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Chapter 1

Statement of Rights

Jim Grundy, hereafter referred to as ‘the Author’, retains the copyright and all other
legal rights to the software contained in the pair library, hereafter referred to as ‘the
Software’. The Software is made available free of charge on an ‘as is’ basis. No guaran-
tee, either express or implied, of maintenance, reliability, merchantability or suitability
for any purpose is made by the Author.

The user is granted the right to make personal or internal use of the Software provided
that both:

1. The Software is not used for commercial gain.

2. The user shall not hold the Author liable for any consequences arising from use of
the Software.

The user is granted the right to further distribute the Software provided that both:

1. The Software and this statement of rights is not modified.

2. The Software does not form part or the whole of a system distributed for commer-
cial gain.

The user is granted the right to modify the Software for personal or internal use pro-
vided that all of the following conditions are observed:

1. The user does not distribute the modified software.

2. The modified software is not used for commercial gain.

3. The Author retains all rights to the modified software.

Anyone seeking a licence to use this software for commercial purposes is invited to
contact the Author.
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Chapter 2

The pair Library

This manual describes the use of the pair library. The pair library has been provided
to reduce the difficulty of reasoning about pairs (and tuples), particularly paired quan-
tifications and abstractions. The pair library contains a version of every standard HOL
function for manipulating abstractions and quantifications. The table below sets out all
the standard HOL functions for which the pair library provides paired equivalents:

Function Paired Version
ABS PABS
ABS CONV PABS CONV
aconv paconv
ALPHA PALPHA
ALPHA CONV PALPHA CONV
AND EXISTS CONV AND PEXISTS CONV
AND FORALL CONV AND PFORALL CONV
BETA CONV PBETA CONV
BETA RULE PBETA RULE
BETA TAC PBETA TAC
bndvar bndpair
body pbody
CHOOSE PCHOOSE
CHOOSE TAC PCHOOSE TAC
CHOOSE THEN PCHOOSE THEN
dest abs dest pabs
dest exists dest pexists
dest forall dest pforall
dest select dest pselect
ETA CONV PETA CONV
EXISTENCE PEXISTENCE
EXISTS PEXISTS
EXISTS AND CONV PEXISTS AND CONV
EXISTS EQ PEXISTS EQ
EXISTS IMP PEXISTS IMP
EXISTS IMP CONV PEXISTS IMP CONV
EXISTS NOT CONV PEXISTS NOT CONV
EXISTS OR CONV PEXISTS OR CONV
EXISTS TAC PEXISTS TAC
EXISTS UNIQUE CONV PEXISTS UNIQUE CONV
EXT PEXT
FILTER GEN TAC FILTER PGEN TAC
FILTER STRIP TAC FILTER PSTRIP TAC
FILTER STRIP THEN FILTER PSTRIP THEN
FORALL AND CONV PFORALL AND CONV
FORALL EQ PFORALL EQ
FORALL IMP CONV PFORALL IMP CONV
FORALL NOT CONV PFORALL NOT CONV
FORALL OR CONV PFORALL OR CONV
free in occs in
GEN PGEN
GEN ALPHA CONV GEN PALPHA CONV
GEN TAC PGEN TAC
GENL PGENL
genvar genlike
GSPEC GPSPEC
HALF MK ABS HALF MK PABS
is abs is pabs
is exists is pexists
is forall is pforall
is select is pselect
is var is pvar
ISPEC IPSPEC
ISPECL IPSPECL
LEFT AND EXISTS CONV LEFT AND PEXISTS CONV
LEFT AND FORALL CONV LEFT AND PFORALL CONV
LEFT IMP EXISTS CONV LEFT IMP PEXISTS CONV

Function Paired Version
LEFT IMP FORALL CONV LEFT IMP PFORALL CONV
LEFT OR EXISTS CONV LEFT OR PEXISTS CONV
LEFT OR FORALL CONV LEFT OR PFORALL CONV
LIST BETA CONV LIST PBETA CONV
list mk abs list mk pabs
LIST MK EXISTS LIST MK PEXISTS
list mk exists list mk pexists
list mk forall list mk pforall
MATCH MP PMATCH MP
MATCH MP TAC PMATCH MP TAC
MK ABS MK PABS
mk abs mk pabs
MK EXISTS MK PEXISTS
mk exists mk pexists
mk forall mk pforall
mk select mk pselect
NOT EXISTS CONV NOT PEXISTS CONV
NOT FORALL CONV NOT PFORALL CONV
OR EXISTS CONV OR PEXISTS CONV
OR FORALL CONV OR PFORALL CONV
PART MATCH PART PMATCH
RIGHT AND EXISTS CONV RIGHT AND PEXISTS CONV
RIGHT AND FORALL CONV RIGHT AND PFORALL CONV
RIGHT BETA RIGHT PBETA
RIGHT IMP EXISTS CONV RIGHT IMP PEXISTS CONV
RIGHT IMP FORALL CONV RIGHT IMP PFORALL CONV
RIGHT LIST BETA RIGHT LIST PBETA
RIGHT OR EXISTS CONV RIGHT OR PEXISTS CONV
RIGHT OR FORALL CONV RIGHT OR PFORALL CONV
SELECT CONV PSELECT CONV
SELECT ELIM PSELECT ELIM
SELECT EQ PSELECT EQ
SELECT INTRO PSELECT INTRO
SELECT RULE PSELECT RULE
SKOLEM CONV PSKOLEM CONV
SPEC PSPEC
SPECL PSPECL
SPEC ALL PSPEC ALL
SPEC TAC PSPEC TAC
SPEC VAR PSPEC PAIR
strip abs strip pabs
STRIP ASSUME TAC PSTRIP ASSUME TAC
strip exists strip pexists
strip forall strip pforall
STRIP GOAL THEN PSTRIP GOAL THEN
STRIP TAC PSTRIP TAC
STRIP THM THEN PSTRIP THM THEN
STRUCT CASES TAC PSTRUCT CASES TAC
SUB CONV PSUB CONV
SWAP EXISTS CONV SWAP PEXISTS CONV
variant pvariant
X CHOOSE TAC P PCHOOSE TAC
X CHOOSE THEN P PCHOOSE THEN
X FUN EQ CONV P FUN EQ CONV
X GEN TAC P PGEN TAC
X SKOLEM CONV P PSKOLEM CONV

The pair library also contains many functions for which there are no analogous non-
paired functions.
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6 Chapter 2. The pair Library

2.1 Getting Started

Before you can use any of the functions described in this manual, you must load the
pair library. To load the pair library, issue the following command:

load_library ‘pair‘;;

The pair library contains no theories, so it is always possible to load it.

2.2 The pair Library Philosophy

Two main design decisions should be noted about the pair library. These decisions
run counter to the usual HOL philosophy that each inference rule should perform a
single simple inference, and should do so only under a particular restricted set of cir-
cumstances. The philosophy of the pair library is that each inference rule should do
whatever is necessary to eliminate the distinctions between reasoning about paired and
unpaired abstractions and quantifications.

The first design decision is that all the functions for dealing with paired quantifica-
tions and abstractions have a very general notion of what a pair is. For the purposes of
such functions, a pair may be an arbitrary paired structure. A paired structure is either
a term, or a pair of terms which may themselves be paired structures. For example, the
following are all considered to be paired structures:

a (a,b) (a,b,c) ((a1,a2),(b1,b2)) ((a1,a2),(b2,b2),(c1,c2))

Note that it is always possible to use the paired version of an inference rule in place of
the standard version.

The other design decision is that the a pair (or subpair) bound by a paired abstraction
should be treated as much like a single variable as possible. This means that paired and
nonpaired abstractions can be considered α-equivalent. For example:

#PALPHA "\(x,y). (f (x,y))" "\xy. (f xy)";;
|- (\(x,y). f(x,y)) = (\xy. f xy)

The effect of this decision can be seen in evidence in β-conversion and other inference
rules:

#PBETA_CONV "(\(x,y). (f x y (x,y))) ab";;
|- (\(x,y). f x y(x,y))xy = f(FST ab)(SND ab)ab

2.3 Bugs and Future Changes

At the time of release there were no known bugs in the system. However, this is more
likely to be a result of poor testing than of good coding. If you do find a bug please
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report it to me, preferably along with a short example that exhibits the bug and the ver-
sion number of the pair library that you are using. The constant pair version contains
the version number of the pair library. I will provide bug fixes as soon as possible. I can
be contacted at:

Jim Grundy
Defence Science & Technology Organisation phone: +61 8 259 6162
Building 171 Laboratories Area fax: +61 8 259 5980
PO Box 1500 telex: AA82799
Salisbury SA 5108 email: Jim.Grundy@dsto.defence.gov.au
AUSTRALIA jim@grundy-j.apana.org.au

I would also welcome any suggestions for improving to the library, including optimisa-
tions and suggestions for new functions.
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Chapter 3

ML Functions in the pair Library

This chapter provides documentation on the ML functions that are made available in
HOL when the pair library is loaded. This documentation is also available online via the
help facility.

AND_PEXISTS_CONV

AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification outwards through a conjunction.

Description
When applied to a term of the form (?p. t) /\ (?p. u), where no variables in p are
free in either t or u, AND_PEXISTS_CONV returns the theorem:

|- (?p. t) /\ (?p. u) = (?p. t /\ u)

Failure
AND_PEXISTS_CONV fails if it is applied to a term not of the form (?p. t) /\ (?p. u), or
if it is applied to a term (?p. t) /\ (?p. u) in which variables from p are free in either
t or u.

See also
AND_EXISTS_CONV, PEXISTS_AND_CONV, LEFT_AND_PEXISTS_CONV,
RIGHT_AND_PEXISTS_CONV.

AND_PFORALL_CONV

AND_PFORALL_CONV : conv

9
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Synopsis
Moves a paired universal quantification outwards through a conjunction.

Description
When applied to a term of the form (!p. t) /\ (!p. t), the conversion AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ (!p. u) = (!p. t /\ u)

Failure
Fails if applied to a term not of the form (!p. t) /\ (!p. t).

See also
AND_FORALL_CONV, PFORALL_AND_CONV, LEFT_AND_PFORALL_CONV,
RIGHT_AND_PFORALL_CONV.

bndpair

bndpair : (term -> term)

Synopsis
Returns the bound pair of a paired abstraction.

Description
bndpair "\pair. t" returns "pair".

Failure
Fails unless the term is a paired abstraction.

See also
bndvar, pbody, dest_pabs.

CURRY_CONV

CURRY_CONV : conv
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Synopsis
Currys an application of a paired abstraction.

