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Chapter 1

The res quan Library

The res quan library provides some basic facilities for working with restricted quantifi-
cations. It consists of a single theory res_quan.th, which contains a number of theo-
rems about the properties of some restricted quantifiers, and a set of ML functions for
dealing with these quantifiers. It also contains some conditional rewriting tools which
can be loaded as a separate library part.

The description in this chapter begins with a brief introduction to the syntax for re-
stricted quantification. This is followed by an overview of the ML functions available in
the library and a description of the theory res_quan.th. A complete reference manual
for all ML functions appears in Chapter 2. The last chapter lists all theorems in the
res_quan.th.

1.1 Syntax for restricted quantification

Since Version 2.0, HOL provides parser and pretty printer support for restricted quan-
tification. This notation allows terms of the form

Q x :: P. t[x],

where Q is a quantifier and if x : α then P can be any term of type α→bool; this denotes
the quantification of x over those values satisfying P . The qualifier :: can be used with
\ and any binder, including user defined ones. The appropriate meanings are predefined
for \ and the built-in binders !, ? and @. This syntax automatically translates as follows:

\v::P.tm <----> RES ABSTRACT P (\v.tm)

!v::P.tm <----> RES FORALL P (\v.tm)

?v::P.tm <----> RES EXISTS P (\v.tm)

@v::P.tm <----> RES SELECT P (\v.tm)

The constants RES ABSTRACT, RES FORALL, RES EXISTS and RES SELECT are de-
fined in the theory bool to provide semantics for these restricted quantifiers as follows:

1



2 Chapter 1. The res quan Library

RES_ABSTRACT P tm = \x:*. (P x => tm x | ARB:**)

RES_FORALL P tm = !x:*. P x ==> tm x

RES_EXISTS P tm = ?x:*. P x /\ tm x

RES_SELECT P tm = @x:*. P x /\ tm x

where the constant ARB is defined in the theory bool by:

ARB = @x:*. T

User-defined binders can also have restricted forms, which are set up with the func-
tion:

associate_restriction : (string # string) -> *

If B is the name of a binder and RES_B is the name of a suitable constant (which must
be explicitly defined), then executing:

associate_restriction(‘B‘, ‘RES_B‘)

will cause the parser and pretty-printer to support:

B v::P. tm <----> RES_B P (\v. tm)

Note that associations between user defined binders and their restrictions are not stored
in theory files, so they have to be set up for each HOL session (e.g. with a hol-init.ml

initialization file).
The flag print_restrict has default true, but if set to false will disable the pretty

printing. This is useful for seeing what the semantics of particular restricted abstractions
are. Here is an example session:

1#"!x y::P. x<y";;
"!x y :: P. x < y" : term

#set_flag(‘print_restrict‘, false);;
true : bool

#"!x y::P. x<y";;
"RES_FORALL P(\x. RES_FORALL P(\y. x < y))" : term

#"?(x,y) p::(\(m,n).m<n). p=(x,y)";;
"RES_EXISTS
(\(m,n). m < n)
(\(x,y). RES_EXISTS(\(m,n). m < n)(\p. p = x,y))"
: term

#"\x y z::P.[0;x;y;z]";;
"RES_ABSTRACT P(\x. RES_ABSTRACT P(\y. RES_ABSTRACT P(\z. [0;x;y;z])))"
: term



1.2. The theory res quan.th 3

The syntax for restricted quantification provides a method of simulating subtypes
and dependent types; the qualifying predicate P can be an arbitrary term containing
parameters. For example: !w::Word(n). t[w], for a suitable constant Word, simulates a
quantification over the ‘type’ of n-bit words.1

1.2 The theory res quan.th

This theory contains a small number of theorems about the restricted universal quanti-
fier and restricted existential quantifier. The following four theorems state the distribu-
tivity property of these quantifiers across conjunction and disjunction.

RESQ_FORALL_CONJ_DIST

|- !P Q R.

(!(i:*) :: P. (Q i /\ R i)) = (!i :: P. Q i) /\ (!i :: P. R i)

RESQ_FORALL_DISJ_DIST

|- !P Q R.

(!(i:*) :: \i. P i \/ Q i. R i) = (!i :: P. R i) /\ (!i :: Q. R i)

RESQ_EXISTS_DISJ_DIST

|- !P Q R.

(?(i:*) :: P. (Q i \/ R i)) = (?i :: P. Q i) \/ (?i :: P. R i)

RESQ_DISJ_EXISTS_DIST

|- !P Q R.

(?(i:*) :: \i. P i \/ Q i. R i) = (?i :: P. R i) \/ (?i :: Q. R i)

The theorems RESQ_FORALL_REORDER and RESQ_EXISTS_REORDER state the reordering
property of these quantifiers.

RESQ_FORALL_REORDER

|- !(P:*->bool) (Q:**->bool) (R:*->**->bool).

(!i :: P. !j :: Q. R i j) = (!j :: Q. !i :: P. R i j)

RESQ_EXISTS_REORDER

|- !(P:*->bool) (Q:**->bool) (R:*->**->bool).

(?i :: P. ?j :: Q. R i j) = (?j :: Q. ?i :: P. R i j)

The theorem RESQ_FORALL_FORALL states the reordering property of the restricted uni-
versal quantifier and the ordinary universal quantifier.

1This approach is used in the library word to model bit vectors.
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RESQ_FORALL_FORALL

|- !(P:*->bool) (R:*->**->bool) x.

(!x. !i :: P. R i x) = (!i :: P. !x. R i x)

1.3 ML functions

The ML functions available when this library is loaded can be divided into six groups:
conditional rewriting tools, syntax functions, derived rules, conversions, tactics, and
constant definitions. They will be described in separate subsections.

1.3.1 Conditional rewriting tools

The conditional rewriting tools are not specific for restricted quantifiers. They are avail-
able as a separate part of the library which can be loaded into HOL without loading
other functions in this library. This is done by the command

load_library ‘res_quan:cond_rewrite‘;;

The conditional rewriting tools consists of a simple tactic which is for use in goal-
directed proof and a simple conversion which is usually used in forward proof.

1.3.1.1 Conditional theorems

Both the conditional rewriting tactic and conversion require a theorem to do the rewrit-
ing. This theorem should be an implication whose consequence is an equation, i.e., it
should be of the following form:

A ` ∀x1 . . . xn. P1 ⊃ . . . Pm ⊃ (Q[x1, . . . , xn] = R[x1, . . . , xn]) (1.1)

where x1, . . . , xn are the only variables that occur free in the left-hand side of the con-
clusion of the theorem but do not occur free in the assumptions. Futhermore, none of
the antecedents P1, . . . , Pn should be conjunctions. The idea of conditional rewriting is
that the antecedents of this input theorem are treated as conditions which have to be
satisfied before the equation Q[x1, . . . , xn] = R[x1, . . . , xn] can be used to rewrite a term.

The ML function COND_REWR_CANON transforms a theorem into the canonical form in 1.1.
The antecedents of the input theorem to COND_REWR_CANON may contain conjunctions and
quantification. For example, suppose that th is the theorem

A ` ∀x. P1 x ⊃ ∀y z.(P2 y ∧ P3 z) ⊃ (∀t.Q[x, y, z, t] = R[x, y, z, t]) (1.2)

then COND_REWR_CANON th returns the theorem

A ` ∀x y z t. P1 x ⊃ P2 y ⊃ P3 z ⊃ (Q[x, y, z, t] = R[x, y, z, t])

That is all universal quantifications are moved to the outer most level and conjunctions
in the antecedents are converted to implication.



1.3. ML functions 5

1.3.1.2 Conditional rewriting tactic

The basic conditional rewriting tactic is

COND_REWRITE1_TAC : thm_tactic

Suppose th is the theorem in 1.2, the effects of applying the tactic COND_REWRITE1_TAC th

to the goal (asm, gl) is that

• all instances of Q in the goal gl are replaced by corresponding instances of R, and

• the instances of the antecedents Pi which do not appear in the assumption asm

become new subgoals.

This tactic is implemented using a lower level tactic COND_REWR_TAC. The theorem
th supplied to COND_REWRITE1_TAC is processed by COND_REWR_CANON first. The resulting
theorem is passed to the low level conditional rewriting tactic COND_REWR_TAC together
with a search function search_top_down. This function determines how to find the in-
stantiations. By calling COND_REWR_TAC with different search function, other conditional
rewriting strategy can be implemented. The details of the tactics and search functions
can be found in the reference entries in Chapter 2. Note that the 1 in the name of the
tactic indicates that it takes only a single theorem as its argument.

