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Chapter 1

The pred_sets Library

The pred_sets library contains a theory of predicates regarded as sets. A predicate
s:*x->bool is considered as a collection or ‘set’ of elements of type *, and the standard
operations on sets such as union, intersection, and set difference are appropriately de-
fined for this representation. The library was originally written in 1989 by Ton Kalker.
It was completely rewritten by the present author for HOL version 2.01 in early 1992.
The aim of this revision was to make the pred_sets library closely parallel to the much
more developed HOL sets library, with the same names for constants and theorems and
the same form of definitions for operations on sets. The present document is itself also
adapted from the manual for the sets library [1].

There is only one theory in the pred_sets library, namely the theory ‘pred_sets’. This
document explains the logical basis of this theory and the theorem-proving support
provided by library. The latter includes conversions for expanding set specifications
and for evaluating various operations on finite sets described by enumeration of their
elements. The library also provides parser and pretty-printer support for terms that
denote sets.

1.1 Membership and the axioms of set theory

A value x is defined to be an element of a set exactly when the characteristic predi-
cate of the set is true of x. Since sets in the pred_sets library are just represented by
their characteristic predicates, this membership relation is straightforward to define as
follows:

SPECIFICATION |- P x. x INP =P x

The infix function constant IN defined here constitutes the basic language for the entire
theory of sets in the pred_sets library; all operators and predicates on sets are ultimately
defined in terms of this one function.

The definition of IN shown above loosely corresponds to what is usually called the
axiom of specification for sets (hence the name SPECIFICATION). This axiom states that
sets can be constructed from predicates that describe or ‘specify’ their elements. A value
is an element of the constructed set exactly when the predicate is true of that value.
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Since sets and predicates are identical in the pred_sets library, we can simply say that x
is in the ‘set’ P exactly when P x holds.

The definition of IN is one of two fundamental theorems in the pred_sets library, from
which all others are derived. The second of these fundamental theorems states what is
usually called the axiom of extension for sets. This is not, of course, literally an axiom of
the pred_sets theory, but rather a theorem derived by proof:

EXTENSION |- 1st. (s =1t) = (!x. x IN s =x IN t)

EXTENSION states that two sets are equal exactly when they have the same elements. This
follows directly from the definition of the constant IN and the extensionality functions
in higher order logic.

Once the theorems EXTENSION and SPECIFICATION have been proved, they provide a
complete basis for all further reasoning about sets and membership. The library theory
pred_sets is developed entirely on the basis of these two ‘axioms’ of set theory.

1.2 Generalized set specifications

In addition to the basic constant IN, which allows one to regard a predicate as the
set of all values that satisfy it, the pred_sets library also provides a general way of
constructing sets by describing or specifying their elements. Roughly speaking, there are
two components to a generalized set specification: an expression E[x] and a predicate
P[x]. For any such expression and predicate, there is a corresponding set {E[x] | P[x]},
the set of all values E[x] for which P[x] holds.

The pred_sets library supports generalized set specifications by means of the con-
stant:

GSPEC : (%% -> (* # bool)) —-> * -> bool

The function GSPEC takes a function £ : ** -> (* # bool) and constructs the set (i.e.
predicate of type *->bool) of all values FST(f x) for which SND(f x) holds, for some
value x of type **. The formal definition of the constant GSPEC is given by the following
constant specification:

GSPECIFICATION |- !'f v. v IN (GSPEC f) = (?x. v,T = f x)

This theorem is analogous to the axiom of specification for IN. This states that a value
v is an element of the set specified by f exactly when v is one of the values of FST(f x)
for which SND(f x) is true.

To see how this supports the notion of generalized set specification described above,
let £ in this definition be the function \x.E[x],P[x]. With a little simplification, we
would then have:
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|- 'v. v IN (GSPEC \x.E[x],P[x]) = ?x. (v = E[x]) /\ P[x]

That is, a value v is in the set constructed by GSPEC exactly when for some x for which
P[x], the value v is equal to E[x]. The constructed set therefore contains all values E [x]
for which P[x] holds.

1.2.1 Parser and pretty-printer support

To facilitate the use of sets constructed by generalized set specification, the pred_sets
library provides parser and pretty-printer support for set abstractions expressed by the
notation "{F | P}". The built-in ML function define_set_abstraction_syntax (see the
manual [2] for details) is used to introduce this notation when the library is loaded.
The call made to this function extends the HOL parser so that a quotation of the form
"{F | P}" parses to:

GSPEC (\(x1,...,T,).(E,P))

where x4, ..., xz, are the variables that occur free in both the expression £ and the
proposition P (i.e. the set {x1,...,x,} is the intersection of the set of free variables of E
and the set of free variables of P). If there are no variables free in both £ and P, then a
parser error is generated. When the print_set flag is true, the quotation pretty-printer
inverts this transformation.

A simple example of this set abstraction notation is shown in the following HOL ses-
sion, in which it is assumed that the pred_sets library has already been loaded. (See
section 1.14 for a description of how pred_sets is loaded.)

#let gtr = new_definition (‘gtr, "gtr N ={n | n > N}");; [ 1]
gtr = |- IN. gtr N={n | n > N}

#set_flag (‘print_set‘,false);;
true : bool

#'{n | n > N}";;
"GSPEC(\n. (n,n > N))" : term

The term {n | n > N} in the definition of gtr denotes the set of all natural numbers
greater than N. It is important to note that the variable N is a free variable in this term,
since it occurs on only one side of the bar ‘|. The set abstraction {n | n > N} therefore
parses to the generalized set specification

GSPEC(\n. (n,n > N))

This is what gives this set abstraction the (presumably intended) interpretation ‘the set
of all n greater than N’. By contrast, the term
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GSPEC(\ (n,N). (n,n > N))

denotes the set of all numbers n greater than some number N—i.e., the set {1,2,3,...}.
This is not the default interpretation of the parser, which constructs a generalized set
specification that binds the variable n only. Note that only default interpretations are
pretty-printed using the set abstraction notation:

#set_flag(‘print_set‘,true);; [ 2 ]
false : bool

#"GSPEC (\n. (n,n>N))";;
"{n | n > N}" : term

#"GSPEC (\(n,N). (n,n>N))";;
"GSPEC(\(n,N). (n,n > N))" : term

That is, a term of the form:
GSPEC (\(x1,...,2,).(E,P))

prints as "{E | P}" only if the variables x4, ..., z,, occur free in both £ and P.
In general, the expression £ in a set abstraction "{£ | P}" need not be just a vari-
able. Consider, for example, the following HOL session:

#let S = "{(n,m) | n < m}";; [ 3]

S="{(n,m) | n < m}" : term

#set_flag(‘print_set‘,false);;
true : bool

#"{(n,m) | n < m}";;
"GSPEC(\(n,m). ((n,m),n < m))" : term

Here, a set abstraction is used to construct the set of all pairs of numbers (n,m) for
which n is less than m. Note that both variables n and m are bound in the underlying
generalized set specification.