Example

#CURRY_CONV "(\(x,y). x + y) (1,2)";;
|- (\(x,y). x + y)(1,2) = (\x y. x + y)1 2

#CURRY_CONV "(\(x,y). x + y) z";;
|- (\(x,y). x + y)z = (\x y. x + y)(FST z)(SND z)

Failure
CURRY_CONV tm fails if tm is not an application of a paired abstraction.

See also
UNCURRY_CONV.

CURRY_EXISTS_CONV

CURRY_EXISTS_CONV : conv

Synopsis
Currys paired existential quantifications into consecutive existential quantifications.

Example

#CURRY_EXISTS_CONV "?(x,y). x + y = y + x";;
|- (?(x,y). x + y = y + x) = (?x y. x + y = y + x)

#CURRY_EXISTS_CONV "?((w,x),(y,z)). w+x+y+z = z+y+x+w";;
|- (?((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w))) =

(?(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure
CURRY_EXISTS_CONV tm fails if tm is not a paired existential quantification.

See also
CURRY_CONV, UNCURRY_CONV, UNCURRY_EXISTS_CONV, CURRY_FORALL_CONV,
UNCURRY_FORALL_CONV.
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CURRY_FORALL_CONV

CURRY_FORALL_CONV : conv

Synopsis
Currys paired universal quantifications into consecutive universal quantifications.

Example

#CURRY_FORALL_CONV "!(x,y). x + y = y + x";;
|- (!(x,y). x + y = y + x) = (!x y. x + y = y + x)

#CURRY_FORALL_CONV "!((w,x),(y,z)). w+x+y+z = z+y+x+w";;
|- (!((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w))) =

(!(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure
CURRY_FORALL_CONV tm fails if tm is not a paired universal quantification.

See also
CURRY_CONV, UNCURRY_CONV, UNCURRY_FORALL_CONV, CURRY_EXISTS_CONV,
UNCURRY_EXISTS_CONV.

dest_pabs

dest_pabs : (term -> (term # term))

Synopsis
Breaks apart a paired abstraction into abstracted pair and body.

Description
dest_pabs is a term destructor for paired abstractions: dest_abs "\pair. t" returns
("pair","t").

Failure
Fails with dest_pabs if term is not a paired abstraction.
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See also
dest_abs, mk_pabs, is_pabs, strip_pabs.

dest_pexists

dest_pexists : (term -> (term # term))

Synopsis
Breaks apart paired existential quantifiers into the bound pair and the body.

Description
dest_pexists is a term destructor for paired existential quantification. The application
of dest_pexists to "?pair. t" returns ("pair","t").

Failure
Fails with dest_pexists if term is not a paired existential quantification.

See also
dest_exists, mk_pexists, is_pexists, strip_pexists.

dest_pforall

dest_pforall : (term -> (term # term))

Synopsis
Breaks apart paired universal quantifiers into the bound pair and the body.

Description
dest_pforall is a term destructor for paired universal quantification. The application of
dest_pforall to "!pair. t" returns ("pair","t").

Failure
Fails with dest_pforall if term is not a paired universal quantification.

See also
dest_forall, mk_pforall, is_pforall, strip_pforall.
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dest_prod

dest_prod : (type -> (type # type))

Synopsis
Breaks apart a product type into its component types.

Description
dest_prod is a type destructor for products: dest_pair ":t1#t2" returns (":t1",":t2").

Failure
Fails with dest_prod if the argument is not a product type.

See also
is_prod, mk_prod.

dest_pselect

dest_pselect : (term -> (term # term))

Synopsis
Breaks apart a paired choice-term into the selected pair and the body.

Description
dest_pselect is a term destructor for paired choice terms. The application of dest_select
to "@pair. t" returns ("pair","t").

Failure
Fails with dest_pselect if term is not a paired choice-term.

See also
dest_select, mk_pselect, is_pselect.

FILTER_PGEN_TAC

FILTER_PGEN_TAC : (term -> tactic)
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Synopsis
Strips off a paired universal quantifier, but fails for a given quantified pair.

Description
When applied to a term q and a goal A ?- !p. t, the tactic FILTER_PGEN_TAC fails if the
quantified pair p is the same as p, but otherwise advances the goal in the same way as
PGEN_TAC, i.e. returns the goal A ?- t[p’/p] where p’ is a variant of p chosen to avoid
clashing with any variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t
============== FILTER_PGEN_TAC "q"
A ?- t[p’/p]

Failure
Fails if the goal’s conclusion is not a paired universal quantifier or the quantified pair is
equal to the given term.

See also
FILTER_GEN_TAC, PGEN, PGEN_TAC, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL,
PSPEC_TAC, PSTRIP_TAC.

FILTER_PSTRIP_TAC

FILTER_PSTRIP_TAC : (term -> tactic)

Synopsis
Conditionally strips apart a goal by eliminating the outermost connective.

Description
Stripping apart a goal in a more careful way than is done by PSTRIP_TAC may be neces-
sary when dealing with quantified terms and implications. FILTER_PSTRIP_TAC behaves
like PSTRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_PSTRIP_TAC u is a tactic that removes one outermost oc-
currence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t,
provided the term being stripped does not contain u. FILTER_PSTRIP_TAC will strip
paired universal quantifications. A negation ~t is treated as the implication t ==> F.
FILTER_PSTRIP_TAC also breaks apart conjunctions without applying any filtering.
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If t is a universally quantified term, FILTER_PSTRIP_TAC u strips off the quantifier:

A ?- !p. v
================ FILTER_PSTRIP_TAC "u" [where p is not u]

A ?- v[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the assumptions A. If t is a conjunction, no filtering is done and FILTER_PSTRIP_TAC

simply splits the conjunction:

A ?- v /\ w
================= FILTER_PSTRIP_TAC "u"
A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then
FILTER_PSTRIP_TAC u moves the antecedent into the assumptions and recursively splits
the antecedent according to the following rules (see PSTRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v
====================
A u {w[p’/p]} ?- v

where p’ is a variant of the pair p.

Failure
FILTER_PSTRIP_TAC u (A,t) fails if t is not a universally quantified term, an implica-
tion, a negation or a conjunction; or if the term being stripped contains u in the sense
described above (conjunction excluded).

Uses
FILTER_PSTRIP_TAC is used when stripping outer connectives from a goal in a more del-
icate way than PSTRIP_TAC. A typical application is to keep stripping by using the tactic
REPEAT (FILTER_PSTRIP_TAC u) until one hits the term u at which stripping is to stop.

See also
PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_PSTRIP_THEN, PSTRIP_TAC, FILTER_STRIP_TAC.

FILTER_PSTRIP_THEN

FILTER_PSTRIP_THEN : (thm_tactic -> term -> tactic)
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Synopsis
Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description
Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u re-
moves one outer connective (!, ==>, or ~) from t, if the term being stripped does not
contain a free instance of u. Note that FILTER_PSTRIP_THEN will strip paired universal
quantifiers. A negation ~t is treated as the implication t ==> F. The theorem-tactic ttac

is applied only when stripping an implication, by using the antecedent stripped off.
FILTER_PSTRIP_THEN also breaks conjunctions.
FILTER_PSTRIP_THEN behaves like PSTRIP_GOAL_THEN, if the term being stripped does

not contain a free instance of u. In particular, FILTER_PSTRIP_THEN PSTRIP_ASSUME_TAC

behaves like FILTER_PSTRIP_TAC.

Failure
FILTER_PSTRIP_THEN ttac u (A,t) fails if t is not a paired universally quantified term,
an implication, a negation or a conjunction; or if the term being stripped contains the
term u (conjunction excluded); or if the application of ttac fails, after stripping the
goal.

Uses
FILTER_PSTRIP_THEN is used to manipulate intermediate results using theorem-tactics, af-
ter stripping outer connectives from a goal in a more delicate way than PSTRIP_GOAL_THEN.

See also
PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_STRIP_THEN, PSTRIP_TAC, FILTER_PSTRIP_TAC.

genlike

genlike : (term -> term)

Synopsis
Returns a pair structure of variables whose names have not been previously used.

Description
When given a pair structure, genlike returns a paired structure of variables whose
names have not been used for variables or constants in the HOL session so far. The
structure of the term returned will be identical to the structure of the argument.
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Failure
Never fails.

Example
The following example illustrates the behaviour of genlike:

#genlike "((1,2),(x:*,x:*))";;
"(GEN%VAR%487,GEN%VAR%488),GEN%VAR%489,GEN%VAR%490" : term

Uses
Unique variables are useful in writing derived rules, for specializing terms without hav-
ing to worry about such things as free variable capture. It is often important in such
rules to keep the same structure. If not, genvar will be adequate. If the names are to
be visible to a typical user, the function pvariant can provide rather more meaningful
names.

See also
genvar, GPSPEC, pvariant.

GEN_PALPHA_CONV

GEN_PALPHA_CONV : (term -> conv)

Synopsis
Renames the bound pair of a paired abstraction, quantified term, or other binder.

Description
The conversion GEN_PALPHA_CONV provides alpha conversion for lambda abstractions of
the form "\p.t", quantified terms of the forms "!p.t", "?p.t" or "?!p.t", and epsilon
terms of the form "@p.t". In general, if B is a binder constant, then GEN_ALPHA_CONV im-
plements alpha conversion for applications of the form "B p.t". The function is_binder

determines what is regarded as a binder in this context.
The renaming of pairs is as described for PALPHA_CONV.

Failure
GEN_PALPHA_CONV q tm fails if q is not a variable, or if tm does not have one of the
forms "\p.t" or "B p.t", where B is a binder (that is, is_binder ‘B‘ returns true).
GEN_ALPHA_CONV q tm also fails if tm does have one of these forms, but types of the vari-
ables p and q differ.
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See also
GEN_ALPHA_CONV, PALPHA, PALPHA_CONV, is_binder.

GPSPEC

GPSPEC : (thm -> thm)

Synopsis
Specializes the conclusion of a theorem with unique pairs.

Description
When applied to a theorem A |- !p1...pn. t, where the number of universally quan-
tified variables may be zero, GPSPEC returns A |- t[g1/p1]...[gn/pn], where the gi is
paired structures of the same structure as pi and made up of distinct variables , chosen
by genvar.

A |- !p1...pn. t
------------------------- GPSPEC
A |- t[g1/p1]...[gn/pn]

Failure
Never fails.

Uses
GPSPEC is useful in writing derived inference rules which need to specialize theorems
while avoiding using any variables that may be present elsewhere.

See also
GSPEC, PGEN, PGENL, genvar, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL,
PSPEC_TAC, PSPEC_PAIR.