1.3.1.3 Conditional rewriting conversion

The basic conditional rewriting conversion is

COND_REWRITE1_CONV : (thm list -> thm -> conv)

which performs conversion in a way similar to the conditional rewriting tactics. The
difference is that the instances of the antecedents are added to the list of assumptions
of the resulting theorem. The extra argument to this conversion is a list of theorems
which are used to eliminate instances of the antecedents from the assumptions.

1.3.2 Syntax functions

There are term constructors, term destructors and term testers for the four built-in
restricted quantifiers. There are also iterative constructors and destructors for the re-
stricted universal and existential quantifiers. Their names and types are:
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mk_resq_forall = - : ((term # term # term) -> term)
mk_resq_exists = - : ((term # term # term) -> term)
mk_resq_select = - : ((term # term # term) -> term)
mk_resq_abstract = - : ((term # term # term) -> term)
list_mk_resq_forall = - : (((term # term) list # term) -> term)
list_mk_resq_exists = - : (((term # term) list # term) -> term)

dest_resq_forall = - : (term -> (term # term # term))
dest_resq_exists = - : (term -> (term # term # term))
dest_resq_select = - : (term -> (term # term # term))
dest_resq_abstract = - : (term -> (term # term # term))
strip_resq_forall = - : (term -> ((term # term) list # term))
strip_resq_exists = - : (term -> ((term # term) list # term))

is_resq_forall = - : (term -> bool)
is_resq_exists = - : (term -> bool)
is_resq_select = - : (term -> bool)
is_resq_abstract = - : (term -> bool)

1.3.3 Derived rules

The introduction and elimination rules for the restricted universal quantifier are RESQ_SPEC

and RESQ_GEN which are in analogy to the rules for the universal quantifier. The specifi-
cation of these rules are:

Γ ` ∀x :: P.t[x]

Γ, P x′ ` t[x′/x]
RESQ SPEC "x’"

Γ, P x ` t[x]

Γ ` ∀x :: P.t[x]
RESQ GEN "x" "P"

There is an extra rule RESQ_HALF_SPEC which transform a restricted universal quantifica-
tion into its underlying semantic representation, namely an implication.

Γ ` ∀x :: P.t[x]

Γ ` ∀x.P x ⊃ t[x]
RESQ HALF SPEC

There are iterative versions of the introduction and elimination rules:

RESQ_SPECL = - : (term list -> thm -> thm)
RESQ_SPEC_ALL = - : (thm -> thm)

RESQ_GENL = - : (term list -> thm -> thm)
RESQ_GEN_ALL = - : (thm -> thm)

Since instantiation of a theorem is a very common operation, for convenience, the
following ML functions are provided to instantiate a theorem with a mixture of ordinary
and restricted universal quantifiers:
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GQSPEC = - : tm -> thm -> thm
GQSPECL : term list -> thm -> thm
GQSPEC_ALL : thm -> thm

The rule for eliminating restricted existential quantification is RESQ_HALF_EXISTS whose
specification is:

Γ ` ∃x :: P.t[x]

Γ ` ∃x.P x ∧ t[x]
RESQ HALF EXISTS

This function only transforms the restricted existential quantifier to an ordinary existen-
tial quantifier.

The function RESQ_MATCH_MP eliminates a restricted universal quantifier using an in-
stance of the condition. Its specification is:

Γ1 ` ∀x :: P.t[x] Γ2 ` P x′

Γ1 ∪ Γ2 ` t[x′/x]
RESQ MATCH MP

1.3.4 Conversions

There are a number of conversions for manipulating restricted universal quantification.
The conversion RESQ_FORALL_CONV converts a restricted universal quantification to its
underlying semantic representation, namely an implication. For example, evaluating
the ML expression RESQ_FORALL_CONV "!x :: P. t[x]" returns the following theorem:

` ∀x :: P.t[x] = ∀x.Px ⊃ t[x]

The ML function IMP_RESQ_FORALL_CONV performs the reverse conversion. The ML func-
tion LIST_RESQ_FORALL_CONV is an iterative version of RESQ_FORALL_CONV which converts
a term having multiple restricted universal quantifiers at the outer level.

The conversions RESQ_FORALL_AND_CONV and AND_RESQ_FORALL_CONV move the restricted
universal quantification in and out of a conjunction, respectively. The conversion
RESQ_FORALL_SWAP_CONV changes the order of two restricted universal quantifications.
For instance, evaluating the following ML expression

RESQ_FORALL_SWAP_CONV "!i :: P. !j :: Q. R"

returns the theorem:

` (∀i :: P.∀j :: Q.R) = (∀j :: Q.∀i :: P.R)

providing that i does not occur free in Q and j does not occur free in P .
The conversion RESQ_EXISTS_CONV transforms a restricted existential quantification to

its underlying semantic representation. For instance, RESQ_EXISTS_CONV "?x::P. t"

returns the theorem

` ∃x :: P.t = ∃x.Px ∧ t[x]
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A rewriting conversion RESQ_REWRITE1_CONV uses a restricted universal quantified equa-
tion to rewrite a term. For instance, if th is a theorem of the following form:

` ∀x :: P.u[x] = v[x]

and tm is a term containing some instances of u, then RESQ_REWRITE1_CONV ths th tm

will return the theorem

Γ ` tm = tm′

where tm′ is obtained by replacing all instances of u by corresponding instances of
v and Γ contains instances of P which cannot be eliminated by the theorems in the
list ths. This conversion is implemented using the conditional rewriting conversion
COND_REWRITE1_CONV.

1.3.5 Tactics

The simple tactics RESQ_GEN_TAC and RESQ_EXISTS_TAC are provided for stripping of a
restricted universal or existential quantifier, respectively. They reduce a restricted quan-
tified goal to a goal in the underlying semantic representation. They are in analogy to
GEN_TAC and EXISTS_TAC.

The resolution tactics and tactical listed below are in analogy to RES_TAC, IMP_RES_TAC,
RES_THEN and IMP_RES_THEN.

RESQ_RES_THEN : (thm_tactic -> tactic)
RESQ_IMP_RES_THEN : thm_tactical
RESQ_RES_TAC : tactic
RESQ_IMP_RES_TAC : thm_tactic

The theorem-tactic RESQ_IMP_RES_TAC uses a restricted universally quantified theorem as
if it is an implication to perform resolution. Similarly, the tactic RESQ_RES_TAC uses a re-
stricted universally quantified assumption as if it is an implication to perform resolution
against other assumptions.

The theorem-tactic RESQ_REWRITE1_TAC uses a restricted universally quantified theo-
rem to perform conditional rewriting. For instance, if th is the following theorem

` ∀x :: P.u[x] = v[x]

then applying the tactic RESQ_REWRITE1_TAC th to a goal gl will reduce it to one or
more subgoals gl0, . . . , gln. The main subgoal gl0 is obtained by replacing instances
of u in gl with corresponding instances of v. The new subgoals are the instances of P
which do not occur in the assumption of gl.
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1.3.6 Constant definitions

This library provides support for defining constants whose arguments can be restricted
quantified variables. For example, one can defined a constant C by the following equa-
tion:

∀x1 :: P1. . . .∀xn :: Pn.

C y x1 . . . xn z = t[y, x1, . . . , xn, z]

The constant C may be an ordinary constant, or it may have either ‘infix’ or ‘binder’
status. The ML functions for defining restricted quantified constants are:

new_resq_definition : (string # term) -> thm
new_infix_resq_definition : (string # term) -> thm
new_binder_resq_definition : (string # term) -> thm

Suppose tm is the term shown above, evaluating the ML expression

new_resq_definition(‘C_DEF‘,tm)

will store the definition under the name C_DEF in the current theory. The definition is
returned as the value of the expression.
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Chapter 2

ML Functions in the res quan Library

This chapter provides documentation on all the ML functions that are made available in
HOL when the res_quan library is loaded. This documentation is also available online
via the help facility.

COND_REWRITE1_CONV

COND_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
A simple conditional rewriting conversion.

Description
COND_REWRITE1_CONV is a front end of the conditional rewriting conversion COND_REWR_CONV.
The input theorem should be in the following form

A |- !x11 ... . P1 ==> ... !xm1 ... . Pm ==> (!x ... . Q = R)

where each antecedent Pi itself may be a conjunction or disjunction. This theorem is
transformed to a standard form expected by COND_REWR_CONV which carries out the actual
rewriting. The transformation is performed by COND_REWR_CANON. The search function
passed to COND_REWR_CONV is search_top_down. The effect of applying the conversion
COND_REWRITE1_CONV ths th to a term tm is to derive a theorem

A’ |- tm = tm[R’/Q’]

where the right hand side of the equation is obtained by rewriting the input term tm with
an instance of the conclusion of the input theorem. The theorems in the list ths are used
to discharge the assumptions generated from the antecedents of the input theorem.

Failure
COND_REWRITE1_CONV ths th fails if th cannot be transformed into the required form by
COND_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot be
instantiated.