1.2.2 Theorem-proving support

The pred_sets library provides proof support for the set abstraction notation in the
form of a conversion called SET_SPEC_CONV. This conversion implements the axiom of
specification for set abstractions. When v is a variable, evaluating:

SET_SPEC_CONV "t IN {v | P}";;

returns the theorem:
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|- ¢t IN {v | P} = P[t/]

This states that ¢ is an element of the set of all v such that P exactly when P[t/v] holds.
Note that, in general, the term ¢ need not be a variable. The following session illustrates
this use of SET_SPEC_CONV for membershipin a particular set abstraction:

#SET_SPEC_CONV "12 IN {n | n > N}";; 1
|- 12 IN {fn | n > N} = 12 > N

The conversion SET_SPEC_CONV behaves differently when applied to terms of the form
"t IN {E | P}" where F is not a variable. Applying the conversion to a term of this
kind yields the theorem:

|-t IN{E | P} =7%x1... 2. ({t = E) /\ P

where 74, ..., x, are the variables that occur free in both £ and P. The expression E
cannot in general be eliminated in this case, as it can by the substitution P[t/v] when £
is just a variable v.

The following session illustrates the form of the theorem proved by SET_SPEC_CONV for
the second type of input term discussed above:

#let thl = SET_SPEC_CONV "p IN {(n,m) | n < m}";; [ 1]
thli = |- p IN {(a,m) | n <m}=(Pnm. (p=n,m) /\n<m

#let th2 = SET_SPEC_CONV "(a,b) IN {(n,m) | n < m}";;

th2 = |- (a,b) IN {(n,m) | n <m} = (?Pnm. (a,b =n,m) /\ n < m)

#let th3 = SET_SPEC_CONV "a IN {n + m | n < m}";;
th3 = |-aIN{fn+m | n<m}t=((nm (a=n+m /\n<m

The right-hand sides of th1 and th2 could, in principle, be further simplified. The value
of the expression ‘(n,m)’ is an injective function of the values of n and m, and so by
eliminating the existential quantifiers these two theorems could be simplified to:

thi |- p IN {(n,m) | n < m} = (FST p < SND p)

th2 |- (a,b) IN {(n,m) | n < m} = (a < Db)

But in general the value of E in a set abstraction "{E | P3}" will not be an injective
function of its free variables, as for example is the case in theorem th3. The conversion
SET_SPEC_CONV therefore attempts no further simplification of its result than is described
above for the general case.
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1.3 The empty and universal sets

The following two constants are defined in the pred_sets library: EMPTY: *->bool, which
denotes the empty set; and UNIV:*->bool, which denotes the universe, or set of all
values of type *.These constants are defined formally as follows:

EMPTY_DEF |- EMPTY =
UNIV_DEF |- UNIV

o
=~ -~
Y
o

The theorems EMPTY_DEF and UNIV_DEF shown above are named according to the general
convention that all definitions in the pred_sets library are given names ending in ‘_DEF’.
Note that because of the restriction on free variables discussed above, the set abstrac-
tions "{x | T}" and "{x | F}" cannot be used in these definitions; the more primitive
form of set construction given by the above lambda-abstractions must be used instead.
But users of the library will never need to appeal to these definitions, since the following
theorems about EMPTY and UNIV are also made available in the theory pred_sets:

NOT_IN_EMPTY |- !x. “x IN EMPTY
IN_UNIV |- 'x. x IN UNIV

That is, nothing is an element of EMPTY and everything is an element of UNIV. These
properties follow directly from the definitions and the theorem SPECIFICATION. Other
pre-proved theorems about the empty and universal sets are also available in the library;
see chapter 3 for a complete list.

1.4 Set inclusion

The infix functions SUBSET and PSUBSET denote the binary relations of set inclusion and
proper set inclusion, respectively. These are defined formally in the obvious way:

SUBSET_DEF |- !'s t. s SUBSET t = (!x. x IN s ==> x IN t)
PSUBSET_DEF |- !s t. s PSUBSET t = s SUBSET t /\ "(s = t)

That is, s is a subset of t if every element of s is also an element of t; and s is a proper
subset of t if it is a subset of t but not equal to t.

Various pre-proved theorems about the subset and proper subset relations are sup-
plied by the pred_sets library. For example, the fact that SUBSET is a partial order is
stated by the three built-in theorems shown below.

SUBSET_REFL |- 's. s SUBSET s
SUBSET_TRANS |- 's t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u
SUBSET_ANTISYM |- !s t. s SUBSET t /\ t SUBSET s ==> (s = t)



1.5. Union, intersection, and set difference 7

Also provided are built-in theorems about the relationship between set inclusion and
other constants or operations on sets. For example, there are the following facts about
set inclusion and the empty and universal sets:

EMPTY_SUBSET |- 's. {} SUBSET s
SUBSET_UNIV |- !s. s SUBSET UNIV
NOT_PSUBSET_EMPTY |- !s. ~s PSUBSET {}
NOT_UNIV_PSUBSET |- !s. "UNIV PSUBSET s

As these examples illustrate, the names of theorems in the pred_sets library are gen-
erally constructed from the names of the constants they contain. Furthermore, the
ordering of elements in the name of a theorem attempts to reflect the content of the
theorem itself.

1.5 Union, intersection, and set difference

The binary operations of union, intersection and set difference are all defined using the
set abstraction notation introduced above in section 1.2.1. The formal definitions are:

UNION_DEF |- !'s t. s UNION t = {x | x IN s \/ x IN t}
INTER_DEF |- !'s t. s INTER t = {x | x IN s /\ x IN t}
DIFF_DEF |- !'s t. sDIFFt ={x | x IN s /\ "x IN t}

These definitions illustrate the practical utility of the scheme for variable binding in set
abstractions discussed above in section 1.2.1. An abstraction "{£ | P}" binds only the
variables that occur in both F and P, and the variables s and t in the set abstractions
shown above may therefore be made parameters to the sets constructed by them.

Using SET_EQ_CONV, it is trivial to derive the following membership conditions for
UNION, INTER and DIFF from the definitions given above. As a general rule, theorems
stating membership conditions of the kind illustrated by these examples are given names
of the form IN_(constant) ending in the name of the operation used to construct the set
in question.

IN_UNION |- !'s t x. x IN (s UNION t) = x INs \/ x IN ¢t
IN_INTER |- !'s t x. x IN (s INTER t) = x IN s /\ x IN ¢t
IN_DIFF [- 's t x. x IN (s DIFF t) = x IN s /\ "x IN ¢t

These theorems, which are saved in the library under the names indicated above, may
in practice be used as the defining properties of union, intersection and set difference;
users should almost never have to appeal directly to the definitions of these operations.
Other built-in theorems about UNION, INTER and DIFF may be found in chapter 3.
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1.6 Disjoint sets

Two sets are disjoint if they have no elements in common. This concept is formalized in
the pred_sets library by the constant DISJOINT, the definition of which is:

DISJOINT_DEF |- !s t. DISJOINT s t = (s INTER t = {})

At present, there are relatively few pre-proved theorems about the DISJOINT relation
in the library. But see chapter 3 for the few theorems about DISJOINT that are in fact
available in the pred_sets library.

1.7 Insertion and deletion of an element

To aid in the construction of particular sets of values (especially finite sets) the library
contains definitions of two constants INSERT and DELETE. These denote the operations
of augmenting a set with a given value and removing a value from a set, respectively.
The formal definitions of these operations are:

INSERT_DEF |- !x s. x INSERT s
DELETE_DEF |- !s x. s DELETE x

{y | (y =x) \/ y IN s}
s DIFF (INSERT x EMPTY)

The elements of the set denoted by x INSERT s are all the elements of the set s together
with the value x, which may or may not be an element of s itself. The set denoted by
s DELETE x contains all the elements of s except the value x.