HALF_MK_PABS

HALF_MK_PABS : (thm -> thm)

Synopsis
Converts a function definition to lambda-form.
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Description
When applied to a theorem A |- !p. t1 p = t2, whose conclusion is a universally quan-
tified equation, HALF_MK_PABS returns the theorem A |- t1 = (\p. t2).

A |- !p. t1 p = t2
-------------------- HALF_MK_PABS [where p is not free in t1]
A |- t1 = (\p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation whose left-
hand side is a function applied to the quantified pair, or if any of the the variables in the
quantified pair is free in that function.

See also
HALF_MK_ABS, PETA_CONV, MK_PABS, MK_PEXISTS.

IPSPEC

IPSPEC : (term -> thm -> thm)

Synopsis
Specializes a theorem, with type instantiation if necessary.

Description
This rule specializes a paired quantification as does PSPEC; it differs from it in also
instantiating the type if needed:

A |- !p:ty.tm
----------------------- IPSPEC "q:ty’"

A |- tm[q/p]

(where q is free for p in tm, and ty’ is an instance of ty).

Failure
IPSPEC fails if the input theorem is not universally quantified, if the type of the given
term is not an instance of the type of the quantified variable, or if the type variable is
free in the assumptions.

See also
ISPEC, INST_TY_TERM, INST_TYPE, IPSPECL, PSPEC, match.
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IPSPECL

IPSPECL : (term list -> thm -> thm)

Synopsis
Specializes a theorem zero or more times, with type instantiation if necessary.

Description
IPSPECL is an iterative version of IPSPEC

A |- !p1...pn.tm
---------------------------- IPSPECL ["q1",...,"qn"]
A |- t[q1,...qn/p1,...,pn]

(where qi is free for pi in tm).

Failure
IPSPECL fails if the list of terms is longer than the number of quantified variables in the
term, if the type instantiation fails, or if the type variable being instantiated is free in
the assumptions.

See also
ISPECL, INST_TYPE, INST_TY_TERM, IPSPEC, MATCH, SPEC, PSPECL.

is_pabs

is_pabs : (term -> bool)

Synopsis
Tests a term to see if it is a paired abstraction.

Description
is_pabs "\pair. t" returns true. If the term is not a paired abstraction the result is
false.

Failure
Never fails.
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See also
is_abs, mk_pabs, dest_pabs.

is_pexists

is_pexists : (term -> bool)

Synopsis
Tests a term to see if it as a paired existential quantification.

Description
is_pexists "?pair. t" returns true. If the term is not a paired existential quantification
the result is false.

Failure
Never fails.

See also
is_exists, mk_pexists, dest_pexists.

is_pforall

is_pforall : (term -> bool)

Synopsis
Tests a term to see if it is a paired universal quantification.

Description
is_pforall "!pair. t" returns true. If the term is not a a paired universal quantifica-
tion the result is false.

Failure
Never fails.

See also
is_forall, mk_pforall, dest_pforall.
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is_prod

is_prod : (type -> bool)

Synopsis
Tests a type to see if it is a product type.

Description
is_prod ":t1#t2" returns true.

Failure
Never fails.

See also
dest_prod, mk_prod.

is_pselect

is_pselect : (term -> bool)

Synopsis
Tests a term to see if it is a paired choice-term.

Description
is_select "@pair. t" returns true. If the term is not a paired choice-term the result is
false.

Failure
Never fails.

See also
is_select, mk_pselect, dest_pselect.

is_pvar

is_pvar : (term -> bool)
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Synopsis
Tests a term to see if it is a paired structure of variables.

Description
is_pvar "pvar" returns true iff pvar is a paired structure of variables. For example,
((a:*,b:*),(d:*,e:*)) is a paired structure of variables, (1,2) is not.

Failure
Never fails.

See also
is_var.

LEFT_AND_PEXISTS_CONV

LEFT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (?p. t) /\ u, the conversion LEFT_AND_PEXISTS_CONV

returns the theorem:

|- (?p. t) /\ u = (?p’. t[p’/p] /\ u)

where p’ is a primed variant of the pair p that does not contains variables free in the
input term.

Failure
Fails if applied to a term not of the form (?p. t) /\ u.

See also
LEFT_AND_EXISTS_CONV, AND_PEXISTS_CONV, PEXISTS_AND_CONV,
RIGHT_AND_PEXISTS_CONV.

LEFT_AND_PFORALL_CONV

LEFT_AND_PFORALL_CONV : conv
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Synopsis
Moves a paired universal quantification of the left conjunct outwards through a con-
junction.

Description
When applied to a term of the form (!p. t) /\ u, the conversion LEFT_AND_PFORALL_CONV

returns the theorem:

|- (!p. t) /\ u = (!p’. t[p’/p] /\ u)

where p’ is a primed variant of p that does not appear free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) /\ u.

See also
LEFT_AND_FORALL_CONV, AND_PFORALL_CONV, PFORALL_AND_CONV,
RIGHT_AND_PFORALL_CONV.

LEFT_IMP_PEXISTS_CONV

LEFT_IMP_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (?p. t) ==> u, the conversion LEFT_IMP_PEXISTS_CONV

returns the theorem:

|- (?p. t) ==> u = (!p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (?p. t) ==> u.

See also
LEFT_IMP_EXISTS_CONV, PFORALL_IMP_CONV, RIGHT_IMP_PFORALL_CONV.
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LEFT_IMP_PFORALL_CONV

LEFT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the antecedent outwards through an impli-
cation.

Description
When applied to a term of the form (!p. t) ==> u, the conversion LEFT_IMP_PFORALL_CONV

returns the theorem:

|- (!p. t) ==> u = (?p’. t[p’/p] ==> u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) ==> u.

See also
LEFT_IMP_FORALL_CONV, PEXISTS_IMP_CONV, RIGHT_IMP_PFORALL_CONV.

LEFT_LIST_PBETA

LEFT_LIST_PBETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the left-hand side of an equa-
tion.

Description
When applied to an equational theorem, LEFT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the left-hand side (only). Variables are renamed
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if necessary to avoid free variable capture.

A |- (\p1...pn. t) q1 ... qn = s
---------------------------------- LEFT_LIST_BETA

A |- t[q1/p1]...[qn/pn] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.

See also
RIGHT_LIST_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV,
LEFT_PBETA, RIGHT_PBETA, RIGHT_LIST_PBETA.

LEFT_OR_PEXISTS_CONV

LEFT_OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the left disjunct outwards through a dis-
junction.

Description
When applied to a term of the form (?p. t) \/ u, the conversion LEFT_OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ u = (?p’. t[p’/p] \/ u)

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form (?p. t) \/ u.

See also
LEFT_OR_EXISTS_CONV, PEXISTS_OR_CONV, OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

LEFT_OR_PFORALL_CONV

LEFT_OR_PFORALL_CONV : conv
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Synopsis
Moves a paired universal quantification of the left disjunct outwards through a disjunc-
tion.

Description
When applied to a term of the form (!p. t) \/ u, the conversion LEFT_OR_FORALL_CONV

returns the theorem:

|- (!p. t) \/ u = (!p’. t[p’/p] \/ u)

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form (!p. t) \/ u.

See also
LEFT_OR_FORALL_CONV, OR_PFORALL_CONV, PFORALL_OR_CONV, RIGHT_OR_PFORALL_CONV.

LEFT_PBETA

LEFT_PBETA : (thm -> thm)

Synopsis
Beta-reduces a top-level paired beta-redex on the left-hand side of an equation.

Description
When applied to an equational theorem, LEFT_PBETA applies paired beta-reduction at
top level to the left-hand side (only). Variables are renamed if necessary to avoid free
variable capture.

A |- (\x. t1) t2 = s
---------------------- LEFT_PBETA
A |- t1[t2/x] = s

Failure
Fails unless the theorem is equational, with its left-hand side being a top-level paired
beta-redex.
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See also
RIGHT_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, RIGHT_PBETA, RIGHT_LIST_PBETA,
LEFT_LIST_PBETA.

list_mk_pabs

list_mk_pabs : ((term list # term) -> term)

Synopsis
Iteratively constructs paired abstractions.

Description
list_mk_pabs(["p1";...;"pn"],"t") returns "\p1 ... pn. t".

Failure
Fails with list_mk_pabs if the terms in the list are not paired structures of variables.

Comments
The system shows the type as goal -> term.

See also
list_mk_abs, strip_pabs, mk_pabs.

list_mk_pexists

list_mk_pexists : ((term list # term) -> term)

Synopsis
Iteratively constructs paired existential quantifications.

Description
list_mk_pexists(["p1";...;"pn"],"t") returns "?p1 ... pn. t".

Failure
Fails with list_mk_pexists if the terms in the list are not paired structures of variables
or if t is not of type ":bool" and the list of terms is nonempty. If the list of terms is
empty the type of t can be anything.
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Comments
The system shows the type as (goal -> term).

See also
list_mk_exists, strip_pexists, mk_pexists.

LIST_MK_PEXISTS

LIST_MK_PEXISTS : (term list -> thm -> thm)

Synopsis
Multiply existentially quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PEXISTS existentially
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2
-------------------------------------- LIST_MK_PEXISTS ["x1";...;"xn"]
A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
LIST_MK_EXISTS, PEXISTS_EQ, MK_PEXISTS.

list_mk_pforall

list_mk_pforall : ((term list # term) -> term)

Synopsis
Iteratively constructs a paired universal quantification.
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Description
list_mk_pforall(["p1";...;"pn"],"t") returns "!p1 ... pn. t".

Failure
Fails with list_mk_pforall if the terms in the list are not paired structures of variables
or if t is not of type ":bool" and the list of terms is nonempty. If the list of terms is
empty the type of t can be anything.

Comments
The system shows the type as (goal -> term).

See also
list_mk_forall, strip_pforall, mk_pforall.

LIST_MK_PFORALL

LIST_MK_PFORALL : (term list -> thm -> thm)

Synopsis
Multiply universally quantifies both sides of an equation using the given pairs.

Description
When applied to a list of terms [p1;...;pn], where the pi are all paired structures of
variables, and a theorem A |- t1 = t2, the inference rule LIST_MK_PFORALL universally
quantifies both sides of the equation using the pairs given, none of the variables in the
pairs should be free in the assumption list.

A |- t1 = t2
-------------------------------------- LIST_MK_PFORALL ["x1";...;"xn"]
A |- (!x1...xn. t1) = (!x1...xn. t2)

Failure
Fails if any term in the list is not a paired structure of variables, or if any variable is free
in the assumption list, or if the theorem is not equational.

See also
LIST_MK_EXISTS, PFORALL_EQ, MK_PFORALL.
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LIST_PBETA_CONV

LIST_PBETA_CONV : conv

Synopsis
Performs an iterated paired beta-conversion.