11
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Example
The following example illustrates a straightforward use of COND_REWRITE1_CONV. We use
the built-in theorem LESS_MOD as the input theorem.

#LESS_MOD;;
Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...
LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

#COND_REWRITE1_CONV [] LESS_MOD "2 MOD 3";;
2 < 3 |- 2 MOD 3 = 2

#let less_2_3 = REWRITE_RULE[LESS_MONO_EQ;LESS_0]
#(REDEPTH_CONV num_CONV "2 < 3");;
less_2_3 = |- 2 < 3

#COND_REWRITE1_CONV [less_2_3] LESS_MOD "2 MOD 3";;
|- 2 MOD 3 = 2

In the first example, an empty theorem list is supplied to COND_REWRITE1_CONV so the
resulting theorem has an assumption 2 < 3. In the second example, a list containing a
theorem |- 2 < 3 is supplied, the resulting theorem has no assumptions.

See also
COND_REWR_TAC, COND_REWRITE1_TAC, COND_REWR_CONV, COND_REWR_CANON,
search_top_down.

COND_REWRITE1_TAC

COND_REWRITE1_TAC : thm_tactic

Synopsis
A simple conditional rewriting tactic.

Description
COND_REWRITE1_TAC is a front end of the conditional rewriting tactic COND_REWR_TAC. The
input theorem should be in the following form

A |- !x11 ... . P1 ==> ... !xm1 ... . Pm ==> (!x ... . Q = R)

where each antecedent Pi itself may be a conjunction or disjunction. This theorem is
transformed to a standard form expected by COND_REWR_TAC which carries out the actual
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rewriting. The transformation is performed by COND_REWR_CANON. The search function
passed to COND_REWR_TAC is search_top_down. The effect of applying this tactic is to
substitute into the goal instances of the right hand side of the conclusion of the input
theorem Ri’ for the corresponding instances of the left hand side. The search is top-
down left-to-right. All matches found by the search function are substituted. New
subgoals corresponding to the instances of the antecedents which do not appear in the
assumption of the original goal are created. See manual page of COND_REWR_TAC for
details of how the instantiation and substitution are done.

Failure
COND_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function COND_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

Example
The following example illustrates a straightforward use of COND_REWRITE1_TAC. We use
the built-in theorem LESS_MOD as the input theorem.

#LESS_MOD;;
Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...
LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

We set up a goal

#g"2 MOD 3 = 2";;
"2 MOD 3 = 2"

() : void

and then apply the tactic

#e(COND_REWRITE1_TAC LESS_MOD);;
OK..
2 subgoals
"2 = 2"

[ "2 < 3" ]

"2 < 3"

() : void

See also
COND_REWR_TAC, COND_REWRITE1_CONV, COND_REWR_CONV, COND_REWR_CANON,
search_top_down.
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COND_REWR_CANON

COND_REWR_CANON : thm -> thm

Synopsis
Transform a theorem into a form accepted by COND_REWR_TAC.

Description
COND_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be an implication of the following form

!x1 ... xn. P1[xi] ==> ... ==> !y1 ... ym. Pr[xi,yi] ==>
(!z1 ... zk. u[xi,yi,zi] = v[xi,yi,zi])

where each antecedent Pi itself may be a conjunction or disjunction. The output theo-
rem will have all universal quantifications moved to the outer most level with possible
renaming to prevent variable capture, and have all antecedents which are a conjunction
transformed to implications. The output theorem will be in the following form

!x1 ... xn y1 ... ym z1 ... zk.
P11[xi] ==> ... ==> P1p[xi] ==> ... ==>
Pr1[xi,yi] ==> ... ==> Prq[x1,yi] ==> (u[xi,yi,zi] = v[xi,yi,zi])

Failure
This function fails if the input theorem is not in the correct form.

Example
COND_REWR_CANON transforms the built-in theorem CANCL_SUB into the form for conditional
rewriting:

#COND_REWR_CANON CANCEL_SUB;;
Theorem CANCEL_SUB autoloading from theory ‘arithmetic‘ ...
CANCEL_SUB = |- !p n m. p <= n /\ p <= m ==> ((n - p = m - p) = (n = m))

|- !p n m. p <= n ==> p <= m ==> ((n - p = m - p) = (n = m))

See also
COND_REWRITE1_TAC, COND_REWR_TAC, COND_REWRITE1_CONV, COND_REWR_CONV,
search_top_down.
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COND_REWR_CONV

COND_REWR_CONV : ((term -> term ->
((term # term) list # (type # type) list) list) -> thm -> conv)

Synopsis
A lower level conversion implementing simple conditional rewriting.

Description
COND_REWR_CONV is one of the basic building blocks for the implementation of the simple
conditional rewriting conversions in the HOL system. In particular, the conditional
term replacement or rewriting done by all the conditional rewriting conversions in this
library is ultimately done by applications of COND_REWR_CONV. The description given here
for COND_REWR_CONV may therefore be taken as a specification of the atomic action of
replacing equals by equals in a term under certain conditions that are used in all these
higher level conditional rewriting conversions.

The first argument to COND_REWR_CONV is expected to be a function which returns a list
of matches. Each of these matches is in the form of the value returned by the built-in
function match. It is used to search the input term for instances which may be rewritten.

The second argument to COND_REWR_CONV is expected to be an implicative theorem in
the following form:

A |- !x1 ... xn. P1 ==> ... Pm ==> (Q[x1,...,xn] = R[x1,...,xn])

where x1, ..., xn are all the variables that occur free in the left hand side of the conclusion
of the theorem but do not occur free in the assumptions.

The last argument to COND_REWR_CONV is the term to be rewritten.
If fn is a function and th is an implicative theorem of the kind shown above, then

COND_REWR_CONV fn th will be a conversion. When applying to a term tm, it will return a
theorem

P1’, ..., Pm’ |- tm = tm[R’/Q’]

if evaluating fn Q[x1,...,xn] tm returns a non-empty list of matches. The assumptions
of the resulting theorem are instances of the antecedents of the input theorem th. The
right hand side of the equation is obtained by rewriting the input term tm with instances
of the conclusion of the input theorem.
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Failure
COND_REWR_CONV fn th fails if th is not an implication of the form described above. If th
is such an equation, but the function fn returns a null list of matches, or the function fn

returns a non-empty list of matches, but the term or type instantiation fails.

Example
The following example illustrates a straightforward use of COND_REWR_CONV. We use the
built-in theorem LESS_MOD as the input theorem, and the function search_top_down as
the search function.

#LESS_MOD;;
Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...
LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

#search_top_down;;
- : (term -> term -> ((term # term) list # (type # type) list) list)

#COND_REWR_CONV search_top_down LESS_MOD "2 MOD 3";;
2 < 3 |- 2 MOD 3 = 2

See also
COND_REWR_TAC, COND_REWRITE1_TAC, COND_REWRITE1_CONV, COND_REWR_CANON,
search_top_down.

COND_REWR_TAC

COND_REWR_TAC :
(term -> term -> ((term * term) list * (type * type) list) list) ->
thm_tactic

Synopsis
A lower level tactic used to implement simple conditional rewriting tactic.

Description
COND_REWR_TAC is one of the basic building blocks for the implementation of conditional
rewriting in the HOL system. In particular, the conditional term replacement or rewrit-
ing done by all the built-in conditional rewriting tactics is ultimately done by applica-
tions of COND_REWR_TAC. The description given here for COND_REWR_TAC may therefore be
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taken as a specification of the atomic action of replacing equals by equals in the goal
under certain conditions that aare used in all these higher level conditional rewriting
tactics.

The first argument to COND_REWR_TAC is expected to be a function which returns a list
of matches. Each of these matches is in the form of the value returned by the built-in
function match. It is used to search the goal for instances which may be rewritten.

The second argument to COND_REWR_TAC is expected to be an implicative theorem in
the following form:

A |- !x1 ... xn. P1 ==> ... Pm ==> (Q[x1,...,xn] = R[x1,...,xn])

where x1, ..., xn are all the variables that occur free in the left-hand side of the conclu-
sion of the theorem but do not occur free in the assumptions.

If fn is a function and th is an implicative theorem of the kind shown above, then
COND_REWR_TAC fn th will be a tactic which returns a list of subgoals if evaluating

fn Q[x1,...,xn] gl

returns a non-empty list of matches when applied to a goal (asm,gl).
Let ml be the match list returned by evaluating fn Q[x1,...,xn] gl. Each element in

this list is in the form of

([(e1,x1);...;(ep,xp)], [(ty1,vty1);...;(tyq,vtyq)])

which specifies the term and type instantiations of the input theorem th. Either the
term pair list or the type pair list may be empty. In the case that both lists are empty, an
exact match is found, i.e., no instantiation is required. If ml is an empty list, no match
has been found and the tactic will fail.