The membership conditions for sets constructed using INSERT and DELETE are given by
the following pre-proved theorems:

IN_INSERT |- !x y s. x IN (y INSERT s) = (x = y) \/ x IN s
IN_DELETE |- !s x y. x IN (s DELETE y) = x IN s /\ “(x = y)

In addition, the library contains a substantial collection of theorems about the relation-
ship between the operations INSERT and DELETE and other relations and operations on
sets. Chapter 3 gives a complete list of these theorems.

1.7.1 Parser and pretty-printer support

The pred_sets library provides special parser and pretty-printer support for finite sets
that are constructed by enumeration of their elements. This notation is introduced by a
call made when the library is loaded to the built-in ML function define_finite_set_syntax
(see [2] for details of this function). This has the effect of extending the HOL parser so
that a quotation of the form "{t;,t.,...,t,}" parses to the following set built up from
EMPTY by repeatedly using the function INSERT:
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INSERT ¢ (INSERT ¢9 ... (INSERT ¢, EMPTY)...)

Note that the quotation "{}" just parses to the constant EMPTY. When the print_set flag
is true, the HOL pretty-printer for terms inverts this transformation.

Users should note that care must be taken with regard to the precedence of comma
in a context "{...}", as the following session illustrates:

#set_flag(‘print_set‘,false);; [ 1]
true : bool

#"{1,2,3,4}";;
"1 INSERT (2 INSERT (3 INSERT (4 INSERT EMPTY)))" : term

#'{(1,2), (3,4 1}";;
"(1,2) INSERT ((3,4) INSERT EMPTY)" : term

#'{((1,2),(3,4))1";;
"((1,2),3,4) INSERT EMPTY" : term

Different grouping by means of enclosing parentheses has given sets with four elements
(each a number), two elements (each of which is a pair), and one element (a pair of
pairs) respectively.

1.7.2 Conversions for enumerated finite sets

The pred_sets library provides a collection of optimized conversions for computing the
results of operations and predicates on finite sets specified by enumeration of their
elements. All these conversions, the current implementations of which are somewhat
experimental, are designed to work only for finite sets of the form "{t;,...,t,}". The
sections that follow describe most of these conversions; the remainder are discussed in
later sections of this manual.

1.7.2.1 Membership

The most basic conversion for finite sets is a decision procedure for membership called
IN_conv. In general, a way of deciding equality of elements is needed in order to deter-
mine whether a given value is an element of a particular finite set. The function

IN_CONV : conv -> conv

must therefore be supplied with a conversion that implements a decision procedure for
equality of set elements. It is assumed that this conversion will map equations "e; = ey"
between elements of a base type ty to the theorem |- (e; = e3) = T or to the theorem
|- (e1 = e2) = F, as appropriate.
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If conv is an equality conversion of the kind described above, then the function re-
turned by IN_CONV conv is a conversion that decides membership in finite sets of values
of the base type ty. In particular, a call:

IN_CONV conv "t IN {t;,...,t,}"
returns the theorem
|- ¢t IN {t1,...,t,} =T

if the term ¢ is alpha-equivalent to some term ¢; or if the supplied conversion conv
proves |- (¢t = ;) = T for some i where 1 < i < n. If, on the other hand conv proves
the theorem |- (¢ = ¢;) = F for all i where 1 < i < n, then the result is the theorem

|- ¢ IN {¢t1,...,tpr = F

In all other cases, the call to IN_cONV shown above will fail.
The following session shows how IN_CONV can be used in practice.

#IN_CONV num_EQ_CONV "1 IN {2,1,3}";; 1
I- 1 IN {291,3} = T

#IN_CONV num_EQ_CONV "4 IN {2,1,3}";;
|- 4 IN {2,1,3} = F

The built-in conversion num_EQ_CONV is used here to decide equality of the natural num-
bers involved in the membership assertions being proved.
An example in which IN_conNV fails is the following:

#IN_CONV num_EQ_CONV "x IN {1,2,3}";; 2
evaluation failed IN_CONV

#num_EQ_CONV "x = 1";;
evaluation failed num_EQ_CONV

Failure occurs in this case because the term x is a variable, and num_EQ_CONV therefore
cannot determine if it is equal to any of the set elements 1, 2 or 3. Note, however, that
the supplied conversion is not required to prove anything if the value being tested for
membership happens to be syntactically identical to an element of the given set:

#IN_CONV NO_CONV "x IN {1,x,3}";; L3 ]
|- x IN {1,x,3} =T

In this case, the supplied conversion, namely NO_cONV, always fails; but the call to
IN_cONV nonetheless succeeds and returns the appropriate result.
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1.7.2.2 Union

The pred_sets library contains a conversion
UNION_CONV : conv -> conv

that can be used to compute the union of two finite sets. The first argument to UNION_CONV
(i.e. the conversion argument) is expected to be an equality conversion of the same kind
required as an argument by IN_CONV (see section 1.7.2.1). As will be seen below, this
conversion is used by UNION_CONV to simplify the set that it computes as the result of
taking the union of two finite sets.

Given an equality conversion conv, the function UNION_CONV returns a conversion that
computes the union of a finite set "{¢;,...,t,}" and another set s. The second set s in
fact need not be finite. Ignoring, for the moment, the possible simplification done using
the supplied conversion conv, a call:

UNION CONV conv "{ti,...,t,} UNION s"

just returns the theorem
|- {t1,...,t,} UNION s = ¢; INSERT (... (f, INSERT s)...)

That is, UNION_CONV computes the required union as a repeated insertion of values into
the set s. When s is a finite set of the form "{uy,...,u,}", the resulting theorem will
have the form shown below.

|- {tl,...,tn} UNION {ul,...,um} = {tl,...,tn,ul,...,um}

When computing theorems of this form (i.e. when the second set of the union is a finite
set "{uy,...,u,}") the function UNION_CONV attempts to remove redundant elements
in the resulting set using the supplied equality conversion conv. In particular, if conv
is able to prove that some element ¢; of "{¢1,...,t,}" is equal to any element u; of
"{uy,...,un}", that is if the conversion conv maps the term "¢, = ;" to the theorem
|- (t; = u;) = T, then the resulting theorem will be

|- {tl,...ti,...,tn} UNION {Ul,...,Uj,...,Um} = {tl,...,tn,ul,...,uj,...,um}

That is, the redundant term ¢; will be removed from the initial sequence of elements in
the resulting finite set. The function UNION_CONV also checks for and eliminates alpha-
equivalent elements.

Some examples of UNION_CONV in use are shown in the following HOL session:
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#UNION_CONV NO_CONV "{1,2,3} UNION {4,5,6}";; 4
|- {1,2,3} uNION {4,5,6} = {1,2,3,4,5,6%}

#UNION_CONV NO_CONV "{1,2,3} UNION {3,2,SUC 0}";;
|- {1,2,3} UNION {3,2,SUC 0} = {1,3,2,SUC 0}

The supplied equality conversion in these examples is NO_CONV, and only the elements of
the first set {1,2,3} that are redundant by virtue of being alpha-equivalent to elements
of the second set are eliminated from the resulting set. An example in which the equality
conversion is actually used is:

#UNION_CONV num_EQ_CONV "{1,2,3} UNION {3,2,SUC 0}";; 5]
|- {1,2,3} UNION {3,2,SUC 0} = {3,2,SUC 0}

In this case, num_EQ_CONV is used to prove that 1 is equal to SUC 0, so that the resulting
union is the set "{3,2,suc o}", rather than "{1,3,2,sUC 0}".