Description
The conversion LIST_PBETA_CONV maps terms of the form

"(\p1 p2 ... pn. t) q1 q2 ... qn"

to the theorems of the form

|- (\p1 p2 ... pn. t) q1 q2 ... qn = t[q1/p1][q2/p2] ... [qn/pn]

where t[qi/pi] denotes the result of substituting qi for all free occurrences of pi in t,
after renaming sufficient bound variables to avoid variable capture.

Failure
LIST_PBETA_CONV tm fails if tm does not have the form "(\p1 ... pn. t) q1 ... qn" for
n greater than 0.

Example

#LIST_PBETA_CONV "(\(a,b) (c,d) . a + b + c + d) (1,2) (3,4)";;
|- (\(a,b) (c,d). a + (b + (c + d)))(1,2)(3,4) = 1 + (2 + (3 + 4))

See also
LIST_BETA_CONV, PBETA_CONV, BETA_RULE, BETA_TAC, RIGHT_PBETA, RIGHT_LIST_PBETA,
LEFT_PBETA, LEFT_LIST_PBETA.

mk_pabs

mk_pabs : ((term # term) -> term)

Synopsis
Constructs a paired abstraction.
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Description
mk_pabs "pair","t" returns the abstraction "\pair. t".

Failure
Fails with mk_pabs if first term is not a pair structure of variables.

See also
mk_abs, dest_pabs, is_pabs, list_mk_pabs.

MK_PABS

MK_PABS : (thm -> thm)

Synopsis
Abstracts both sides of an equation.

Description
When applied to a theorem A |- !p. t1 = t2, whose conclusion is a paired universally
quantified equation, MK_PABS returns the theorem A |- (\p. t1) = (\p. t2).

A |- !p. t1 = t2
-------------------------- MK_PABS
A |- (\p. t1) = (\p. t2)

Failure
Fails unless the theorem is a (singly) paired universally quantified equation.

See also
MK_ABS, PABS, HALF_MK_PABS, MK_PEXISTS.

MK_PAIR

MK_PAIR : (thm -> thm -> thm)

Synopsis
Proves equality of pairs constructed from equal components.
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Description
When applied to theorems A1 |- a = x and A2 |- b = y, the inference rule MK_PAIR

returns the theorem A1 u A2 |- (a,b) = (x,y).

A1 |- a = x A2 |- b = y
--------------------------- MK_PAIR
A1 u A2 |- (a,b) = (x,y)

Failure
Fails unless both theorems are equational.

See also

mk_pexists

mk_pexists : ((term # term) -> term)

Synopsis
Constructs a paired existential quantification.

Description
mk_pexists("pair","t") returns "?pair. t".

Failure
Fails with mk_exists if first term is not a paired structure of variables or if t is not of
type ":bool".

See also
mk_exists, dest_pexists, is_pexists, list_mk_pexists.

MK_PEXISTS

MK_PEXISTS : (thm -> thm)

Synopsis
Existentially quantifies both sides of a universally quantified equational theorem.
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Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PEXISTS returns the
theorem A |- (?x. t1) = (?x. t2).

A |- !p. t1 = t2
-------------------------- MK_PEXISTS
A |- (?p. t1) = (?p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PEXISTS_EQ, PGEN, LIST_MK_PEXISTS, MK_PABS.

mk_pforall

mk_pforall : ((term # term) -> term)

Synopsis
Constructs a paired universal quantification.

Description
mk_pforall("pair","t") returns "!pair. t".

Failure
Fails with mk_pforall if first term is not a a paired structure of variables or if t is not of
type ":bool".

See also
mk_forall, dest_pforall, is_pforall, list_mk_pforall.

MK_PFORALL

MK_PFORALL : (thm -> thm)

Synopsis
Universally quantifies both sides of a universally quantified equational theorem.



36 Chapter 3. ML Functions in the pair Library

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PFORALL returns the
theorem A |- (!x. t1) = (!x. t2).

A |- !p. t1 = t2
-------------------------- MK_PFORALL
A |- (!p. t1) = (!p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PFORALL_EQ, LIST_MK_PFORALL, MK_PABS.

mk_prod

mk_prod : ((type # type) -> type)

Synopsis
Constructs a product type from two constituent types.

Description
mk_prod(":t1",":t2") returns ":t1#t2".

Failure
Never fails.

See also
is_prod, dest_prod.

mk_pselect

mk_pselect : ((term # term) -> term)

Synopsis
Constructs a paired choice-term.
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Description
mk_pselect("pair","t") returns "@pair. t".

Failure
Fails with mk_select if first term is not a paired structure of variables or if t is not of
type ":bool".

See also
mk_select, dest_pselect, is_pselect.

MK_PSELECT

MK_PSELECT : (thm -> thm)

Synopsis
Quantifies both sides of a universally quantified equational theorem with the choice
quantifier.

Description
When applied to a theorem A |- !p. t1 = t2, the inference rule MK_PSELECT returns the
theorem A |- (@x. t1) = (@x. t2).

A |- !p. t1 = t2
-------------------------- MK_PSELECT
A |- (@p. t1) = (@p. t2)

Failure
Fails unless the theorem is a singly paired universally quantified equation.

See also
PSELECT_EQ, MK_PABS.

NOT_PEXISTS_CONV

NOT_PEXISTS_CONV : conv
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Synopsis
Moves negation inwards through a paired existential quantification.

Description
When applied to a term of the form ~(?p. t), the conversion NOT_PEXISTS_CONV returns
the theorem:

|- ~(?p. t) = (!p. ~t)

Failure
Fails if applied to a term not of the form ~(?p. t).

See also
NOT_EXISTS_CONV, PEXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PFORALL_CONV.

NOT_PFORALL_CONV

NOT_PFORALL_CONV : conv

Synopsis
Moves negation inwards through a paired universal quantification.

Description
When applied to a term of the form ~(!p. t), the conversion NOT_PFORALL_CONV returns
the theorem:

|- ~(!p. t) = (?p. ~t)

It is irrelevant whether any variables in p occur free in t.

Failure
Fails if applied to a term not of the form ~(!p. t).

See also
NOT_FORALL_CONV, PEXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PEXISTS_CONV.

occs_in

occs_in : (term -> term -> bool)
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Synopsis
Occurrence check for bound variables.

Description
When applied to two terms p and t, where p is a paired structure of variables, the
function occs_in returns true if and of the constituent variables of p occurs free in t,
and false otherwise.

Failure
Fails of p is not a paired structure of variables.

See also
free_in, frees, freesl, thm_frees.

OR_PEXISTS_CONV

OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification outwards through a disjunction.

Description
When applied to a term of the form (?p. t) \/ (?p. u), the conversion OR_PEXISTS_CONV

returns the theorem:

|- (?p. t) \/ (?p. u) = (?p. t \/ u)

Failure
Fails if applied to a term not of the form (?p. t) \/ (?p. u).

See also
OR_EXISTS_CONV, PEXISTS_OR_CONV, LEFT_OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

OR_PFORALL_CONV

OR_PFORALL_CONV : conv
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Synopsis
Moves a paired universal quantification outwards through a disjunction.

Description
When applied to a term of the form (!p. t) \/ (!p. u), where no variables from p are
free in either t nor u, OR_PFORALL_CONV returns the theorem:

|- (!p. t) \/ (!p. u) = (!p. t \/ u)

Failure
OR_PFORALL_CONV fails if it is applied to a term not of the form (!p. t) \/ (!p. u), or
if it is applied to a term (!p. t) \/ (!p. u) in which the variables from p are free in
either t or u.

See also
OR_FORALL_CONV, PFORALL_OR_CONV, LEFT_OR_PFORALL_CONV, RIGHT_OR_PFORALL_CONV.

PABS

PABS : (term -> thm -> thm)

Synopsis
Paired abstraction of both sides of an equation.

Description

A |- t1 = t2
------------------------ ABS "p" [Where p is not free in A]
A |- (\p.t1) = (\p.t2)

Failure
If the theorem is not an equation, or if any variable in the paired structure of variables
p occurs free in the assumptions A.

EXAMPLE

#PABS "(x:*,y:**)" (REFL "(x:*,y:**)");;
|- (\(x,y). (x,y)) = (\(x,y). (x,y))

See also
ABS, PABS_CONV, PETA_CONV, PEXT, MK_PABS.
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PABS_CONV

PABS_CONV : (conv -> conv)

Synopsis
Applies a conversion to the body of a paired abstraction.

Description
If c is a conversion that maps a term "t" to the theorem |- t = t’, then the conversion
PABS_CONV c maps abstractions of the form "\p.t" to theorems of the form:

|- (\p.t) = (\p.t’)

That is, ABS_CONV c "\p.t" applies p to the body of the paired abstraction "\p.t".

Failure
PABS_CONV c tm fails if tm is not a paired abstraction or if tm has the form "\p.t" but the
conversion c fails when applied to the term t. The function returned by ABS_CONV p may
also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that
maps a term t to a theorem |- t = t’).

Example

#PABS_CONV SYM_CONV "\(x,y). (1,2) = (x,y)";;
|- (\(x,y). 1,2 = x,y) = (\(x,y). x,y = 1,2)

See also
ABS_CONV, PSUB_CONV.

paconv

paconv : (term -> term -> bool)

Synopsis
Tests for alpha-equivalence of terms.
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Description
When applied to a pair of terms t1 and t2, paconv returns true if the terms are alpha-
equivalent.

Failure
Never fails.

Comments
paconv is implemented as curry (can (uncurry PALPHA)).

See also
PALPHA, aconv.

PAIR_CONV

PAIR_CONV : (conv -> conv)

Synopsis
Applies a conversion to all the components of a pair structure.

Description
For any conversion c, the function returned by PAIR_CONV c is a conversion that applies
c to all the components of a pair. If the term t is not a pair, them PAIR_CONV c t applies
c to t. If the term t is the pair (t1,t2) then PAIR c t recursively applies PAIR_CONV c to
t1 and t2.

Failure
The conversion returned by PAIR_CONV c will fail for the pair structure t if the conversion
c would fail for any of the components of t.

See also
RAND_CONV, RATOR_CONV.

PALPHA

PALPHA : (term -> term -> thm)



PALPHA 43

Synopsis
Proves equality of paired alpha-equivalent terms.

Description
When applied to a pair of terms t1 and t1’ which are alpha-equivalent, ALPHA returns
the theorem |- t1 = t1’.

------------- PALPHA "t1" "t1’"
|- t1 = t1’

The difference between PALPHA and ALPHA is that PALPHA is prepared to consider pair
structures of different structure to be alpha-equivalent. In its most trivial case this
means that PALPHA can consider a variable and a pair to alpha-equivalent.