For each match in ml, COND_REWR_TAC will perform the following: 1) instantiate the
input theorem th to get

th’ = A |- P1’ ==> ... ==> Pm’ ==> (Q’ = R’)

where the primed subterms are instances of the corresponding unprimed subterms ob-
tained by applying INST_TYPE with [(ty1,vty1);...;(tyq,vtyq)] and then INST with
[(e1,x1);...;(ep,xp)]; 2) search the assumption list asm for occurrences of any an-
tecedents P1’, ..., Pm’; 3) if all antecedents appear in asm, the goal gl is reduced to gl’

by substituting R’ for each free occurrence of Q’, otherwise, in addition to the substi-
tution, all antecedents which do not appear in asm are added to it and new subgoals
corresponding to these antecedents are created. For example, if Pk’, ..., Pm’ do not
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appear in asm, the following subgoals are returned:

asm ?- Pk’ ... asm ?- Pm’ {asm,Pk’,...,Pm’} ?- gl’

If COND_REWR_TAC is given a theorem th:

A |- !x1 ... xn y1 ... yk. P1 ==> ... ==> Pm ==> (Q = R)

where the variables y1, ..., ym do not occur free in the left-hand side of the conclusion
Q but they do occur free in the antecedents, then, when carrying out Step 2 described
above, COND_REWR_TAC will attempt to find instantiations for these variables from the
assumption asm. For example, if x1 and y1 occur free in P1, and a match is found
in which e1 is an instantiation of x1, then P1’ will become P1[e1/x1, y1]. If a term
P1’’ = P1[e1,e1’/x1,y1] appears in asm, th’ is instantiated with (e1’, y1) to get

th’’ = A |- P1’’ ==> ... ==> Pm’’ ==> (Q’ = R’’)

then R’’ is substituted into gl for all free occurrences of Q’. If no consistent instantiation
is found, then P1’ which contains the uninstantiated variable y1 will become one of the
new subgoals. In such a case, the user has no control over the choice of the variable yi.

Failure

COND_REWR_TAC fn th fails if th is not an implication of the form described above. If th
is such an equation, but the function fn returns a null list of matches, or the function fn

returns a non-empty list of matches, but the term or type instantiation fails.

Example

The following example illustrates a straightforward use of COND_REWR_TAC. We use the
built-in theorem LESS_MOD as the input theorem, and the function search_top_down as
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the search function.

#LESS_MOD;;
Theorem LESS_MOD autoloading from theory ‘arithmetic‘ ...
LESS_MOD = |- !n k. k < n ==> (k MOD n = k)

|- !n k. k < n ==> (k MOD n = k)

#search_top_down;;
- : (term -> term -> ((term # term) list # (type # type) list) list)

We set up a goal

#g"2 MOD 3 = 2";;
"2 MOD 3 = 2"

() : void

and then apply the tactic

#e(COND_REWR_TAC search_top_down LESS_MOD);;
OK..
2 subgoals
"2 = 2"

[ "2 < 3" ]

"2 < 3"

() : void

See also
COND_REWRITE1_TAC, COND_REWRITE1_CONV, COND_REWR_CONV, COND_REWR_CANON,
search_top_down.

dest_resq_abstract

dest_resq_abstract : (term -> (term # term # term))

Synopsis
Breaks apart a restricted abstract term into the quantified variable, predicate and body.
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Description
dest_resq_abstract is a term destructor for restricted abstraction:

dest_resq_abstract "\var::P. t"

returns ("var","P","t").

Failure
Fails with dest_resq_abstract if the term is not a restricted abstraction.

See also
mk_resq_abstract, is_resq_abstract, strip_resq_abstract.

dest_resq_exists

dest_resq_exists : (term -> (term # term # term))

Synopsis
Breaks apart a restricted existentially quantified term into the quantified variable, pred-
icate and body.

Description
dest_resq_exists is a term destructor for restricted existential quantification:

dest_resq_exists "?var::P. t"

returns ("var","P","t").

Failure
Fails with dest_resq_exists if the term is not a restricted existential quantification.

See also
mk_resq_exists, is_resq_exists, strip_resq_exists.

dest_resq_forall

dest_resq_forall : (term -> (term # term # term))
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Synopsis
Breaks apart a restricted universally quantified term into the quantified variable, predi-
cate and body.

Description
dest_resq_forall is a term destructor for restricted universal quantification:

dest_resq_forall "!var::P. t"

returns ("var","P","t").

Failure
Fails with dest_resq_forall if the term is not a restricted universal quantification.

See also
mk_resq_forall, is_resq_forall, strip_resq_forall.

dest_resq_select

dest_resq_select : (term -> (term # term # term))

Synopsis
Breaks apart a restricted choice quantified term into the quantified variable, predicate
and body.

Description
dest_resq_select is a term destructor for restricted choice quantification:

dest_resq_select "@var::P. t"

returns ("var","P","t").

Failure
Fails with dest_resq_select if the term is not a restricted choice quantification.

See also
mk_resq_select, is_resq_select, strip_resq_select.

GQSPECL

GQSPECL : (term list -> thm -> thm)
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Synopsis
Specializes zero or more variables in the conclusion of a universally quantified theorem.

Description
When applied to a term list [u1;...;un] and a theorem whose conclusion has zero or
more ordinary or restricted universal quantifications, the inference rule GQSPECL returns
a theorem which is the result of specializing the quantified variables. The substitutions
are made sequentially left-to-right in the same way as for GQSPEC, with the same sort
of alpha-conversions applied to the body of the conclusion. The two kinds of universal
quantification can be mixed.

A |- !x1::P1. ... !xk. ... !xn::Pn. t
-------------------------------------------------- GQSPECL "[u1;...;un]"
A,P1 u1,...,Pn un |- t[u1/x1]...[uk/xk]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of GQSPECL
has no effect.

Failure
Fails if one of the specialization of the quantified variable in the original theorem fails.

See also
GQSPEC, GQSPEC_ALL, SPECL, GENL, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL,
RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL.

GQSPEC_ALL

GQSPEC_ALL : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with its own quantified variables.

Description
When applied to a theorem whose conclusion has zero or more ordinary or restricted
universal quantifications, the inference rule GQSPEC_ALL returns a theorem which is the
result of specializing the quantified variables with its own variables. If this will cause
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name clashes, a variant of the variable is used instead. Normally xi’ is just xi, in which
case GQSPEC_ALL simply removes all universal quantifiers.

A |- !x1::P1. ...!xk. ... !xn::Pn. t
------------------------------------------------------ GQSPEC_ALL
A,P1 x1,...,Pn xn |- t[x1’/x1]...[xk’/xk]...[xn’/xn]

Failure
Never fails.

See also
GQSPEC, GQSPECL, SPEC, SPECL, SPEC_ALL, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL,
RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL.

IMP_RESQ_FORALL_CONV

IMP_RESQ_FORALL_CONV : conv

Synopsis
Converts an implication to a restricted universal quantification.

Description
When applied to a term of the form !x.P x ==> Q, the conversion IMP_RESQ_FORALL_CONV

returns the theorem:

|- (!x. P x ==> Q) = !x::P. Q

Failure
Fails if applied to a term not of the form !x.P x ==> Q.

See also
RESQ_FORALL_CONV, LIST_RESQ_FORALL_CONV.

is_resq_abstract

is_resq_abstract : (term -> bool)
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Synopsis
Tests a term to see if it is a restricted abstraction.

Description
is_resq_abstract "\var::P. t" returns true. If the term is not a restricted abstraction
the result is false.

Failure
Never fails.

See also
mk_resq_abstract, dest_resq_abstract.

is_resq_exists

is_resq_exists : (term -> bool)

Synopsis
Tests a term to see if it is a restricted existential quantification.

Description
is_resq_exists "?var::P. t" returns true. If the term is not a restricted existential
quantification the result is false.

Failure
Never fails.

See also
mk_resq_exists, dest_resq_exists.

is_resq_forall

is_resq_forall : (term -> bool)

Synopsis
Tests a term to see if it is a restricted universal quantification.
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Description
is_resq_forall "!var::P. t" returns true. If the term is not a restricted universal
quantification the result is false.

Failure
Never fails.

See also
mk_resq_forall, dest_resq_forall.

is_resq_select

is_resq_select : (term -> bool)

Synopsis
Tests a term to see if it is a restricted choice quantification.

Description
is_resq_select "@var::P. t" returns true. If the term is not a restricted choice quan-
tification the result is false.

Failure
Never fails.

See also
mk_resq_select, dest_resq_select.

list_mk_resq_exists

list_mk_resq_exists : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted existential quantification.