1.7.2.3 Insertion

The conversion INSERT_CONV performs the following reduction on finite sets:

reduce "t INSERT {t1,...,ti,...,0n,3" to "{t1,...,t, ..., tn}"
if a supplied equality conversion can prove |- (¢ = ;) = T. Since the enumerated set
notation "{t¢y,...,t,}" is just a parser-supported abbreviation (see section 1.7.1), this is
equivalent to reducing the set "{t,t1,...,t;,...,t,3" to "{t1,...,t;,...,t,}" when the
terms ¢ and ¢; are provably equal.
More specifically, if for some ¢; in {t,...,t,}, the terms ¢ and ¢; are alpha-equivalent,

of if the conversion conv maps "t = t;" to the theorem |- (¢t = t;) = T, then the call:
INSERT_CONV conv "t INSERT {t1,...,0,}";;

will return the theorem:
|- ¢ INSERT {t1,...,t, 5 = {t1,...,t,}

Here is an example of INSERT_CONV in use:

#INSERT_CONV num_EQ_CONV "(SUC 2) INSERT {0,1,2,3}";; 1
|— {SUC 2303112,3} = {0’1’2’3}

When applied repeatedly, INSERT_CONV can be used to reduce finite sets by eliminating
as many redundant occurrences of elements as possible. An easy to program, but slow-
running, way of doing this is to use DEPTH_CONV:

#DEPTH_CONV (INSERT_CONV num_EQ_CONV) "{{1,3,x,SUC 1,SUC(SUC 1),2,1,3,x}";;[ 2 |
|- {1,3,x,SUC 1,Suc(sucC 1),2,1,3,x} = {2,1,3,x}

For a faster alternative to this method, see the reference entry for INSERT_CONV in chap-
ter 2.
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1.7.2.4 Deletion

The conversion DELETE_CONV reduces terms of the form "{¢,...,t,} DELETE t" by delet-
ing all elements provably equal to ¢ from the set {1, .. .,t,}. Like IN_CONV and INSERT_CONV,
the function DELETE_CONV takes a conversion for deciding equality of set elements as an
argument. If conv is such a conversion, the call:

DELETE_CONV conv "{t;,...,t,} DELETE t";;
will return the theorem:

|- {t1,...,t,} DELETE t = {t;,...,t;}

where the resulting set {¢;, . . . ,¢;} is the set of all values ¢ in the original set {¢1, ... ,#,}
for which conv proves |- (¢, = t) = F, and where for all #; in {¢,...,t,} but not in
{t;,...,t;}, either t; is alpha-equivalent to ¢ or conv proves |- (¢, = t) = T. Note that

the conversion conv must prove either equality or inequality for every element of the
original set that is not simply alpha-equivalent to the deleted value.
The following session shows DELETE_CONV in use:

#DELETE_CONV num_EQ_CONV "{0,1,2,3} DELETE (SUC 1)";; [ 1]
|- {0,1,2,3} DELETE (SuC 1) = {0,1,3%}

1.8 Singleton sets

A singleton set is a set that contains precisely one element. In the pred_sets library, the
property of being a singleton set is expressed by the definition:

SING_DEF |- !s. SING s = (?x. s = {x})

The library contains several built-in theorems about singleton sets. These are sometimes
expressed in terms of the predicate SING, as for example in the theorem

SING |- !'x. SING{x}

But properties of singleton sets are more usually formulated as theorems about sets of
the form ‘{x}’. For example, the built-in theorems about singleton sets include:

NOT_SING_EMPTY |- !x. “({x} = {})
IN_SING |- 'x y. x IN {y} = (x = y)
EQUAL_SING - 'xy. ({x} =4y = x=17y)

A general convention is that theorems about singleton sets are given names that contain
the element ‘SING’, regardless of whether or not they actually contain the predicate SING.
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1.9 The CHOICE and REST functions

The pred_sets library contains the definition of a functions CHOICE which can be used
to select an arbitrary element from a non-empty set. The function CHOICE is defined
formally by the following constant specification:

CHOICE_DEF |- Is. “(s = {}) ==> (CHOICE s) IN s

This theorem alone is the defining property for the constant CHOICE, which is therefore
an only partially specified function from sets to values. Note, in particular, that there is
no information given by this definition about the result of applying CHOICE to an empty
set.

The library also contains a function REST, which is defined in terms of the CHOICE
function as follows

REST_DEF |- !s. REST s = s DELETE (CHOICE s)

For any non-empty set s, the set REST s comprises all those elements of s except the
value selected from s by CHOICE.

The library contains various built-in theorems about the functions CHOICE and REST;
for a full list of these theorems, see chapter 3.

1.10 Image of a function on a set
The image of a function f:*->+* on a set s:*->bool is the set of values f (x) for all x in

s. In the pred_sets library, the image of a function on a set is defined in terms of the
obvious set abstraction:

IMAGE_DEF |- 'f s. IMAGE f s = {f x | x IN s}

Using SET_SPEC_CONV, is is trivial to prove from this definition the following membership
condition for sets constructed using IMAGE:

IN_IMAGE |- !y s £. y IN (IMAGE f s) = (?x. (y = £ x) /\ x IN s)

The pred_sets library contains various theorems about IMAGE in addition to this mem-
bership theorem. These include, for example, theorems about the image of a function
on sets constructed by the operations of union and intersection. For a full list of theo-
rems about IMAGE, see chapter 3.
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1.10.1 Theorem-proving support

The pred_sets library contains a conversion for computing the image of a function f on
a finite set {¢;,...,t,}. The function

IMAGE_CONV : conv -> conv -> conv

is parameterized by two conversions. The first conversion is expected to compute the
result of applying the function f to each element ¢, ..., t,. The second parameter is
an equality conversion which is used to simplify the resulting image set by removing
redundant occurrences of its elements.

The following session shows a simple example of the use of IMAGE_CONV on terms of
the form "IMAGE (\x.x+2) {t1,...,t,}". We first define a conversion that evaluates the
result of applying the function (\x.x+2) to a term ¢.

#let AP_CONV = BETA_CONV THENC (TRY_CONV ADD_CONV);; [ 1]
AP_CONV = - : conv

#AP_CONV "(\n.n+2) 7";;
[- (\n. n +2)7 =9

This conversion, together with the function IMAGE_CONV, gives a conversion for comput-
ing the image of (\x.x+2) on a finite set of numerical values.

#IMAGE_CONV AP_CONV NO_CONV "IMAGE (\x.x+2) {1,2,3,4}";; [ 2]
|- IMAGE(\x. x + 2){1,2,3,4} = {3,4,5,6}

#IMAGE_CONV AP_CONV NO_CONV "IMAGE (\x.x+2) {n,1,n}";;
[- IMAGE(\x. x + 2){n,1,n} = {3,n + 2}

In this case, the second parameter supplied to IMAGE_CONV is the conversion NO_CONV.
This means that no reduction of the resulting image set is done, beyond the elimination
of elements that are provably redundant by virtue of being alpha-equivalent to some
other element (as in the second example above).