Failure
Fails unless the terms provided are alpha-equivalent.

Example

#PALPHA "\(x:*,y:*). (x,y)" "\xy:*#*.xy";;
|- (\(x,y). (x,y)) = (\xy. xy)

Comments
The system shows the type of PALPHA as term -> conv.

Alpha-converting a paired abstraction to a nonpaired abstraction can introduce in-
stances of the terms "FST" and "SND". A paired abstraction and a nonpaired abstraction
will be considered equivalent by PALPHA if the nonpaired abstraction contains all those
instances of "FST" and "SND" present in the paired abstraction, plus the minimum addi-
tional instances of "FST" and "SND". For example:

#PALPHA
"\(x:*,y:**). (f x y (x,y)):***"
"\xy:*#**. (f (FST xy) (SND xy) xy):***";;

|- (\(x,y). f x y(x,y)) = (\xy. f(FST xy)(SND xy)xy)

#PALPHA
"\(x:*,y:**). (f x y (x,y)):***"
"\xy:*#**. (f (FST xy) (SND xy) (FST xy, SND xy)):***";;

evaluation failed PALPHA

See also
ALPHA, aconv, PALPHA_CONV, GEN_PALPHA_CONV.
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PALPHA_CONV

PALPHA_CONV : (term -> conv)

Synopsis
Renames the bound variables of a paired lambda-abstraction.

Description
If "q" is a variable of type ty and "\p.t" is a paired abstraction in which the bound pair
p also has type ty, then ALPHA_CONV "q" "\p.t" returns the theorem:

|- (\p.t) = (\q’. t[q’/p])

where the pair q’:ty is a primed variant of q chosen so that none of its components are
free in "\p.t". The pairs p and q need not have the same structure, but they must be of
the same type.

Example
PALPHA_CONV renames the variables in a bound pair:

#PALPHA_CONV
"((w:*,x:*),(y:*,z:*))"
"\((a:*,b:*),(c:*,d:*)). (f a b c d):*";;

|- (\((a,b),c,d). f a b c d) = (\((w,x),y,z). f w x y z)

The new bound pair and the old bound pair need not have the same structure.

#PALPHA_CONV
"((wx:*#*),(y:*,z:*))"
"\((a:*,b:*),(c:*,d:*)). (f a b c d):*";;

|- (\((a,b),c,d). f a b c d) = (\(wx,y,z). f(FST wx)(SND wx)y z)

PALPHA_CONV recognises subpairs of a pair as variables and preserves structure accord-
ingly.

#PALPHA_CONV
"((wx:*#*),(y:*,z:*))"
"\((a:*,b:*),(c:*,d:*)). (f (a,b) c d):*";;

|- (\((a,b),c,d). f(a,b)c d) = (\(wx,y,z). f wx y z)

Comments
PALPHA_CONV will only ever add the terms "FST" and "SND". (i.e. it will never remove
them). This means that while "\(x,y). x + y" can be converted to "\xy. (FST xy) + (SND xy)",
it can not be converted back again.
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Failure
PALPHA_CONV "q" "tm" fails if q is not a variable, if tm is not an abstraction, or if q is a
variable and tm is the lambda abstraction \p.t but the types of p and q differ.

See also
ALPHA_CONV, PALPHA, GEN_PALPHA_CONV.

PART_PMATCH

PART_PMATCH : ((term -> term) -> thm -> term -> thm)

Synopsis
Instantiates a theorem by matching part of it to a term.

Description
When applied to a ‘selector’ function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !p1...pn. t) tm

the function PART_PMATCH applies fn to t’ (the result of specializing universally quanti-
fied pairs in the conclusion of the theorem), and attempts to match the resulting term
to the argument term tm. If it succeeds, the appropriately instantiated version of the
theorem is returned.

Failure
Fails if the selector function fn fails when applied to the instantiated theorem, or if the
match fails with the term it has provided.

See also
PART_MATCH.

PBETA_CONV

PBETA_CONV : conv

Synopsis
Performs a general beta-conversion.
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Description
The conversion PBETA_CONV maps a paired beta-redex "(\p.t)q" to the theorem

|- (\p.t)q = t[q/p]

where u[q/p] denotes the result of substituting q for all free occurrences of p in t, after
renaming sufficient bound variables to avoid variable capture. Unlike PAIRED_BETA_CONV,
PBETA_CONV does not require that the structure of the argument match the structure of
the pair bound by the abstraction. However, if the structure of the argument does match
the structure of the pair bound by the abstraction, then PAIRED_BETA_CONV will do the
job much faster.

Failure
PBETA_CONV tm fails if tm is not a paired beta-redex.

Example
PBETA_CONV will reduce applications with arbitrary structure.

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f a b c d) ((w,x),(y,z))):*";;
|- (\((a,b),c,d). f a b c d)((w,x),y,z) = f w x y z

PBETA_CONV does not require the structure of the argument and the bound pair to
match.

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f a b c d) ((w,x),yz)):*";;
|- (\((a,b),c,d). f a b c d)((w,x),yz) = f w x(FST yz)(SND yz)

PBETA_CONV regards component pairs of the bound pair as variables in their own right
and preserves structure accordingly:

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f (a,b) (c,d)) (wx,(y,z))):*";;
|- (\((a,b),c,d). f(a,b)(c,d))(wx,y,z) = f wx(y,z)

See also
BETA_CONV, PAIRED_BETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV,
RIGHT_PBETA, RIGHT_LIST_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.

PBETA_RULE

PBETA_RULE : (thm -> thm)
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Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a theorem.

Description
When applied to a theorem A |- t, the inference rule PBETA_RULE beta-reduces all beta-
redexes, at any depth, in the conclusion t. Variables are renamed where necessary to
avoid free variable capture.

A |- ....((\p. s1) s2)....
---------------------------- BETA_RULE

A |- ....(s1[s2/p])....

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
BETA_RULE, PBETA_CONV, PBETA_TAC, RIGHT_PBETA, LEFT_PBETA.

PBETA_TAC

PBETA_TAC : tactic

Synopsis
Beta-reduces all the paired beta-redexes in the conclusion of a goal.

Description
When applied to a goal A ?- t, the tactic PBETA_TAC produces a new goal which results
from beta-reducing all paired beta-redexes, at any depth, in t. Variables are renamed
where necessary to avoid free variable capture.

A ?- ...((\p. s1) s2)...
========================== PBETA_TAC

A ?- ...(s1[s2/p])...

Failure
Never fails, but will have no effect if there are no paired beta-redexes.

See also
BETA_TAC, PBETA_CONV, PBETA_RULE.



48 Chapter 3. ML Functions in the pair Library

pbody

pbody : (term -> term)

Synopsis
Returns the body of a paired abstraction.

Description
pbody "\pair. t" returns "t".

Failure
Fails unless the term is a paired abstraction.

See also
body, bndpair, dest_pabs.

PCHOOSE

PCHOOSE : ((term # thm) -> thm -> thm)

Synopsis
Eliminates paired existential quantification using deduction from a particular witness.

Description
When applied to a term-theorem pair (q,A1 |- ?p. s) and a second theorem of the
form A2 u {s[q/p]} |- t, the inference rule PCHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?p. s A2 u {s[q/p]} |- t
------------------------------------ PCHOOSE ("q",(A1 |- ?q. s))

A1 u A2 |- t

Where no variable in the paired variable structure q is free in A1, A2 or t.

Failure
Fails unless the terms and theorems correspond as indicated above; in particular q must
have the same type as the pair existentially quantified over, and must not contain any
variable free in A1, A2 or t.
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See also
CHOOSE, PCHOOSE_TAC, PEXISTS, PEXISTS_TAC, PSELECT_ELIM.

PCHOOSE_TAC

PCHOOSE_TAC : thm_tactic

Synopsis
Adds the body of a paired existentially quantified theorem to the assumptions of a goal.

Description
When applied to a theorem A’ |- ?p. t and a goal, CHOOSE_TAC adds t[p’/p] to the
assumptions of the goal, where p’ is a variant of the pair p which has no components
free in the assumption list; normally p’ is just p.

A ?- u
==================== CHOOSE_TAC (A’ |- ?q. t)
A u {t[p’/p]} ?- u

Unless A’ is a subset of A, this is not a valid tactic.

Failure
Fails unless the given theorem is a paired existential quantification.

See also
CHOOSE_TAC, PCHOOSE_THEN, P_PCHOOSE_TAC.

PCHOOSE_THEN

PCHOOSE_THEN : thm_tactical

Synopsis
Applies a tactic generated from the body of paired existentially quantified theorem.
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Description
When applied to a theorem-tactic ttac, a paired existentially quantified theorem:

A’ |- ?p. t

and a goal, CHOOSE_THEN applies the tactic ttac (t[p’/p] |- t[p’/p]) to the goal,
where p’ is a variant of the pair p chosen to have no components free in the assumption
list of the goal. Thus if:

A ?- s1
========= ttac (t[q’/q] |- t[q’/q])
B ?- s2

then

A ?- s1
========== CHOOSE_THEN ttac (A’ |- ?q. t)
B ?- s2

This is invalid unless A’ is a subset of A.

Failure
Fails unless the given theorem is a paired existential quantification, or if the resulting
tactic fails when applied to the goal.

See also
CHOOSE_THEN, PCHOOSE_TAC, P_PCHOOSE_THEN.

PETA_CONV

PETA_CONV : conv

Synopsis
Performs a top-level paired eta-conversion.

Description
PETA_CONV maps an eta-redex "\p. t p", where none of variables in the paired structure
of variables p occurs free in t, to the theorem |- (\p. t p) = t.

Failure
Fails if the input term is not a paired eta-redex.
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PEXISTENCE

PEXISTENCE : (thm -> thm)

Synopsis
Deduces paired existence from paired unique existence.

Description
When applied to a theorem with a paired unique-existentially quantified conclusion,
EXISTENCE returns the same theorem with normal paired existential quantification over
the same pair.

A |- ?!p. t
------------- PEXISTENCE
A |- ?p. t

Failure
Fails unless the conclusion of the theorem is a paired unique-existential quantification.

See also
EXISTENCE, PEXISTS_UNIQUE_CONV.

PEXISTS

PEXISTS : ((term # term) -> thm -> thm)

Synopsis
Introduces paired existential quantification given a particular witness.

Description
When applied to a pair of terms and a theorem, where the first term a paired exis-
tentially quantified pattern indicating the desired form of the result, and the second a
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witness whose substitution for the quantified pair gives a term which is the same as the
conclusion of the theorem, PEXISTS gives the desired theorem.