Description

list_mk_resq_exists([("x1","P1");...;("xn","Pn")],"t")

returns "?x1::P1. ... ?xn::Pn. t".
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Failure
Fails with list_mk_resq_exists if the first terms xi in the pairs are not a variable or if
the second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If
the list is empty the type of t can be anything.

See also
strip_resq_exists, mk_resq_exists.

list_mk_resq_forall

list_mk_resq_forall : ((term # term) list # term) -> term)

Synopsis
Iteratively constructs a restricted universal quantification.

Description

list_mk_resq_forall([("x1","P1");...;("xn","Pn")],"t")

returns "!x1::P1. ... !xn::Pn. t".

Failure
Fails with list_mk_resq_forall if the first terms xi in the pairs are not a variable or if
the second terms Pi in the pairs and t are not of type ":bool" if the list is non-empty. If
the list is empty the type of t can be anything.

See also
strip_resq_forall, mk_resq_forall.

LIST_RESQ_FORALL_CONV

LIST_RESQ_FORALL_CONV : conv

Synopsis
Converts restricted universal quantifications iteratively to implications.
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Description
When applied to a term whose outer level is a series of restricted universal quantifica-
tions, the conversion LIST_RESQ_FORALL_CONV returns the theorem:

|- !x1::P1. ... !xn::Pn. Q = (!x1...xn. P1 x1 ==> ... ==> Pn xn ==> Q)

Failure
Never fails.

See also
IMP_RESQ_FORALL_CONV, RESQ_FORALL_CONV.

mk_resq_abstract

mk_resq_abstract : ((term # term # term) -> term)

Synopsis
Term constructor for restricted abstraction.

Description
mk_resq_abstract("var","P","t") returns "\var :: P . t".

Failure
Fails with mk_resq_abstract if the first term is not a variable or if P and t are not of type
":bool".

See also
dest_resq_abstract, is_resq_abstract, list_mk_resq_abstract.

mk_resq_exists

mk_resq_exists : ((term # term # term) -> term)

Synopsis
Term constructor for restricted existential quantification.
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Description
mk_resq_exists("var","P","t") returns "?var :: P . t".

Failure
Fails with mk_resq_exists if the first term is not a variable or if P and t are not of type
":bool".

See also
dest_resq_exists, is_resq_exists, list_mk_resq_exists.

mk_resq_forall

mk_resq_forall : ((term # term # term) -> term)

Synopsis
Term constructor for restricted universal quantification.

Description
mk_resq_forall("var","P","t") returns "!var :: P . t".

Failure
Fails with mk_resq_forall if the first term is not a variable or if P and t are not of type
":bool".

See also
dest_resq_forall, is_resq_forall, list_mk_resq_forall.

mk_resq_select

mk_resq_select : ((term # term # term) -> term)

Synopsis
Term constructor for restricted choice quantification.

Description
mk_resq_select("var","P","t") returns "@var :: P . t".
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Failure
Fails with mk_resq_select if the first term is not a variable or if P and t are not of type
":bool".

See also
dest_resq_select, is_resq_select, list_mk_resq_select.

new_binder_resq_definition

new_binder_resq_definition : ((string # term) -> thm)

Synopsis
Declare a new binder and install a definitional axiom in the current theory.

Description
The function new_binder_resq_definition provides a facility for definitional extensions
to the current theory. The new constant defined using this function may take arguments
which are restricted quantified. The function new_binder_resq_definition takes a pair
argument consisting of the name under which the resulting definition will be saved in
the current theory segment, and a term giving the desired definition. The value returned
by new_binder_resq_definition is a theorem which states the definition requested by
the user.

Let x_1,...,x_n be distinct variables. Evaluating

new_binder_resq_definition (‘name‘,
"!x_i::P_i. ... !x_j::P_j. B x_1 ... x_n = t")

where B is not already a constant, i is greater or equal to 1 and i <= j <= n, declares
B to be a new constant in the current theory with this definition as its specification. This
constant specification is returned as a theorem with the form

|- !x_i::P_i. ... !x_j::P_j. !x_k .... B x_1 ... x_n = t

where the variables x_k are the free variables occurring on the left hand side of the
definition and are not restricted quantified. This theorem is saved in the current theory
under (the name) name.

The constant B defined by this function will have the binder status only after the
definition has been processed. It is therefore necessary to use the constant in normal
prefix position when making the definition.
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If the restricting predicates P_l contains free occurrence of variable(s) of the left hand
side, the constant B will stand for a family of functions.

Failure
new_binder_resq_definition fails if called when HOL is not in draft mode. It also fails
if there is already an axiom, definition or specification of the given name in the current
theory segment; if ‘B‘ is already a constant in the current theory or is not an allowed
name for a constant; if t contains free variables that do not occur in the left hand side,
or if any variable occurs more than once in x_1, ..., x_n. Finally, failure occurs if there
is a type variable in x_1, ..., x_n or t that does not occur in the type of B.

See also
new_infix_resq_definition, new_resq_definition, new_definition,
new_specification.

new_infix_resq_definition

new_infix_resq_definition : ((string # term) -> thm)

Synopsis
Declare a new infix constant and install a definitional axiom in the current theory.

Description
The function new_infix_resq_definition provides a facility for definitional extensions
to the current theory. The new constant defined using this function may take arguments
which are restricted quantified. The function new_infix_resq_definition takes a pair
argument consisting of the name under which the resulting definition will be saved in
the current theory segment, and a term giving the desired definition. The value returned
by new_infix_resq_definition is a theorem which states the definition requested by the
user.

Let x_1,...,x_n be distinct variables. Evaluating

new_infix_resq_definition (‘name‘,
"!x_i::P_i. ... !x_j::P_j. IX x_1 ... x_n = t")

where IX is not already a constant, i is greater or equal to 1 and i <= j <= n, declares
IX to be a new constant in the current theory with this definition as its specification. This
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constant specification is returned as a theorem with the form

|- !x_i::P_i. ... !x_j::P_j. !x_k .... IX x_1 ... x_n = t

where the variables x_k are the free variables occurring on the left hand side of the
definition and are not restricted quantified. This theorem is saved in the current theory
under (the name) name.

The constant IX defined by this function will have the infix status only after the defi-
nition has been processed. It is therefore necessary to use the constant in normal prefix
position when making the definition.

If the restricting predicates P_l contains free occurrence of variable(s) of the left hand
side, the constant IX will stand for a family of functions.

Failure

new_infix_resq_definition fails if called when HOL is not in draft mode. It also fails if
there is already an axiom, definition or specification of the given name in the current
theory segment; if ‘IX‘ is already a constant in the current theory or is not an allowed
name for a constant; if t contains free variables that do not occur in the left hand side,
or if any variable occurs more than once in x_1, ..., x_n. Finally, failure occurs if there
is a type variable in x_1, ..., x_n or t that does not occur in the type of IX.
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Example
A function for indexing list element starting from 1 can be defined as follows:

#let IXEL1_DEF = new_infix_resq_definition (‘IXEL1_DEF‘,
# "!n:: (\k. 0 < k). IXEL1 n (l:* list) = EL (n -1) l");;
IXEL1_DEF = |- !n :: \k. 0 < k. !l. IXEL1 n l = EL(n - 1)l

One can then use IXEL1 as an infix and do the following proof:

#g"2 IXEL1 [1;2;3] = 2";;
"2 IXEL1 [1;2;3] = 2"

#e(RESQ_REWRITE1_TAC IXEL1_DEF THENL[
# CONV_TAC(ONCE_DEPTH_CONV num_CONV) THEN MATCH_ACCEPT_TAC LESS_0;
# CONV_TAC((LHS_CONV o LHS_CONV)(REDEPTH_CONV num_CONV))
# THEN REWRITE_TAC[SUB_MONO_EQ;SUB_0;EL;HD;TL]]);;
OK..
goal proved
|- 2 IXEL1 [1;2;3] = 2

Previous subproof:
goal proved
() : void

See also
new_binder_resq_definition, new_resq_definition, new_definition,
new_specification.

new_resq_definition

new_resq_definition : ((string # term) -> thm)

Synopsis
Declare a new constant and install a definitional axiom in the current theory.

Description
The function new_resq_definition provides a facility for definitional extensions to the
current theory. The new constant defined using this function may take arguments
which are restricted quantified. The function new_resq_definition takes a pair argu-
ment consisting of the name under which the resulting definition will be saved in the
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current theory segment, and a term giving the desired definition. The value returned
by new_resq_definition is a theorem which states the definition requested by the user.