The following session illustrates the use of the second parameter to IMAGE_CONV.

#IMAGE_CONV BETA_CONV NO_CONV "IMAGE (\x. SUC x) {1,SUC 0,2,0}";; 3
|- IMAGE(\x. SUC x){1,suC 0,2,0} = {SUC 1,SUC(SUC 0),SUC 2,SUC 0%}

#IMAGE_CONV BETA_CONV num_EQ_CONV "IMAGE (\x. SUC x) {1,SUC 0,2,0}";;
|- IMAGE(\x. SUC x){1,SUC 0,2,0} = {SUC(SUC 0),SUC 2,SUC 0}

In the first evaluation, just applying BETA_CONV to the application of (\x. SUC x) to
each element has resulted in an image set containing both suc 1 and suc(suc 0). In
the second example, num_EQ_CONV is used to prove these values equal, and therefore to
simplify the resulting set by eliminating one of them from it. For more detail about
IMAGE_CONV, see the reference entry for this conversion in chapter 2.
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1.11 Mappings between sets

The pred_sets library contains a few basic definitions and theorems having to do with
mappings between sets. A function f:x->xx is an injective (one-to-one) mapping from
a set s:x->bool to a set t:**x->bool if it takes distinct elements of the set s to distinct
element of the set t:

INJ_DEF
|- 'f s t.

INJ £ s t =

('x. x IN s ==> (f x) IN t) /\

('xy. xINs/\NyINs==>(fx=fy) ==> (x=y))

Likewise, a function f:*->xx is a surjective (onto) mapping from s to t if for every
element x of t there is some element y of s for which f y = x:

SURJ_DEF =
|- 'f s t.
SURJ f s t =
('x. x IN s ==> (f x) IN t) /\
('x. x INt ==> (?y. y INs /\ (f y = x)))

Finally, a function £ :*->%x* is a bijection from s to t if it is both injective and surjective:

BIJDEF = |- !f st. BIJf st=INJfst/\SURIJEf st

There are a few pre-proved theorems about the predicates INJ, SURJ, and B1J available
in the library; see chapter 3 for a full list of these theorems.

The library also contains constant specifications for two functions LINV and RINV,
which yield left and right inverses to injective and surjective mappings respectively.
These functions are defined by:

LINV_DEF
RINV_DEF

|- 'f st. INJ fst== (!'x. x IN s ==> (LINV f s(f x) = x))
|- 'f st. SURJ f st ==> (Ix. x INt ==> (f(RINV f s x) = x))

There are, at present, no additional built-in theorems about these two functions. Fur-
thermore, the definitions of LINV and RINV shown above should be regarded as only
provisional; they may be changed in future versions.

1.12 Finite and infinite sets

The pred_sets library includes the definition of a predicate called FINITE, which is true
of finite sets and false of infinite ones. The definition of this constant is shown below.
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FINITE_DEF
|- 's.
FINITE s =
('p. P{} /\ ('s’. P s’ ==> (le. P(e INSERT s’))) ==> P s)

That is, a set s is finite precisely when it is in the smallest class of sets that contains
the empty set and is closed under the INSERT operation. This inductive definition makes
FINITE true of just those sets that can be constructed from the empty set by a finite
sequence of applications of the INSERT operation.

The pred_sets library contains various built-in theorems that follow from the defi-
nition of FINITE given above. Among these are the two fundamental theorems shown
below:

FINITE_EMPTY |- FINITE{}
FINITE_INSERT |- !x s. FINITE(x INSERT s) = FINITE s

These state that the empty set is indeed finite and insertion constructs finite sets only
from other finite sets. See chapter 3 for other built-in theorems about finite sets.

The above definition of FINITE formalizes the notion of a finite set in logic, and it
therefore also determines the form of definition for the complementary notion of an
infinite set. In the pred_sets library, the predicate INFINITE is defined as follows:

INFINITE_DEF |- !s. INFINITE s = “FINITE s

There are a few consequences of this definition stored in the pred_sets library. The
following theorem, for example, states that the image of an injective function on an
infinite set is infinite:

IMAGE_11_INFINITE

- 1f. (Ixy. Fx=Ffy) ==> (x=7y)) ==>
('s. INFINITE s ==> INFINITE(IMAGE f s))

Other built-in theorems about INFINITE can be found in chapter 3.

1.12.1 Theorem-proving support

There are two ML functions in the pred_sets library for reasoning about propositions
that involve the finiteness predicate FINITE. The first of these is a conversion FINITE_CONV
which automatically proves that sets of the form "{¢y,...,t,}" are finite. Evaluating

FINITE CONV "FINITE {ty,...,t,}";;
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yields the theorem |- FINITE {t;,...,t,} = T.

The second ML function for reasoning about the predicate FINITE is an induction tactic
called SET_INDUCT_TAC. When applied to a goal of the form "!s. FINITE s ==> P", this
tactic reduces it to proving that the property of sets expressed by \s.P holds of the
empty set and is preserved by the insertion of an element into an arbitrary finite set.
Since every finite set can be built up from the empty set by repeated insertion of values,
these subgoals imply that this property holds of all finite sets.

The following session illustrates the use of the tactic SET_INDUCT_TAC for proving that
the intersection of an arbitrary set t+ with a finite set s is finite. We first set up an
appropriate goal:

#g "ls:*->bool. FINITE s ==> !t. FINITE(s INTER t)";; 1
"!s. FINITE s ==> (!t. FINITE(s INTER t))"

() : void

Expanding with SET_INDUCT_TAC yields:

#expand SET_INDUCT_TAC; ; le_
OK..
2 subgoals
"It, FINITE((e INSERT s) INTER t)"
[ "FINITE s" 1]
[ "'t. FINITE(s INTER t)" ]
[ n~e IN S" ]

"1t. FINITE({} INTER t)"

() : void

The resulting subgoals are easy to prove, given the two basic theorems FINITE_EMPTY
and FINITE_INSERT shown in the previous section. Note that it may be assumed in the
step case that the value e being inserted into the set s is not already an element of s.

1.13 Cardinality of finite sets

The cardinality of a finite set is the number of elements it contains. In the pred_sets
library, this is formalized by a constant CARD defined by means of the following constant
specification:

CARD_DEF
|- (CARD{} = 0) /\
(!s.
FINITE s ==
('x. CARD(x INSERT s) = (x IN s => CARD s | SUC(CARD s))))
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This theorem is the sole defining property of CARD. Because the equation in the second
clause holds only under the assumption that s is finite, this form of definition allows
nothing significant to be deduced about the cardinality ‘CARD s’ of an infinite set s.

The built-in theorems about cardinality are all restricted to finite sets only, either
implicitly as in the theorem:

CARD_SING |- !x. CARD{x} =1
or explicitly, as in:

FINITE_ISO_NUM
|- 's:*->bool.
FINITE s ==>
(?f :num—>*.
('n m.
n < (CARD 8) /\m < (CARD 8) ==> (f n=f m) ==> (n = m)) /\
(s ={f n| n< (CARD s)}))

This second theorem states that the elements of a finite set can always be put into a
one-to-one correspondence with the natural numbers less than the set’s cardinality—
i.e. the elements of a finite set s can be numbered 0, 1, ..., (CARD s)-1. Other theorems
involving the cardinality function CARD can be found in chapter 3.