A |- t[q/p]
------------- EXISTS ("?p. t","q")
A |- ?p. t

Failure
Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example
The following examples illustrate the various uses of PEXISTS:

#PEXISTS ("?x. x + 2 = x + 2", "1") (REFL "1 + 2");;
|- ?x. x + 2 = x + 2

#PEXISTS ("?y. 1 + y = 1 + y", "2") (REFL "1 + 2");;
|- ?y. 1 + y = 1 + y

#PEXISTS ("?(x,y). x + y = x + y", "(1,2)") (REFL "1 + 2");;
|- ?(x,y). x + y = x + y

#PEXISTS ("?(a:*,b:*). (a,b) = (a,b)", "ab:*#*") (REFL "ab:*#*");;
|- ?(a,b). a,b = a,b

See also
EXISTS, PCHOOSE, PEXISTS_TAC.

PEXISTS_AND_CONV

PEXISTS_AND_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a conjunction.

Description
When applied to a term of the form ?p. t /\ u, where variables in p are not free in
both t and u, PEXISTS_AND_CONV returns a theorem of one of three forms, depending on
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occurrences of variables from p in t and u. If p contains variables free in t but none in
u, then the theorem:

|- (?p. t /\ u) = (?p. t) /\ u

is returned. If p contains variables free in u but none in t, then the result is:

|- (?p. t /\ u) = t /\ (?x. u)

And if p does not contain any variable free in either t nor u, then the result is:

|- (?p. t /\ u) = (?x. t) /\ (?x. u)

Failure
PEXISTS_AND_CONV fails if it is applied to a term not of the form ?p. t /\ u, or if it is
applied to a term ?p. t /\ u in which variables in p are free in both t and u.

See also
EXISTS_AND_CONV, AND_PEXISTS_CONV, LEFT_AND_PEXISTS_CONV,
RIGHT_AND_PEXISTS_CONV.

PEXISTS_CONV

PEXISTS_CONV : conv

Synopsis
Eliminates paired existential quantifier by introducing a paired choice-term.

Description
The conversion PEXISTS_CONV expects a boolean term of the form (?p. t[p]), where p

may be a paired structure or variables, and converts it to the form (t [@p. t[p]]).

--------------------------------- PEXISTS_CONV "(?p. t[p])"
(|- (?p. t[p]) = (t [@p. t[p]])

Failure
Fails if applied to a term that is not a paired existential quantification.

See also
PSELECT_RULE, PSELECT_CONV, PEXISTS_RULE, PSELECT_INTRO, PSELECT_ELIM.
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PEXISTS_EQ

PEXISTS_EQ : (term -> thm -> thm)

Synopsis
Existentially quantifies both sides of an equational theorem.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PEXISTS_EQ returns the theorem:

A |- (?p. t1) = (?p. t2)

provided the none of the variables in p is not free in any of the assumptions.

A |- t1 = t2
-------------------------- PEXISTS_EQ "p" [where p is not free in A]
A |- (?p. t1) = (?p. t2)

Failure
Fails unless the theorem is equational with both sides having type bool, or if the term is
not a paired structure of variables, or if any variable in the pair to be quantified over is
free in any of the assumptions.

See also
EXISTS_EQ, PEXISTS_IMP, PFORALL_EQ, MK_PEXISTS, PSELECT_EQ.

PEXISTS_IMP

PEXISTS_IMP : (term -> thm -> thm)

Synopsis
Existentially quantifies both the antecedent and consequent of an implication.
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Description
When applied to a paired structure of variables p and a theorem A |- t1 ==> t2, the
inference rule PEXISTS_IMP returns the theorem A |- (?p. t1) ==> (?p. t2), provided
no variable in p is free in the assumptions.

A |- t1 ==> t2
-------------------------- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)

Failure
Fails if the theorem is not implicative, or if the term is not a paired structure of variables,
of if any variable in the pair is free in the assumption list.

See also
EXISTS_IMP, PEXISTS_EQ.

PEXISTS_IMP_CONV

PEXISTS_IMP_CONV : conv

Synopsis
Moves a paired existential quantification inwards through an implication.

Description
When applied to a term of the form ?p. t ==> u, where variables from p are not free in
both t and u, PEXISTS_IMP_CONV returns a theorem of one of three forms, depending on
occurrences of variable from p in t and u. If variables from p are free in t but none are
in u, then the theorem:

|- (?p. t ==> u) = (!p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (?p. t ==> u) = t ==> (?p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (?p. t ==> u) = (!p. t) ==> (?p. u)

Failure
PEXISTS_IMP_CONV fails if it is applied to a term not of the form ?p. t ==> u, or if it is
applied to a term ?p. t ==> u in which the variables from p are free in both t and u.
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See also
EXISTS_IMP_CONV, LEFT_IMP_PFORALL_CONV, RIGHT_IMP_PEXISTS_CONV.

PEXISTS_NOT_CONV

PEXISTS_NOT_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a negation.

Description
When applied to a term of the form ?p. ~t, the conversion PEXISTS_NOT_CONV returns
the theorem:

|- (?p. ~t) = ~(!p. t)

Failure
Fails if applied to a term not of the form ?p. ~t.

See also
EXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PEXISTS_CONV, NOT_PFORALL_CONV.

PEXISTS_OR_CONV

PEXISTS_OR_CONV : conv

Synopsis
Moves a paired existential quantification inwards through a disjunction.

Description
When applied to a term of the form ?p. t \/ u, the conversion PEXISTS_OR_CONV returns
the theorem:

|- (?p. t \/ u) = (?p. t) \/ (?p. u)

Failure
Fails if applied to a term not of the form ?p. t \/ u.
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See also
EXISTS_OR_CONV, OR_PEXISTS_CONV, LEFT_OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

PEXISTS_RULE

PEXISTS_RULE : (thm -> thm)

Synopsis
Introduces a paired existential quantification in place of a paired choice.

Description
The inference rule PEXISTS_RULE expects a theorem asserting that (@p. t) denotes a
pair for which t holds. The equivalent assertion that there exists a p for which t holds
is returned.

A |- t[(@p. t)/p]
------------------ PEXISTS_RULE

A |- ?p. t

Failure
Fails if applied to a theorem the conclusion of which is not of the form (t[(@p.t)/p]).

See also
PEXISTS_CONV, PSELECT_RULE, PSELECT_CONV, PSELECT_INTRO, PSELECT_ELIM.

PEXISTS_TAC

PEXISTS_TAC : (term -> tactic)

Synopsis
Reduces paired existentially quantified goal to one involving a specific witness.



58 Chapter 3. ML Functions in the pair Library

Description
When applied to a term q and a goal ?p. t, the tactic PEXISTS_TAC reduces the goal to
t[q/p].

A ?- ?p. t
============= EXISTS_TAC "q"
A ?- t[q/p]

Failure
Fails unless the goal’s conclusion is a paired existential quantification and the term
supplied has the same type as the quantified pair in the goal.

Example
The goal:

?- ?(x,y). (x,y)=(1,2)

can be solved by:

PEXISTS_TAC "(1,2)" THEN REFL_TAC

See also
EXISTS_TAC, PEXISTS.

PEXISTS_UNIQUE_CONV

PEXISTS_UNIQUE_CONV : conv

Synopsis
Expands with the definition of paired unique existence.

Description
Given a term of the form "?!p. t[p]", the conversion PEXISTS_UNIQUE_CONV proves that
this assertion is equivalent to the conjunction of two statements, namely that there
exists at least one pair p such that t[p], and that there is at most one value p for which
t[p] holds. The theorem returned is:

|- (?!p. t[p]) = (?p. t[p]) /\ (!p p’. t[p] /\ t[p’] ==> (p = p’))

where p’ is a primed variant of the pair p none of the components of which appear free
in the input term. Note that the quantified pair p need not in fact appear free in the
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body of the input term. For example, PEXISTS_UNIQUE_CONV "?!(x,y). T" returns the
theorem:

|- (?!(x,y). T) =
(?(x,y). T) /\ (!(x,y) (x’,y’). T /\ T ==> ((x,y) = (x’,y’)))

Failure
PEXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!p.t".

See also
EXISTS_UNIQUE_CONV, PEXISTENCE.

PEXT

PEXT : (thm -> thm)

Synopsis
Derives equality of functions from extensional equivalence.

Description
When applied to a theorem A |- !p. t1 p = t2 p, the inference rule PEXT returns the
theorem A |- t1 = t2.

A |- !p. t1 p = t2 p
---------------------- PEXT [where p is not free in t1 or t2]

A |- t1 = t2

Failure
Fails if the theorem does not have the form indicated above, or if any of the component
variables in the paired variable structure p is free either of the functions t1 or t2.

Example

#PEXT (ASSUME "!(x,y). ((f:(*#*)->*) (x,y)) = (g (x,y))");;
. |- f = g

See also
EXT, AP_THM, PETA_CONV, FUN_EQ_CONV, P_FUN_EQ_CONV.



60 Chapter 3. ML Functions in the pair Library

PFORALL_AND_CONV

PFORALL_AND_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a conjunction.

Description
When applied to a term of the form !p. t /\ u, the conversion PFORALL_AND_CONV re-
turns the theorem:

|- (!p. t /\ u) = (!p. t) /\ (!p. u)

Failure
Fails if applied to a term not of the form !p. t /\ u.

See also
FORALL_AND_CONV, AND_PFORALL_CONV, LEFT_AND_PFORALL_CONV,
RIGHT_AND_PFORALL_CONV.

PFORALL_EQ

PFORALL_EQ : (term -> thm -> thm)

Synopsis
Universally quantifies both sides of an equational theorem.
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Description
When applied to a paired structure of variables p and a theorem

A |- t1 = t2

whose conclusion is an equation between boolean terms:

PFORALL_EQ

returns the theorem:

A |- (!p. t1) = (!p. t2)

unless any of the variables in p is free in any of the assumptions.

A |- t1 = t2
-------------------------- PFORALL_EQ "p" [where p is not free in A]
A |- (!p. t1) = (!p. t2)

Failure
Fails if the theorem is not an equation between boolean terms, or if the supplied term is
not a paired structure of variables, or if any of the variables in the supplied pair is free
in any of the assumptions.

See also
FORALL_EQ, PEXISTS_EQ, PSELECT_EQ.

PFORALL_IMP_CONV

PFORALL_IMP_CONV : conv

Synopsis
Moves a paired universal quantification inwards through an implication.