Let x_1,...,x_n be distinct variables. Evaluating

new_resq_definition (‘name‘,
"!x_i::P_i. ... !x_j::P_j. C x_1 ... x_n = t")

where C is not already a constant, i is greater or equal to 1 and i <= j <= n, declares C

to be a new constant in the current theory with this definition as its specification. This
constant specification is returned as a theorem with the form

|- !x_i::P_i. ... !x_j::P_j. !x_k .... C x_1 ... x_n = t

where the variables x_k are the free variables occurring on the left hand side of the
definition and are not restricted quantified. This theorem is saved in the current theory
under (the name) name.

If the restricting predicates P_l contains free occurrence of variable(s) of the left hand
side, the constant C will stand for a family of functions.

Failure
new_resq_definition fails if called when HOL is not in draft mode. It also fails if there
is already an axiom, definition or specification of the given name in the current theory
segment; if ‘C‘ is already a constant in the current theory or is not an allowed name
for a constant; if t contains free variables that do not occur in the left hand side, or if
any variable occurs more than once in x_1, ..., x_n. Finally, failure occurs if there is
a type variable in x_1, ..., x_n or t that does not occur in the type of C.

Example
A function for indexing list elements starting from 1 can be defined as follows:

#new_resq_definition (‘EL1_DEF‘,
# "!n:: (\k. 0 < k). EL1 n (l:* list) = EL (n - 1) l");;
|- !n :: \k. 0 < k. !l. EL1 n l = EL(n - 1)l

The following example shows how a family of constants may be defined if the restrict-
ing predicate involves free variable on the left hand side of the definition.

#new_resq_definition (‘ELL_DEF‘,
# "!n:: (\k. k < (LENGTH l)). ELL n (l:* list) = EL n l");;
|- !l. !n :: \k. k < (LENGTH l). !l’. ELL l n l’ = EL n l’

See also
new_resq_binder_definition, new_resq_infix_definition, new_definition,
new_specification.
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RESQ_EXISTS_CONV

RESQ_EXISTS_CONV : conv

Synopsis
Converts a restricted existential quantification to a conjunction.

Description
When applied to a term of the form ?x::P. Q[x], the conversion RESQ_EXISTS_CONV re-
turns the theorem:

|- ?x::P. Q[x] = (?x. P x /\ Q[x])

which is the underlying semantic representation of the restricted existential quantifica-
tion.

Failure
Fails if applied to a term not of the form ?x::P. Q.

See also
RESQ_FORALL_CONV, RESQ_EXISTS_TAC.

RESQ_EXISTS_TAC

RESQ_EXISTS_TAC : term -> tactic

Synopsis
Strips the outermost restricted existential quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- ?x::P. t, the tactic RESQ_EXISTS_TAC reduces it to a new
subgoal A ?- P x’ /\ t[x’/x] where x’ is a variant of x chosen to avoid clashing with
any variables free in the goal’s assumption list. Normally x’ is just x.

A ?- ?x::P. t
====================== RESQ_EXISTS_TAC
A ?- P x’ /\ t[x’/x]

Failure
Fails unless the goal’s conclusion is a restricted extistential quantification.
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See also
RESQ_HALF_EXISTS.

RESQ_FORALL_AND_CONV

RESQ_FORALL_AND_CONV : conv

Synopsis
Splits a restricted universal quantification across a conjunction.

Description
When applied to a term of the form !x::P. Q /\ R, the conversion RESQ_FORALL_AND_CONV

returns the theorem:

|- (!x::P. Q /\ R) = ((!x::P. Q) /\ (!x::P. R))

Failure
Fails if applied to a term not of the form !x::P. Q /\ R.

See also
AND_RESQ_FORALL_CONV.

RESQ_FORALL_CONV

RESQ_FORALL_CONV : conv

Synopsis
Converts a restricted universal quantification to an implication.

Description
When applied to a term of the form !x::P. Q, the conversion RESQ_FORALL_CONV returns
the theorem:

|- !x::P. Q = (!x. P x ==> Q)

which is the underlying semantic representation of the restricted universal quantifica-
tion.
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Failure
Fails if applied to a term not of the form !x::P. Q.

See also
IMP_RESQ_FORALL_CONV, LIST_RESQ_FORALL_CONV.

RESQ_FORALL_SWAP_CONV

RESQ_FORALL_SWAP_CONV : conv

Synopsis
Changes the order of two restricted universal quantifications.

Description
When applied to a term of the form !x::P. !y::Q. R, the conversion RESQ_FORALL_SWAP_CONV

returns the theorem:

|- (!x::P. !y::Q. R) = !y::Q. !x::P. R

providing that x does not occur free in Q and y does not occur free in P.

Failure
Fails if applied to a term not of the correct form.

See also
RESQ_FORALL_CONV.

RESQ_GEN

RESQ_GEN : ((term # term) -> thm -> thm)

Synopsis
Generalizes the conclusion of a theorem to a restricted universal quantification.

Description
When applied to a pair of terms x, P and a theorem A |- t, the inference rule RESQ_GEN

returns the theorem A |- !x::P. t, provided that P is a predicate taking an argument
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of the same type as x and that x is a variable not free in any of the assumptions except
P x if it occurs. There is no compulsion that x should be free in t or P x should be in the
assumptions.

A |- t
--------------- RESQ_GEN ("x","P") [where x is not free in A except P x]
A |- !x::P. t

Failure
Fails if x is not a variable, or if it is free in any of the assumptions other than P x.

See also
RESQ_GENL, RESQ_GEN_ALL, RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL.

RESQ_GENL

RESQ_GENL : ((term # term) list -> thm -> thm)

Synopsis
Generalizes zero or more variables to restricted universal quantification in the conclu-
sion of a theorem.

Description
When applied to a term-pair list [(x1,P1);...;(xn,Pn)] and a theorem A |- t, the in-
ference rule RESQ_GENL returns the theorem A |- !x1::P1. ... !xn::Pn. t, provided
none of the variables xi are free in any of the assumptions except in the corresponding
Pi. It is not necessary that any or all of the xi should be free in t.

A |- t
------------------------------ RESQ_GENL "[(x1,P1);...;(xn,Pn)]"
A |- !x1::P1. ... !xn::Pn. t [where no xi is free in A except in Pi]

Failure
Fails unless all the terms xi in the list are variables, none of which are free in the
assumption list except in Pi.

See also
RESQ_GEN, RESQ_GEN_ALL, RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL.
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RESQ_GEN_ALL

RESQ_GEN_ALL : (thm -> thm)

Synopsis
Generalizes the conclusion of a theorem over its own assumptions.

Description
When applied to a theorem A |- t, the inference rule RESQ_GEN_ALL returns the theorem
A’ |- !x1::P1. ...!xn::Pn. t, where the Pi xi are in the assumptions.

A |- t
------------------------------------------------ RESQ_GEN_ALL
A - (P1 x1,...,Pn xn) |- !x1::P1. ... !xn::Pn. t

Failure
Never fails.

See also
RESQ_GEN, RESQ_GENL, GEN_ALL, RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL.

RESQ_GEN_TAC

RESQ_GEN_TAC : tactic

Synopsis
Strips the outermost restricted universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x::P. t, the tactic RESQ_GEN_TAC reduces it to a new goal
A,P x’ ?- t[x’/x] where x’ is a variant of x chosen to avoid clashing with any variables
free in the goal’s assumption list. Normally x’ is just x.

A ?- !x::P. t
=================== RESQ_GEN_TAC
A,P x’ ?- t[x’/x]

Failure
Fails unless the goal’s conclusion is a restricted universal quantification.
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Uses
The tactic REPEAT RESQ_GEN_TAC strips away a series of restricted universal quantifiers,
and is commonly used before tactics relying on the underlying term structure.

See also
RESQ_HALF_GEN_TAC, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL, RESQ_SPEC, RESQ_SPECL,
RESQ_SPEC_ALL, GGEN_TAC, STRIP_TAC, GEN_TAC, X_GEN_TAC.

RESQ_HALF_EXISTS

RESQ_HALF_EXISTS : (thm -> thm)

Synopsis
Strip a restricted existential quantification from the conclusion of a theorem.

Description
When applied to a theorem A |- ?x::P. t, RESQ_HALF_EXISTS returns the theorem

A |- ?x. P x /\ t

i.e., it transforms the restricted existential quantification to its underlying semantic rep-
resentation.

A |- ?x::P. t
-------------------- RESQ_HALF_EXISTS
A |- ?x. P x ==> t

Failure
Fails if the theorem’s conclusion is not a restricted existential quantification.

See also
RESQ_EXISTS_TAC, EXISTS.

RESQ_HALF_GEN_TAC

RESQ_HALF_GEN_TAC : tactic
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Synopsis
Strips the outermost restricted universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !x::P. t, RESQ_GEN_TAC reduces it to A ?- !x. P x ==> t

which is the underlying semantic representation of the restricted universal quantifica-
tion.

