• dest_resq_select : (term -> (term # term # term))

Breaks apart a restricted choice quantified term into quantified variable,
predicate and body.

• strip_resq_exists : (term -> ((term # term) list # term))

Iteratively breaks apart a restricted existenially quantified term.

• strip_resq_forall : (term -> ((term # term) list # term))

Iteratively breaks apart a restricted universally quantified term.

• is_resq_abstract : (term -> bool)

Tests a term to see if it is a restricted abstraction.

• is_resq_exists : (term -> bool)

Tests a term to see if it is a restricted existential quantification.

• is_resq_forall : (term -> bool)

Tests a term to see if it is a restricted universal quantification.

• is_resq_select : (term -> bool)

Tests a term to see if it is a restricted choice quantification.

Derived rules

• RESQ_GEN : ((term # term) -> thm -> thm)

Generalizes the conclusion of a theorem to a restricted universal quantifi-
cation.

• RESQ_GENL : ((term # term) list -> thm -> thm)

Generalizes zero or more variables to restricted universal quantification
in the conclusion of a theorem.

• RESQ_GEN_ALL : (thm -> thm)

Generalizes the conclusion of a theorem over its own assumptions.

• RESQ_HALF_EXISTS : (thm -> thm)

Strip a restricted existential quantification in the conclusion of a theorem.

4



• RESQ_HALF_SPEC : (thm -> thm)

Strip a restricted universal quantification in the conclusion of a theorem.

• RESQ_MATCH_MP : (thm -> thm -> thm)

Eliminating a restricted universal quatification with automatic matching.

• RESQ_REWR_CANON : thm -> thm

Transform a theorem into a form accepted for rewriting

• RESQ_SPEC : (term -> thm -> thm)

Specializes the conclusion of a restricted universally quantified theorem.

• RESQ_SPECL : (term list -> thm -> thm)

Specializes zero or more variables in the conclusion of a restricted univer-
sally quantified theorem.

• RESQ_SPEC_ALL : (thm -> thm)

Specializes the conclusion of a theorem with its own quantified variables.

Conversions

• AND_RESQ_FORALL_CONV : conv

Moves a restricted universal quantification out a conjunction.

• IMP_RESQ_FORALL_CONV : conv

Converts an implication to a restricted universal quantification.

• LIST_RESQ_FORALL_CONV : conv

Converts restricted universal quantifications iteratively to implications.

• RESQ_EXISTS_CONV : conv

Converts a restricted existential quantification to a conjunction.

• RESQ_FORALL_AND_CONV : conv

Splits a restricted universal quantification across a conjunction.

• RESQ_FORALL_CONV : conv

Converts a restricted universal quantification to an implication.

• RESQ_FORALL_SWAP_CONV : conv

Changes the order of two restricted universal quantifications.

• RESQ_REWRITE1_CONV : thm list -> thm -> conv

Rewriting conversion with restricted universally quantified theorem.

5



Tactics

• RESQ_GEN_TAC : tactic

Strips the outermost restricted universal quantifier from the conclusion of
a goal.

• RESQ_HALF_GEN_TAC : tactic

Strips the outermost restricted universal quantifier from the conclusion of
a goal.

• RESQ_EXISTS_TAC : term -> tactic

Strips the outermost restricted extistential quantifier from the conclusion
of a goal.

• RESQ_IMP_RES_TAC : thm_tactic

REpeatedly resolves a restricted univerally quantified theorem with the
assumptions of a goal.

• RESQ_IMP_RES_THEN : thm_tactical

Resolves a restricted univerally quantified theorem with the assumptions
of a goal.

• RESQ_RES_TAC : tactic

Enriches assumptions by repeatedly resolving restricted universal quan-
tifications in them against the others.

• RESQ_RES_THEN : thm_tactic -> tactic

Resolves all restricted univerally quantified assumptions against other as-
sumptions of a goal.

• RESQ_REWRITE1_TAC : thm_tactic

Rewriting with restricted universally quantified theorem.

Constant definition

• new_binder_resq_definition : ((string # term) -> thm)

Declare a new binder and install a definitional axiom in the current theory.

• new_infix_resq_definition : ((string # term) -> thm)

Declare a new infix constant and install a definitional axiom in the current
theory.

• new_resq_definition : ((string # term) -> thm)

Declare a new constant and install a definitional axiom in the current
theory.

6