Description
When applied to a term of the form !p. t ==> u, where variables from p are not free in
both t and u, PFORALL_IMP_CONV returns a theorem of one of three forms, depending on
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occurrences of the variables from p in t and u. If variables from p are free in t but none
are in u, then the theorem:

|- (!p. t ==> u) = (?p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (!p. t ==> u) = t ==> (!p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t ==> u) = (?p. t) ==> (!p. u)

Failure
PFORALL_IMP_CONV fails if it is applied to a term not of the form !p. t ==> u, or if it is
applied to a term !p. t ==> u in which variables from p are free in both t and u.

See also
FORALL_IMP_CONV, LEFT_IMP_PEXISTS_CONV, RIGHT_IMP_PFORALL_CONV.

PFORALL_NOT_CONV

PFORALL_NOT_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a negation.

Description
When applied to a term of the form !p. ~t, the conversion PFORALL_NOT_CONV returns
the theorem:

|- (!p. ~t) = ~(?p. t)

Failure
Fails if applied to a term not of the form !p. ~t.

See also
FORALL_NOT_CONV, PEXISTS_NOT_CONV, NOT_PEXISTS_CONV, NOT_PFORALL_CONV.
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PFORALL_OR_CONV

PFORALL_OR_CONV : conv

Synopsis
Moves a paired universal quantification inwards through a disjunction.

Description
When applied to a term of the form !p. t \/ u, where no variable in p is free in both
t and u, PFORALL_OR_CONV returns a theorem of one of three forms, depending on occur-
rences of the variables from p in t and u. If variables from p are free in t but not in u,
then the theorem:

|- (!p. t \/ u) = (!p. t) \/ u

is returned. If variables from p are free in u but none are free in t, then the result is:

|- (!p. t \/ u) = t \/ (!t. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t \/ u) = (!p. t) \/ (!p. u)

Failure
PFORALL_OR_CONV fails if it is applied to a term not of the form !p. t \/ u, or if it is
applied to a term !p. t \/ u in which variables from p are free in both t and u.

See also
FORALL_OR_CONV, OR_PFORALL_CONV, LEFT_OR_PFORALL_CONV, RIGHT_OR_PFORALL_CONV.

PGEN

PGEN : (term -> thm -> thm)

Synopsis
Generalizes the conclusion of a theorem.
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Description
When applied to a paired structure of variables p and a theorem A |- t, the inference
rule PGEN returns the theorem A |- !p. t, provided that no variable in p occurs free in
the assumptions A. There is no compulsion that the variables of p should be free in t.

A |- t
------------ PGEN "p" [where p does not occur free in A]
A |- !p. t

Failure
Fails if p is not a paired structure of variables, of if any variable in p is free in the
assumptions.

See also
GEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC.

PGENL

PGENL : (term list -> thm -> thm)

Synopsis
Generalizes zero or more pairs in the conclusion of a theorem.

Description
When applied to a list of paired variable structures [p1;...;pn] and a theorem A |- t,
the inference rule PGENL returns the theorem A |- !p1...pn. t, provided none of the
constituent variables from any of the pairs pi occur free in the assumptions.

A |- t
------------------ PGENL "[p1;...;pn]" [where no pi is free in A]
A |- !p1...pn. t

Failure
Fails unless all the terms in the list are paired structures of variables, none of the vari-
ables from which are free in the assumption list.

See also
GENL, PGEN, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC.
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PGEN_TAC

PGEN_TAC : tactic

Synopsis
Strips the outermost paired universal quantifier from the conclusion of a goal.

Description
When applied to a goal A ?- !p. t, the tactic PGEN_TAC reduces it to A ?- t[p’/p] where
p’ is a variant of the paired variable structure p chosen to avoid clashing with any
variables free in the goal’s assumption list. Normally p’ is just p.

A ?- !p. t
============== PGEN_TAC
A ?- t[p’/p]

Failure
Fails unless the goal’s conclusion is a paired universally quantification.

See also
GEN_TAC, FILTER_PGEN_TAC, PGEN, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL,
PSPEC_TAC, PSTRIP_TAC, P_PGEN_TAC.

PMATCH_MP

PMATCH_MP : (thm -> thm -> thm)

Synopsis
Modus Ponens inference rule with automatic matching.

Description
When applied to theorems A1 |- !p1...pn. t1 ==> t2 and A2 |- t1’, the inference
rule PMATCH_MP matches t1 to t1’ by instantiating free or paired universally quantified
variables in the first theorem (only), and returns a theorem A1 u A2 |- !pa..pk. t2’,
where t2’ is a correspondingly instantiated version of t2. Polymorphic types are also
instantiated if necessary.
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Variables free in the consequent but not the antecedent of the first argument theorem
will be replaced by variants if this is necessary to maintain the full generality of the
theorem, and any pairs which were universally quantified over in the first argument
theorem will be universally quantified over in the result, and in the same order.

A1 |- !p1..pn. t1 ==> t2 A2 |- t1’
-------------------------------------- MATCH_MP

A1 u A2 |- !pa..pk. t2’

Failure
Fails unless the first theorem is a (possibly repeatedly paired universally quantified)
implication whose antecedent can be instantiated to match the conclusion of the second
theorem, without instantiating any variables which are free in A1, the first theorem’s
assumption list.

See also
MATCH_MP.

PMATCH_MP_TAC

PMATCH_MP_TAC : thm_tactic

Synopsis
Reduces the goal using a supplied implication, with matching.

Description
When applied to a theorem of the form

A’ |- !p1...pn. s ==> !q1...qm. t

PMATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t’ is a substitution
and/or type instance of t to the corresponding instance of s. Any variables free in s but
not in t will be existentially quantified in the resulting subgoal:

A ?- !u1...ui. t’
====================== PMATCH_MP_TAC (A’ |- !p1...pn. s ==> !q1...qm. t)

A ?- ?w1...wp. s’

where w1, ..., wp are (type instances of) those pairs among p1, ..., pn having variables
that do not occur free in t. Note that this is not a valid tactic unless A’ is a subset of A.
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Failure
Fails unless the theorem is an (optionally paired universally quantified) implication
whose consequent can be instantiated to match the goal. The generalized pairs u1,
..., ui must occur in s’ in order for the conclusion t of the supplied theorem to match
t’.

See also
MATCH_MP_TAC.

PSELECT_CONV

PSELECT_CONV : conv

Synopsis
Eliminates a paired epsilon term by introducing a existential quantifier.

Description
The conversion PSELECT_CONV expects a boolean term of the form "t[@p.t[p]/p]", which
asserts that the epsilon term @p.t[p] denotes a pair, p say, for which t[p] holds. This
assertion is equivalent to saying that there exists such a pair, and PSELECT_CONV applied
to a term of this form returns the theorem |- t[@p.t[p]/p] = ?p. t[p].

Failure
Fails if applied to a term that is not of the form "p[@p.t[p]/p]".

See also
SELECT_CONV, PSELECT_ELIM, PSELECT_INTRO, PSELECT_RULE.

PSELECT_ELIM

PSELECT_ELIM : (thm -> (term # thm) -> thm)

Synopsis
Eliminates a paired epsilon term, using deduction from a particular instance.

Description
PSELECT_ELIM expects two arguments, a theorem th1, and a pair (p,th2):(term # thm).
The conclusion of th1 must have the form P($@ P), which asserts that the epsilon term



68 Chapter 3. ML Functions in the pair Library

$@ P denotes some value at which P holds. The paired variable structure p appears only
in the assumption P p of the theorem th2. The conclusion of the resulting theorem
matches that of th2, and the hypotheses include the union of all hypotheses of the
premises excepting P p.

A1 |- P($@ P) A2 u {P p} |- t
------------------------------------- PSELECT_ELIM th1 (p ,th2)

A1 u A2 |- t

where p is not free in A2. If p appears in the conclusion of th2, the epsilon term will
NOT be eliminated, and the conclusion will be t[$@ P/p].

Failure
Fails if the first theorem is not of the form A1 |- P($@ P), or if any of the variables from
the variable structure p occur free in any other assumption of th2.

See also
SELECT_ELIM, PCHOOSE, SELECT_AX, PSELECT_CONV, PSELECT_INTRO, PSELECT_RULE.

PSELECT_EQ

PSELECT_EQ : (term -> thm -> thm)

Synopsis
Applies epsilon abstraction to both terms of an equation.

Description
When applied to a paired structure of variables p and a theorem whose conclusion is
equational:

A |- t1 = t2

the inference rule PSELECT_EQ returns the theorem:

A |- (@p. t1) = (@p. t2)

provided no variable in p is free in the assumptions.

A |- t1 = t2
-------------------------- SELECT_EQ "p" [where p is not free in A]
A |- (@p. t1) = (@p. t2)

Failure
Fails if the conclusion of the theorem is not an equation, of if p is not a paired structure
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of variables, or if any variable in p is free in A.

See also
SELECT_EQ, PFORALL_EQ, PEXISTS_EQ.

PSELECT_INTRO

PSELECT_INTRO : (thm -> thm)

Synopsis
Introduces an epsilon term.

Description
PSELECT_INTRO takes a theorem with an applicative conclusion, say P x, and returns a
theorem with the epsilon term $@ P in place of the original operand x.

A |- P x
-------------- PSELECT_INTRO
A |- P($@ P)

The returned theorem asserts that $@ P denotes some value at which P holds.

Failure
Fails if the conclusion of the theorem is not an application.

Comments
This function is exactly the same as SELECT_INTRO, it is duplicated in the pair library for
completeness.

See also
SELECT_INTRO, PEXISTS, SELECT_AX, PSELECT_CONV, PSELECT_ELIM, PSELECT_RULE.

PSELECT_RULE

PSELECT_RULE : (thm -> thm)

Synopsis
Introduces a paired epsilon term in place of a paired existential quantifier.
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Description
The inference rule PSELECT_RULE expects a theorem asserting the existence of a pair p

such that t holds. The equivalent assertion that the epsilon term @p.t denotes a pair p

for which t holds is returned as a theorem.

A |- ?p. t
------------------ PSELECT_RULE
A |- t[(@p.t)/p]

Failure
Fails if applied to a theorem the conclusion of which is not a paired existential quantifier.

See also
SELECT_RULE, PCHOOSE, SELECT_AX, PSELECT_CONV, PEXISTS_CONV, PSELECT_ELIM,
PSELECT_INTRO.

PSKOLEM_CONV

PSKOLEM_CONV : conv

Synopsis
Proves the existence of a pair of Skolem functions.

Description
When applied to an argument of the form !p1...pn. ?q. tm, the conversion PSKOLEM_CONV

returns the theorem:

|- (!p1...pn. ?q. tm) = (?q’. !p1...pn. tm[q’ p1 ... pn/yq)

where q’ is a primed variant of the pair q not free in the input term.

Failure
PSKOLEM_CONV tm fails if tm is not a term of the form !p1...pn. ?q. tm.