1.14 Using the library

The pred_sets library is loaded into a user’s HOL session using the function load_library
(see the HOL manual for a general description of library loading). The first action in the
load sequence is to update the internal HOL search paths. A pathname to the library is
added to the search path so that theorems may be autoloaded from the library theory
pred_sets; and the HOL help search path is updated with a pathname to online help
files for the ML functions in the library.

After the search paths are updated, the actions taken by the load sequence for pred_sets
depend on the current state of the HOL session. If the system is in draft mode, the li-
brary theory pred_sets is added as a new parent to the current theory. If the system
is not in draft mode, but the current theory is an ancestor of the pred_sets theory in
the library (e.g. the user is in a fresh HOL session) then pred_sets is made the current
theory. In both cases, the ML functions provided by the library are loaded into HOL and
all the theorems in the library (including definitions) are set up to be autoloaded on de-
mand. The parser and pretty-printer for the notation described above in sections 1.2.1
and 1.7.1 are then activated, and the ML functions provided by the library for reasoning
about sets are loaded. The pred_sets library is then fully loaded into the user’s HOL
session.
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1.14.1 Example session

The following session shows how the pred_sets library may be loaded using 1oad_library.
Suppose, beginning in a fresh HOL session, the user wishes to create a theory foo whose
parents include the theory pred_sets in the library. This may be done as follows:

#new_theory ‘foo‘;; [ 1]
) : void

#load_library ‘pred_sets‘;;

Library pred_sets loaded.
() : void

Loading the library while drafting the theory foo makes the library theory pred_sets
into a parent of foo. The same effect could have been achieved (in a fresh session) by
first loading the library and then creating foo:

#load_library ‘pred_sets‘;; [ 1]

Library pred_sets loaded.
() : void

#new_theory ‘foo‘;;
() : void

The theory pred_sets is first made the current theory of the new session. It then auto-
matically becomes a parent of foo when this theory is created by new_theory.

Now, suppose that foo has been created as shown above, and the user does some
work in this theory, quits HOL, and in a later session wishes to load the theory foo. This
must be done by first loading the pred_sets library and then loading the theory foo.

#load_library ‘pred_sets‘;; [ 1]

Library pred_sets loaded.
() : void

#load_theory ‘foo‘;;
Theory foo loaded
O : void

This sequence of actions ensures that the system can find the parent theory pred_sets
when it comes to load foo, since loading the library updates the search path.
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1.14.2 The load pred sets function

The pred_sets library may in many cases simply be loaded into the system as illustrated
by the examples given above. There are, however, certain situations in which the library
cannot be fully loaded at the time when the load_library is used. This occurs when the
system is not in draft mode and the current theory is not an ancestor of the theory
pred_sets. In this case, loading the library can (and will) update the search paths. But
the theory pred_sets can neither be made into a parent of the current theory nor be
made the current theory. This means that autoloading from the library can not at this
stage be activated; and the ML code in the library can not be loaded into HOL, since it
requires access to some of the theorems in the library.

In the situation described above—when the system is not in draft mode and the cur-
rent theory is not an ancestor of the theory pred_sets—the library load sequence defines
an ML function called load_pred_sets in the current HOL session. If at a future point
in the session the pred_sets theory (now accessible via the search path) becomes an
ancestor of the current theory, this function can then be used to complete loading of
the library. Evaluating load_pred_sets() in such a context loads the ML functions of
the pred_sets library into HOL and activates autoloading from its theory files. It also
activates the parser and pretty-printer support for set abstractions and finite sets. The
function load_pred_sets fails if the theory pred_sets is not an ancestor of the current
HOL theory.

Note that the function load_pred_sets becomes available upon loading the pred_sets
library only if the library theory pred_sets at the point of loading the library can neither
be made into a new parent (i.e. the system is not in draft mode) nor be made the current
theory.
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Chapter 2

ML Functions in the Library

This chapter provides documentation on all the ML functions that are made available in
HOL when the pred_sets library is loaded. This documentation is also available online
via the help facility.

DELETE_CONV

DELETE_CONV : conv -> conv

Synopsis

Reduce {x1,...,xn} DELETE x by deleting x from {x1,...,xn}.

Description

The function DELETE_CONV is a parameterized conversion for reducing finite sets of the
form "{t1,...,tn} DELETE t", where the term t and the elements of {t1,...,tn} are

of some base type ty. The first argument to DELETE_CONV is expected to be a conver-
sion that decides equality between values of the base type ty. Given an equation
"el = e2", where e1 and e2 are terms of type ty, this conversion should return the
theorem |- (el = e2) = T or the theorem |- (el = e2) = F, as appropriate.

Given such a conversion conv, the function DELETE_CONV returns a conversion that

maps a term of the form "{t1,...,tn} DELETE t" to the theorem
|- {t1,...,tn} DELETE t = {ti,...,tj}
where {ti,...,tj} is the subset of {t1,...,tn} for which the supplied equality conver-

sion conv proves

|- (ti=t) =F, ..., |- (&j=t) =F
and for all the elements tk in {t1,...,tn} but not in {ti,...,tj}, either conv proves
|- (tk = t) = T or tk is alpha-equivalent to t. That is, the reduced set {ti,...,tj}

comprises all those elements of the original set that are provably not equal to the deleted
element t.

23
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Example
In the following example, the conversion num_EQ_CONV is supplied as a parameter and
used to test equality of the deleted value 2 with the elements of the set.

#DELETE_CONV num_EQ_CONV "{2,1,SUC 1,3} DELETE 2";;
|- {2,1,80C 1,3} DELETE 2 = {1,3}

Failure

DELETE_CONV conv fails if applied to a term not of the form "{t1,...,tn} DELETE t". A
call DELETE_CONV conv "{t1,...,tn} DELETE t" fails unless for each element ti of the
set {t1,...,tn}, the term ¢t is either alpha-equivalent to ti or conv "ti = t" returns
|- (ti =t) =Tor |- (ti =t) =F.

See also
INSERT_CONV.

FINITE_CONV

FINITE_CONV : conv

Synopsis
Proves finiteness of sets of the form "{x1,...,xn}".
Description
The conversion FINITE_CONV expects its term argument to be an assertion of the form
"FINITE {x1,...,xn}". Given such a term, the conversion returns the theorem
|- FINITE {x1,...,xn} =T
Example

#FINITE_CONV "FINITE {1,2,3}";;
|- FINITE{1,2,3} =T

#FINITE_CONV "FINITE ({}:num->bool)";;
|- FINITE{} = T

Failure
Fails if applied to a term not of the form "FINITE {x1,...,xn}".
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IMAGE_CONV

IMAGE_CONV : conv -> conv -> conv

Synopsis

Compute the image of a function on a finite set.