A ?- !x::P. t
==================== RESQ_HALF_GEN_TAC
A ?- !x. P x ==> t

Failure
Fails unless the goal’s conclusion is a restricted universal quantification.

Uses
The tactic REPEAT RESQ_GEN_TAC strips away a series of restricted universal quantifiers,
and is commonly used before tactics relying on the underlying term structure.

See also
RESQ_GEN_TAC, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL, RESQ_SPEC, RESQ_SPECL,
RESQ_SPEC_ALL, GGEN_TAC, STRIP_TAC, GEN_TAC, X_GEN_TAC.

RESQ_HALF_SPEC

RESQ_HALF_SPEC : (thm -> thm)

Synopsis
Strip a restricted universal quantification in the conclusion of a theorem.

Description
When applied to a theorem A |- !x::P. t, the derived inference rule RESQ_HALF_SPEC

returns the theorem A |- !x. P x ==> t, i.e., it transforms the restricted universal quan-
tification to its underlying semantic representation.

A |- !x::P. t
-------------------- RESQ_HALF_SPEC
A |- !x. P x ==> t

Failure
Fails if the theorem’s conclusion is not a restricted universal quantification.
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See also
RESQ_SPEC, RESQ_SPECL, RESQ_SPEC_ALL, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL.

RESQ_IMP_RES_TAC

RESQ_IMP_RES_TAC : thm_tactic

Synopsis
Repeatedly resolves a restricted universally quantified theorem with the assumptions of
a goal.

Description
The function RESQ_IMP_RES_TAC performs repeatedly resolution using a restricted quan-
tified theorem. It takes a restricted quantified theorem and transforms it into an impli-
cation. This resulting theorem is used in the resolution.

Given a theorem th, the theorem-tactic RESQ_IMP_RES_TAC applies RESQ_IMP_RES_THEN

repeatedly to resolve the theorem with the assumptions.

Failure
Never fails

See also
RESQ_IMP_RES_THEN, RESQ_RES_THEN, RESQ_RES_TAC, IMP_RES_THEN, IMP_RES_TAC,
MATCH_MP, RES_CANON, RES_TAC, RES_THEN.

RESQ_IMP_RES_THEN

RESQ_IMP_RES_THEN : thm_tactical

Synopsis
Resolves a restricted universally quantified theorem with the assumptions of a goal.

Description
The function RESQ_IMP_RES_THEN is the basic building block for resolution using a re-
stricted quantified theorem. It takes a restricted quantified theorem and transforms it
into an implication. This resulting theorem is used in the resolution.
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Given a theorem-tactic ttac and a theorem th, the theorem-tactical RESQ_IMP_RES_THEN
transforms the theorem into an implication th’. It then passes th’ together with ttac

to IMP_RES_THEN to carry out the resolution.

Failure
Evaluating RESQ_IMP_RES_THEN ttac th fails if the supplied theorem th is not restricted
universally quantified, or if the call to IMP_RES_THEN fails.

See also
RESQ_IMP_RES_TAC, RESQ_RES_THEN, RESQ_RES_TAC, IMP_RES_THEN, IMP_RES_TAC,
MATCH_MP, RES_CANON, RES_TAC, RES_THEN.

RESQ_MATCH_MP

RESQ_MATCH_MP : (thm -> thm -> thm)

Synopsis
Eliminating a restricted universal quantification with automatic matching.

Description
When applied to theorems A1 |- !x::P. Q[x] and A2 |- P x’, the derived inference
rule RESQ_MATCH_MP matches x’ to x by instantiating free or universally quantified vari-
ables in the first theorem (only), and returns a theorem A1 u A2 |- Q[x’/x]. Polymor-
phic types are also instantiated if necessary.

A1 |- !x::P.Q[x] A2 |- P x’
-------------------------------------- RESQ_MATCH_MP

A1 u A2 |- Q[x’/x]

Failure
Fails unless the first theorem is a (possibly repeatedly) restricted universal quantification
whose quantified variable can be instantiated to match the conclusion of the second
theorem, without instantiating any variables which are free in A1, the first theorem’s
assumption list.

See also
MATCH_MP, RESQ_HALF_SPEC.
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RESQ_RES_TAC

RESQ_RES_TAC : tactic

Synopsis
Enriches assumptions by repeatedly resolving restricted universal quantifications in
them against the others.

Description
RESQ_RES_TAC uses those assumptions which are restricted universal quantifications in
resolution in a way similar to RES_TAC. It calls RESQ_RES_THEN repeatedly until there is
no more resolution can be done. The conclusions of all the new results are returned
as additional assumptions of the subgoal(s). The effect of RESQ_RES_TAC on a goal is to
enrich the assumption set with some of its collective consequences.

Failure
RESQ_RES_TAC cannot fail and so should not be unconditionally REPEATed.

See also
RESQ_IMP_RES_TAC, RESQ_IMP_RES_THEN, RESQ_RES_THEN, IMP_RES_TAC, IMP_RES_THEN,
RES_CANON, RES_THEN, RES_TAC.

RESQ_RES_THEN

RESQ_RES_THEN : thm_tactic -> tactic

Synopsis
Resolves all restricted universally quantified assumptions against other assumptions of
a goal.

Description
Like the function RESQ_IMP_RES_THEN, the function RESQ_RES_THEN performs a single step
resolution. The difference is that the restricted universal quantification used in the
resolution is taken from the assumptions.
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Given a theorem-tactic ttac, applying the tactic RESQ_RES_THEN ttac to a goal (asml,gl)
has the effect of:

MAP_EVERY (mapfilter ttac [... ; (ai,aj |- vi) ; ...]) (amsl ?- g)

where the theorems ai,aj |- vi are all the consequences that can be drawn by a (sin-
gle) matching modus-ponens inference from the assumptions amsl and the implications
derived from the restricted universal quantifications in the assumptions.

Failure
Evaluating RESQ_RES_TAC ttac th fails if there are no restricted universal quantifications
in the assumptions, or if the theorem-tactic ttac applied to all the consequences fails.

See also
RESQ_IMP_RES_TAC, RESQ_IMP_RES_THEN, RESQ_RES_TAC, IMP_RES_THEN, IMP_RES_TAC,
MATCH_MP, RES_CANON, RES_TAC, RES_THEN.

RESQ_REWRITE1_CONV

RESQ_REWRITE1_CONV : thm list -> thm -> conv

Synopsis
Rewriting conversion using a restricted universally quantified theorem.

Description
RESQ_REWRITE1_CONV is a rewriting conversion similar to COND_REWRITE1_CONV. The only
difference is the rewriting theorem it takes. This should be an equation with restricted
universal quantification at the outer level. It is converted to a theorem in the form
accepted by the conditional rewriting conversion.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

evaluating RESQ_REWRITE1_CONV thms th "t[x’]" will return a theorem

A, P x’ |- t[x’] = t’[x’]

where t’ is the result of substituting instances of R[x’/x] for corresponding instances
of Q[x’/x] in the original term t[x]. All instances of P x’ which do not appear in the
original assumption asml are added to the assumption. The theorems in the list thms are
used to eliminate the instances P x’ if it is possible.
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Failure
RESQ_REWRITE1_CONV fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
RESQ_REWRITE1_TAC, RESQ_REWR_CANON, COND_REWR_TAC, COND_REWRITE1_CONV,
COND_REWR_CONV, COND_REWR_CANON, search_top_down.

RESQ_REWRITE1_TAC

RESQ_REWRITE1_TAC : thm_tactic

Synopsis
Rewriting with a restricted universally quantified theorem.

Description
RESQ_REWRITE1_TAC takes an equational theorem which is restricted universally quan-
tified at the outer level. It calls RESQ_REWR_CANON to convert the theorem to the form
accepted by COND_REWR_TAC and passes the resulting theorem to this tactic which carries
out conditional rewriting.

Suppose that th is the following theorem

A |- !x::P. Q[x] = R[x])

Applying the tactic RESQ_REWRITE1_TAC th to a goal (asml,gl) will return a main subgoal
(asml’,gl’) where gl’ is obtained by substituting instances of R[x’/x] for correspond-
ing instances of Q[x’/x] in the original goal gl. All instances of P x’ which do not
appear in the original assumption asml are added to it to form asml’, and they also
become new subgoals (asml,P x’).

Failure
RESQ_REWRITE1_TAC th fails if th cannot be transformed into the required form by the
function RESQ_REWR_CANON. Otherwise, it fails if no match is found or the theorem cannot
be instantiated.

See also
RESQ_REWRITE1_CONV, RESQ_REWR_CANON, COND_REWR_TAC, COND_REWRITE1_CONV,
COND_REWR_CONV, COND_REWR_CANON, search_top_down.
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RESQ_REWR_CANON

RESQ_REWR_CANON : thm -> thm

Synopsis
Transform a theorem into a form accepted for rewriting.

Description
RESQ_REWR_CANON transforms a theorem into a form accepted by COND_REWR_TAC. The in-
put theorem should be headed by a series of restricted universal quantifications in the
following form

!x1::P1. ... !xn::Pn. u[xi] = v[xi])

Other variables occurring in u and v may be universally quantified. The output theo-
rem will have all ordinary universal quantifications moved to the outer most level with
possible renaming to prevent variable capture, and have all restricted universal quan-
tifications converted to implications. The output theorem will be in the form accepted
by COND_REWR_TAC.

Failure
This function fails is the input theorem is not in the correct form.

See also
RESQ_REWRITE1_TAC, RESQ_REWRITE1_CONV, COND_REWR_CANON, COND_REWR_TAC,
COND_REWR_CONV,.

RESQ_SPEC

RESQ_SPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a restricted universally quantified theorem.

Description
When applied to a term u and a theorem A |- !x::P. t, RESQ_SPEC returns the theorem
A, P u |- t[u/x]. If necessary, variables will be renamed prior to the specialization



RESQ SPECL 47

to ensure that u is free for x in t, that is, no variables free in u become bound after
substitution.

A |- !x::P. t
------------------ RESQ_SPEC "u"
A, P u |- t[u/x]

Failure
Fails if the theorem’s conclusion is not restricted universally quantified, or if type in-
stantiation fails.

Example
The following example shows how RESQ_SPEC renames bound variables if necessary,
prior to substitution: a straightforward substitution would result in the clearly invalid
theorem (\y. 0 < y)y |- y = y.

#let th = RESQ_GEN "x:num" "\y.0<y" (REFL "x:num");;
th = |- !x :: \y. 0 < y. x = x

#RESQ_SPEC "y:num" th;;
(\y’. 0 < y’)y |- y = y

See also
RESQ_SPECL, RESQ_SPEC_ALL, RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL.

RESQ_SPECL

RESQ_SPECL : (term list -> thm -> thm)

Synopsis
Specializes zero or more variables in the conclusion of a restricted universally quantified
theorem.

Description
When applied to a term list [u1;...;un] and a theorem A |- !x1::P1. ... !xn::Pn. t,
the inference rule RESQ_SPECL returns the theorem

A,P1 u1,...,Pn un |- t[u1/x1]...[un/xn]

where the substitutions are made sequentially left-to-right in the same way as for RESQ_SPEC,
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with the same sort of alpha-conversions applied to t if necessary to ensure that no vari-
ables which are free in ui become bound after substitution.

A |- !x1::P1. ... !xn::Pn. t
-------------------------------------------- RESQ_SPECL "[u1;...;un]"

A,P1 u1, ..., Pn un |- t[u1/x1]...[un/xn]

It is permissible for the term-list to be empty, in which case the application of RESQ_SPECL
has no effect.

Failure
Fails if one of the specialization of the restricted universally quantified variable in the
original theorem fails.

See also
RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL, RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPEC_ALL.

RESQ_SPEC_ALL

RESQ_SPEC_ALL : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with its own restricted quantified variables.

Description
When applied to a theorem A |- !x1::P1. ...!xn::Pn. t, the inference rule RESQ_SPEC_ALL

returns the theorem A,P1 x1’,...,Pn xn’ |- t[x1’/x1]...[xn’/xn] where the xi’ are
distinct variants of the corresponding xi, chosen to avoid clashes with any variables free
in the assumption list and with the names of constants. Normally xi’ is just xi, in which
case RESQ_SPEC_ALL simply removes all restricted universal quantifiers.

A |- !x1::P1. ... !xn::Pn. t
------------------------------------------- RESQ_SPEC_ALL
A,P1 x1,...,Pn xn |- t[x1’/x1]...[xn’/xn]

Failure
Never fails.

See also
RESQ_GEN, RESQ_GENL, RESQ_GEN_ALL, RESQ_GEN_TAC, RESQ_SPEC, RESQ_SPECL.
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search_top_down

search_top_down
: (term -> term -> ((term # term) list # (type # type) list) list)

Synopsis
Search a term in a top-down fashion to find matches to another term.

Description
search_top_down tm1 tm2 returns a list of instantiations which make the whole or part
of tm2 match tm1. The first term should not have a quantifier at the outer most level.
search_top_down first attempts to match the whole second term to tm1. If this fails, it
recursively descend into the subterms of tm2 to find all matches.

The length of the returned list indicates the number of matches found. An empty
list means no match can be found between tm1 and tm2 or any subterms of tm2. The
instantiations returned in the list are in the same format as for the function match. Each
instantiation is a pair of lists: the first is a list of term pairs and the second is a list of type
pairs. Either of these lists may be empty. The situation in which both lists are empty
indicates that there is an exact match between the two terms, i.e., no instantiation is
required to make the entire tm2 or a part of tm2 the same as tm1.

Failure
Never fails.

Example

#search_top_down "x = y:*" "3 = 5";;
[([("5", "y"); ("3", "x")], [(":num", ":*")])]
: ((term # term) list # (type # type) list) list

#search_top_down "x = y:*" "x =y:*";;
[([], [])] : ((term # term) list # (type # type) list) list

#search_top_down "x = y:*" "0 < p ==> (x <= p = y <= p)";;
[([("y <= p", "y"); ("x <= p", "x")], [(":bool", ":*")])]
: ((term # term) list # (type # type) list) list

The first example above shows the entire tm2 matching tm1. The second example shows
the two terms match exactly. No instantiation is required. The last example shows that
a subterm of tm2 can be instantiated to match tm1.
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See also
match, COND_REWR_TAC, CONV_REWRITE_TAC, COND_REWR_CONV, CONV_REWRITE_CONV.

strip_resq_exists

strip_resq_exists : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted existentially quantified term.

Description
strip_resq_exists is an iterative term destructor for restricted existential quantifica-
tions. It iteratively breaks apart a restricted existentially quantified term into a list of
pairs which are the restricted quantified variables and predicates and the body.

strip_resq_exists "?x1::P1. ... ?xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").

Failure
Never fails.

See also
list_mk_resq_exists, is_resq_exists, dest_resq_exists.

strip_resq_forall

strip_resq_forall : (term -> ((term # term) list # term))

Synopsis
Iteratively breaks apart a restricted universally quantified term.

Description
strip_resq_forall is an iterative term destructor for restricted universal quantifications.
It iteratively breaks apart a restricted universally quantified term into a list of pairs
which are the restricted quantified variables and predicates and the body.

strip_resq_forall "!x1::P1. ... !xn::Pn. t"

returns ([("x1","P1");...;("xn","Pn")],"t").
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Failure
Never fails.

See also
list_mk_resq_forall, is_resq_forall, dest_resq_forall.
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Chapter 3

Pre-proved Theorems

The sections that follow list all theorems in the theories res_quan and restr_binder.
The theorems listed in this chapter will be available by name at the top-level when the
theories in which they are declared are open-ed.

RESQ_DISJ_EXISTS_DIST (res quan)
|- !P Q R. (?i::(\i. P i \/ Q i). R i) = (?i::P. R i) \/ ?i::Q. R i

RESQ_EXISTS_DISJ_DIST (res quan)
|- !P Q R. (?i::P. Q i \/ R i) = (?i::P. Q i) \/ ?i::P. R i

RESQ_EXISTS_REORDER (res quan)
|- !P Q R. (?(i::P) (j::Q). R i j) = ?(j::Q) (i::P). R i j

RESQ_EXISTS_UNIQUE (res quan)
|- !P j. (?i::$= j. P i) = P j

RESQ_FORALL_CONJ_DIST (res quan)
|- !P Q R. (!i::P. Q i /\ R i) = (!i::P. Q i) /\ !i::P. R i

RESQ_FORALL_DISJ_DIST (res quan)
|- !P Q R. (!i::(\i. P i \/ Q i). R i) = (!i::P. R i) /\ !i::Q. R i

RESQ_FORALL_FORALL (res quan)
|- !P R x. (!x (i::P). R i x) = !(i::P) x. R i x

RESQ_FORALL_REORDER (res quan)
|- !P Q R. (!(i::P) (j::Q). R i j) = !(j::Q) (i::P). R i j

RESQ_FORALL_UNIQUE (res quan)
|- !P j. (!i::$= j. P i) = P j

RES_ABSTRACT (res quan)
|- !P B. RES_ABSTRACT P B = (\x. (if P x then B x else ARB))

RES_EXISTS (res quan)
|- !P B. RES_EXISTS P B = ?x. P x /\ B x

53
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RES_FORALL (res quan)
|- !P B. RES_FORALL P B = !x. P x ==> B x

RES_SELECT (res quan)
|- !P B. RES_SELECT P B = @x. P x /\ B x
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