Description

The function IMAGE_CONV is a parameterized conversion for computing the image of a
function f:ty1->ty2 on a finite set "{t1,...,tn}" of type ty1->bool. The first argument
to IMAGE_CONV is expected to be a conversion that computes the result of applying the
function £ to each element of this set. When applied to a term "f ti", this conversion
should return a theorem of the form |- (f ti) = ri, where ri is the result of applying
the function f to the element ti. This conversion is used by IMAGE_CONV to compute a
theorem of the form

|- IMAGE f {t1,...,tn} = {r1,...,rn}

The second argument to IMAGE_CONV is used (optionally) to simplify the resulting image
set {r1,...,rn} by removing redundant occurrences of values. This conversion expected
to decide equality of values of the result type ty2; given an equation "e1 = e2", where
el and e2 are terms of type ty2, the conversion should return either |- (el = e2) = T
or |- (el = e2) = F, as appropriate.

Given appropriate conversions convi and conv2, the function IMAGE_CONV returns a
conversion that maps a term of the form "IMAGE £ {t1,...,tn}" to the theorem

|- IMAGE £ {t1,...,tn} = {rj,...,rk}

where conv1 proves a theorem of the form |- (f ti) = ri for each element ti of the set
{t1,...,tn}, and where the set {rj,...,rk} is the smallest subset of {r1,...,rn} such
no two elements are alpha-equivalent and conv2 does not map "r1 = rm" to the theorem
|- (r1 = rm) = T for any pair of values r1 and rm in {rj,...,rk}. Thatis, {rj,...,rk}
is the set obtained by removing multiple occurrences of values from the set {r1,...,rn},
where the equality conversion conv2 (or alpha-equivalence) is used to determine which
pairs of terms in {r1,...,rn} are equal.

Example
The following is a very simple example in which REFL is used to construct the result of
applying the function f to each element of the set {1,2,1,4}, and NO_CONV is the supplied
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‘equality conversion’.

#IMAGE_CONV REFL NO_CONV "IMAGE (f:num->num) {1,2,1,4}";;
|- IMAGE £{1,2,1,4} = {f 2,f 1,f 4}

The result contains only one occurrence of ‘¢ 1’, even though N0_CONV always fails, since
IMAGE_CONV simplifies the resulting set by removing elements that are redundant up to
alpha-equivalence.

For the next example, we construct a conversion that maps SUC n for any numeral n
to the numeral standing for the successor of n.

#let SUC_CONV tm =
let n = int_of_string(fst(dest_const(rand tm))) in

let sucn = mk_const(string_of_int(n+1), ":num") in
SYM (num_CONV sucn);;
SUC_CONV = - : conv

The result is a conversion that inverts num_CONV:

#num_CONV "4";;
|- 4 = SUC 3

#SUC_CONV "SUC 3";;
|- SUC 3 =4

The conversion SUC_CONV can then be used to compute the image of the successor func-
tion on a finite set:

#IMAGE_CONV SUC_CONV NO_CONV "IMAGE SUC {1,2,1,4}";;
|- IMAGE suc{1,2,1,4} = {3,2,5}

Note that 2 (= SUC 1) appears only once in the resulting set.
Fianlly, here is an example of using IMAGE_CONV to compute the image of a paired
addition function on a set of pairs of numbers:

#IMAGE_CONV (PAIRED_BETA_CONV THENC ADD_CONV) num_EQ_CONV
"IMAGE (\(n,m).n+m) {(1,2), (3,4), (0,3), (1,3)}";;
|- IMAGE(\(n,m). n + m){(1,2),(3,4),(0,3),(1,3)} = {7,3,4}

Failure

IMAGE_CONV convl conv?2 fails if applied to a term not of the form "IMAGE £ {t1,...,tn}".
An application of IMAGE_CONV convl conv2 to a term "IMAGE f {t1,...,tn}" fails unless
for all ti in the set {t1,...,tn}, evaluating convl "f ti" returns |- (f ti) = ri for

some ri.
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INSERT_CONV

INSERT_CONV : conv -> conv

Synopsis

Reduce x INSERT {x1,...,x,...,xn}to {x1,...,x,...,xn}.

Description

The function INSERT_CONV is a parameterized conversion for reducing finite sets of the
form "t INSERT {ti1,...,tn}", where {t1,...,tn}is a set of type ty->bool and t is equal

to some element ti of this set. The first argument to INSERT_CONV is expected to be a
conversion that decides equality between values of the base type ty. Given an equation
"e1 = e2", where el and e2 are terms of type ty, this conversion should return the
theorem |- (el = e2) = T or the theorem |- (el = e2) = F, as appropriate.

Given such a conversion, the function INSERT_CONV returns a conversion that maps a

term of the form "t INSERT {t1,...,tn}" to the theorem
|- t INSERT {t1,...,tn} = {t1,...,tn}
if ¢ is alpha-equivalent to any ti in the set {t1,...,tn}, or if the supplied conversion

proves |- (t = ti) = T for any ti.

Example
In the following example, the conversion num_EQ_CONV is supplied as a parameter and
used to test equality of the inserted value 2 with the remaining elements of the set.

#INSERT_CONV num_EQ_CONV "2 INSERT {1,SUC 1,3}";;
|- {2,1,80C 1,3} = {1,S0C 1,3}

In this example, the supplied conversion num_EQ_CONV is able to prove that 2 is equal
to Suc 1 and the set is therefore reduced. Note that "2 INSERT {1,SUC 1,3}" is just
"{2,1,80C 1,3}".

A call to INSERT_CONV fails when the value being inserted is provably not equal to any
of the remaining elements:

#INSERT_CONV num_EQ_CONV "1 INSERT {2,3}";;
evaluation failed INSERT_CONV

But this failure can, if desired, be caught using TRY_CONV.
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The behaviour of the supplied conversion is irrelevant when the inserted value is
alpha-equivalent to one of the remaining elements:

#INSERT_CONV NO_CONV "(y:*) INSERT {x,y,z}";;
I_ {Y,X,Y,Z} = {X,Y3Z}

The conversion NO_CONV always fails, but INSERT_CONV is nontheless able in this case to
prove the required result.

Note that DEPTH_CONV (INSERT_CONV conv) can be used to remove duplicate elements
from a finite set, but the following conversion is faster:

#letrec REDUCE_CONV conv tm =
(SUB_CONV (REDUCE_CONV conv) THENC (TRY_CONV (INSERT_CONV conv))) tm;;
REDUCE_CONV = - : (conv —-> conv)

#REDUCE_CONV num_EQ_cCONV "{1,2,1,3,2,4,3,5,6}";;
I- {1;2’1,332’493,5,6} = {1;2’4,33516}

Failure
INSERT_CONV conv fails if applied to a term not of the form "t INSERT {t1,...,tn}".
A call INSERT_CONV conv "t INSERT {t1,...,tn}" fails unless t is alpha-equivalent to

some ti, Or conv "t = ti" returns |- (t = ti) = T for some ti.

See also
DELETE_CONV.

IN_CONV

IN_CONV : conv -> conv

Synopsis

Decision procedure for membership in finite sets.

Description
The function IN_CONV is a parameterized conversion for proving or disproving member-
ship assertions of the general form:

"t IN {t1,...,tn}"

where {t1,...,tn} is a set of type ty->bool and t is a value of the base type ty. The
first argument to IN_CONV is expected to be a conversion that decides equality between
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values of the base type ty. Given an equation "el = e2", where el and e2 are terms
of type ty, this conversion should return the theorem |- (el = e2) = T or the theorem
|- (el = e2) = F, as appropriate.

Given such a conversion, the function IN_CONV returns a conversion that maps a term
of the form "t IN {t1,...,tn}" to the theorem

|- t IN {t1,...,tn} =T

if ¢ is alpha-equivalent to any ti, or if the supplied conversion proves |- (t = ti) = T
for any ti. If the supplied conversion proves |- (¢t = ti) = F for every ti, then the
result is the theorem

|- t IN {t1,...,tn} = F
In all other cases, IN_conv will fail.

Example

In the following example, the conversion num_EQ_CONV is supplied as a parameter and
used to test equality of the candidate element 1 with the actual elements of the given
set.

#IN_CONV num_EQ_CONV "2 IN {0,SUC 1,3}";;
|- 2 IN {0,SUC 1,3} =T

The result is T because num_EQ_CONV is able to prove that 2 is equal to SUC 1. An example
of a negative result is:

#IN_CONV num_EQ_CONV "1 IN {0,2,3}";;
|- 1 1IN {0,2,3} = F

Finally the behaviour of the supplied conversion is irrelevant when the value to be tested
for membership is alpha-equivalent to an actual element:

#IN_CONV NO_CONV "1 IN {3,2,1}";;
|- 1IN {3,2,1} =T

The conversion NO_CONV always fails, but IN_cONV is nontheless able in this case to prove
the required result.

Failure

IN_CONV conv fails if applied to a term that is not of the form "t IN {t1,...,tn}". A call
IN_CONV conv "t IN {t1,...,tn}" fails unless the term t is alpha-equivalent to some
ti, Or conv "t = ti" returns |- (t = ti) = T for some ti, or conv "t = ti" returns

|- (¢ = ti) = F for every ti.
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SET_INDUCT_TAC

SET_INDUCT_TAC : tactic

Synopsis

Tactic for induction on finite sets.

Description
SET_INDUCT_TAC is an induction tacic for proving properties of finite sets. When applied
to a goal of the form

Is. FINITE s ==> P[s]

SET_INDUCT_TAC reduces this goal to proving that the property \s.P[s] holds of the
empty set and is preserved by insertion of an element into an arbitrary finite set. Since
every finite set can be built up from the empty set "{}" by repeated insertion of values,
these subgoals imply that the property \s.P[s] holds of all finite sets.

The tactic specification of SET_INDUCT_TAC is:

A ?7- !s. FINITE s ==> P

SET_INDUCT_TAC

A |- P[{}/s]
A u {FINITE s’, P[s’/s], “e IN s’} ?- P[e INSERT s’/s]

where e is a variable chosen so as not to appear free in the assumptions A, and s’ is a
primed variant of s that does not appear free in A (usually, s’ is just s).

Failure
SET_INDUCT_TAC (A,g) fails unless g has the form !'s. FINITE s ==> P, where the vari-
able s has type ty->bool for some type ty.

SET_SPEC_CONV

SET_SPEC_CONV : conv

Synopsis

Axiom-scheme of specification for set abstractions.
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Description

The conversion SET_SPEC_CONV expects its term argument to be an assertion of the form
"t IN {E | P}". Given such a term, the conversion returns a theorem that defines the
condition under which this membership assertion holds. When E is just a variable v, the
conversion returns:

|-t IN {v | P} = P[t/v]
and when E is not a variable but some other expression, the theorem returned is:
|-t IN {E | P} = ?x1...xn. (¢t = E) /\ P

where x1, ..., xn are the variables that occur free both in the expression E and in the
proposition P.

Example

#SET_SPEC_CONV "12 IN {n | n > N}";;
|- 12 IN{n | n > N} =12 > N

#SET_SPEC_CONV "p IN {(n,m) | n < m}";;

[-p IN {(a,m) | n <m}=(?nm. (p =n,m) /\n<m)

Failure
Fails if applied to a term that is not of the form "t IN {E | P}".

UNION_CONV

UNION_CONV : conv -> conv

Synopsis
Reduce {t1,...,tn} UNION sto t1 INSERT (... (tn INSERT s)).

Description

The function UNION_CONV is a parameterized conversion for reducing sets of the form
"{t1,...,tn} UNION s", where {t1,...,tn} and s are sets of type ty->bool. The first
argument to UNION_CONV is expected to be a conversion that decides equality between
values of the base type ty. Given an equation "el = e2", where el and e2 are terms
of type ty, this conversion should return the theorem |- (el = e2) = T or the theorem
|- (el = e2) = F, as appropriate.
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Given such a conversion, the function UNION_CONV returns a conversion that maps a

term of the form "{t1,...,tn} UNION s" to the theorem
|- t UNION {t1,...,tn} = ti INSERT ... (tj INSERT s)
where {ti,...,tj} is the set of all terms t that occur as elements of {t1,...,tn} for

which the conversion IN_CONV conv fails to prove that |- (t IN s) = T (that is, either
by proving |- (t IN s) = F instead, or by failing outright).

Example

In the following example, num_EQ_CONV is supplied as a parameter to UNION_CONV and
used to test for membership of each element of the first finite set {1,2,3} of the union
in the second finite set {SUC 0,3,4}.

#UNION_CONV num_EQ_CONV "{1,2,3} UNION {SUC 0,3,4}";;
|- {1,2,3} UNION {SUC 0,3,4} = {2,SUC 0,3,4}

The result is {2,SUC 0,3,4}, rather than {1,2,SUC 0,3,4}, because UNION_CONV is able by
means of a call to

IN_CONV num_EQ_CONV "1 IN {SUC 0,3,4}"

to prove that 1 is already an element of the set {SUC 0,3,4}.
The conversion supplied to UNION_CONV need not actually prove equality of elements,
if simplification of the resulting set is not desired. For example:

#UNION_CONV NO_conv "{1,2,3} UNION {SUC 0,3,4}";;
|- {1,2,3} UNION {SUC 0,3,4} = {1,2,SUC 0,3,4}

In this case, the resulting set is just left unsimplified. Moreover, the second set argument
to UNION need not be a finite set:

#UNION_CONV NO_cONV "{1,2,3} UNION s";;
|- {1,2,3} UNION s = 1 INSERT (2 INSERT (3 INSERT s))

And, of course, in this case the conversion argument to UNION_CONV is irrelevant.

Failure
UNION_CONV conv fails if applied to a term not of the form "{t1,...,tn} UNION s".

See also
IN_CONV.
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Pre-proved Theorems

The sections that follow list all theorems in the pred_sets library, including definitions.
The theorems are grouped into sections according to subject matter. Some theorems
could be classified under more than one subject, but each theorem is listed in only
one section. The reader may therefore have to consult more than one section when
searching for any particular theorem.

When the pred_sets library is loaded, all the theorems listed in this chapter (including
definitions) are set up to autoload when their names are mentioned in ML.
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3.1 Membership, equality, and set specifications
3.2 The empty and universal sets

3.3 Set inclusion

3.4 Intersection and union

3.5 Set difference

3.6 Disjoint sets

3.7 Insertion and deletion of an element

3.8 The CHOICE and REST functions

3.9 Image of a function on a set

3.10 Mappings between sets

3.11 Singleton sets

3.12 Finite and infinite sets

3.13 Cardinality of sets
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