PSPEC 71

Example
Both q and any pi may be a paired structure of variables:

#PSKOLEM_CONV
"!(x11:*,x12:*) (x21:*,x22:*). ?(y1:*,y2:*). tm x11 x12 x21 x21 y1 y2";;

|- (!(x11,x12) (x21,x22). ?(y1,y2). tm x11 x12 x21 x21 y1 y2) =
(?(y1,y2).

!(x11,x12) (x21,x22).
tm x11 x12 x21 x21(y1(x11,x12)(x21,x22))(y2(x11,x12)(x21,x22)))

See also
SKOLEM_CONV, P_PSKOLEM_CONV.

PSPEC

PSPEC : (term -> thm -> thm)

Synopsis
Specializes the conclusion of a theorem.

Description
When applied to a term q and a theorem A |- !p. t, then PSPEC returns the theorem
A |- t[q/p]. If necessary, variables will be renamed prior to the specialization to ensure
that q is free for p in t, that is, no variables free in q become bound after substitution.

A |- !p. t
-------------- PSPEC "q"
A |- t[q/p]

Failure
Fails if the theorem’s conclusion is not a paired universal quantification, or if p and q

have different types.

Example
PSPEC specialised paired quantifications.

#PSPEC "(1,2)" (ASSUME "!(x,y). (x + y) = (y + x)");;
. |- 1 + 2 = 2 + 1

PSPEC treats paired structures of variables as variables and preserves structure accord-
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ingly.

#PSPEC "x:*#*" (ASSUME "!(x:*,y:*). (x,y) = (x,y)");;
. |- x = x

See also
SPEC, IPSPEC, PSPECL, PSPEC_ALL, PSPEC_VAR, PGEN, PGENL, PGEN_ALL.

PSPECL

PSPECL : (term list -> thm -> thm)

Synopsis
Specializes zero or more pairs in the conclusion of a theorem.

Description
When applied to a term list [q1;...;qn] and a theorem A |- !p1...pn. t, the inference
rule SPECL returns the theorem A |- t[q1/p1]...[qn/pn], where the substitutions are
made sequentially left-to-right in the same way as for PSPEC.

A |- !p1...pn. t
-------------------------- SPECL "[q1;...;qn]"

A |- t[q1/p1]...[qn/pn]

It is permissible for the term-list to be empty, in which case the application of PSPECL

has no effect.

Failure
Fails unless each of the terms is of the same type as that of the appropriate quantified
variable in the original theorem. Fails if the list of terms is longer than the number of
quantified pairs in the theorem.

See also
SPECL, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPEC_ALL, PSPEC_TAC.

PSPEC_ALL

PSPEC_ALL : (thm -> thm)
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Synopsis
Specializes the conclusion of a theorem with its own quantified pairs.

Description
When applied to a theorem A |- !p1...pn. t, the inference rule PSPEC_ALL returns the
theorem A |- t[p1’/p1]...[pn’/pn] where the pi’ are distinct variants of the corre-
sponding pi, chosen to avoid clashes with any variables free in the assumption list and
with the names of constants. Normally pi’ is just pi, in which case PSPEC_ALL simply
removes all universal quantifiers.

A |- !p1...pn. t
--------------------------- PSPEC_ALL
A |- t[p1’/x1]...[pn’/xn]

Failure
Never fails.

See also
SPEC_ALL, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_TAC.

PSPEC_PAIR

PSPEC_PAIR : (thm -> (term # thm))

Synopsis
Specializes the conclusion of a theorem, returning the chosen variant.

Description
When applied to a theorem A |- !p. t, the inference rule PSPEC_PAIR returns the term
q’ and the theorem A |- t[q’/p], where q’ is a variant of p chosen to avoid free variable
capture.

A |- !p. t
-------------- PSPEC_PAIR
A |- t[q’/q]

Failure
Fails unless the theorem’s conclusion is a paired universal quantification.
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Comments
This rule is very similar to plain PSPEC, except that it returns the variant chosen, which
may be useful information under some circumstances.

See also
SPEC_VAR, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL.

PSPEC_TAC

PSPEC_TAC : ((term # term) -> tactic)

Synopsis
Generalizes a goal.

Description
When applied to a pair of terms (q,p), where p is a paired structure of variables and
a goal A ?- t, the tactic PSPEC_TAC generalizes the goal to A ?- !p. t[p/q], that is, all
components of q are turned into the corresponding components of p.

A ?- t
================= PSPEC_TAC ("q","p")
A ?- !x. t[p/q]

Failure
Fails unless p is a paired structure of variables with the same type as q.

Example

g "1 + 2 = 2 + 1";;
"1 + 2 = 2 + 1"

() : void

#e (PSPEC_TAC ("(1,2)","(x:num,y:num)"));;
OK..
"!(x,y). x + y = y + x"

() : void

Uses
Removing unnecessary speciality in a goal, particularly as a prelude to an inductive
proof.
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See also
PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSTRIP_TAC.

PSTRIP_ASSUME_TAC

PSTRIP_ASSUME_TAC : thm_tactic

Synopsis
Splits a theorem into a list of theorems and then adds them to the assumptions.

Description
Given a theorem th and a goal (A,t), PSTRIP_ASSUME_TAC th splits th into a list of
theorems. This is done by recursively breaking conjunctions into separate conjuncts,
cases-splitting disjunctions, and eliminating paired existential quantifiers by choosing
arbitrary variables. Schematically, the following rules are applied:

A ?- t
====================== PSTRIP_ASSUME_TAC (A’ |- v1 /\ ... /\ vn)
A u {v1,...,vn} ?- t

A ?- t
================================= PSTRIP_ASSUME_TAC (A’ |- v1 \/ ... \/ vn)
A u {v1} ?- t ... A u {vn} ?- t

A ?- t
==================== PSTRIP_ASSUME_TAC (A’ |- ?p. v)
A u {v[p’/p]} ?- t

where p’ is a variant of the pair p.
If the conclusion of th is not a conjunction, a disjunction or a paired existentially

quantified term, the whole theorem th is added to the assumptions.
As assumptions are generated, they are examined to see if they solve the goal (either

by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).
The assumptions of the theorem being split are not added to the assumptions of the

goal(s), but they are recorded in the proof. This means that if A’ is not a subset of the
assumptions A of the goal (up to alpha-conversion), PSTRIP_ASSUME_TAC (A’|-v) results
in an invalid tactic.

Failure
Never fails.
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Uses
PSTRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal,
or when enriching its assumptions so that resolution, rewriting with assumptions and
other operations involving assumptions have more to work with.

See also
PSTRIP_THM_THEN, ,PSTRIP_ASSUME_TAC, PSTRIP_GOAL_THEN, PSTRIP_TAC.

PSTRIP_GOAL_THEN

PSTRIP_GOAL_THEN : (thm_tactic -> tactic)

Synopsis
Splits a goal by eliminating one outermost connective, applying the given theorem-tactic
to the antecedents of implications.

Description
Given a theorem-tactic ttac and a goal (A,t), PSTRIP_GOAL_THEN removes one outermost
occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t.
If t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier. Note
that PSTRIP_GOAL_THEN will strip off paired universal quantifications.

A ?- !p. u
============== PSTRIP_GOAL_THEN ttac
A ?- u[p’/p]

where p’ is a primed variant that contains no variables that appear free in the assump-
tions A. If t is a conjunction, then PSTRIP_GOAL_THEN simply splits the conjunction into
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two subgoals:

A ?- v /\ w
================= PSTRIP_GOAL_THEN ttac
A ?- v A ?- w

If t is an implication "u ==> v" and if:

A ?- v
=============== ttac (u |- u)

A’ ?- v’

then:

A ?- u ==> v
==================== PSTRIP_GOAL_THEN ttac

A’ ?- v’

Finally, a negation ~t is treated as the implication t ==> F.

Failure
PSTRIP_GOAL_THEN ttac (A,t) fails if t is not a paired universally quantified term, an
implication, a negation or a conjunction. Failure also occurs if the application of ttac
fails, after stripping the goal.

Uses
PSTRIP_GOAL_THEN is used when manipulating intermediate results (obtained by strip-
ping outer connectives from a goal) directly, rather than as assumptions.

See also
PGEN_TAC, STRIP_GOAL_THEN, FILTER_PSTRIP_THEN, PSTRIP_TAC, FILTER_PSTRIP_TAC.

PSTRIP_TAC

PSTRIP_TAC : tactic

Synopsis
Splits a goal by eliminating one outermost connective.

Description
Given a goal (A,t), PSTRIP_TAC removes one outermost occurrence of one of the con-
nectives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified
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term, then STRIP_TAC strips off the quantifier. Note that PSTRIP_TAC will strip off paired
quantifications.

A ?- !p. u
============== PSTRIP_TAC
A ?- u[p’/p]

where p’ is a primed variant of the pair p that does not contain any variables that
appear free in the assumptions A. If t is a conjunction, then PSTRIP_TAC simply splits the
conjunction into two subgoals:

A ?- v /\ w
================= PSTRIP_TAC
A ?- v A ?- w

If t is an implication, PSTRIP_TAC moves the antecedent into the assumptions, stripping
conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 /\ ... /\ vn ==> v A ?- v1 \/ ... \/ vn ==> v
============================ =================================

A u {v1,...,vn} ?- v A u {v1} ?- v ... A u {vn} ?- v

A ?- (?p. w) ==> v
=====================
A u {w[p’/p]} ?- v

where p’ is a primed variant of the pair p that does not appear free in A. Finally, a
negation ~t is treated as the implication t ==> F.

Failure
PSTRIP_TAC (A,t) fails if t is not a paired universally quantified term, an implication, a
negation or a conjunction.

Uses
When trying to solve a goal, often the best thing to do first is REPEAT PSTRIP_TAC to split
the goal up into manageable pieces.

See also
PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_PSTRIP_THEN, STRIP_TAC, FILTER_PSTRIP_TAC.

PSTRIP_THM_THEN

PSTRIP_THM_THEN : thm_tactical
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Synopsis
PSTRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one
outer connective from the given theorem.

Description
Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunc-
tion or a paired existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th

first strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from
the stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A’|- u /\ v, the tactic

ttac(u|-u) THEN ttac(v|-v)

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping
a disjunctive theorem A’|- u \/ v, the tactics resulting from applying ttac to the dis-
juncts, are applied to split the goal into two cases. That is, if

A ?- t A ?- t
========= ttac (u|-u) and ========= ttac (v|-v)
A ?- t1 A ?- t2

then:

A ?- t
================== PSTRIP_THM_THEN ttac (A’|- u \/ v)
A ?- t1 A ?- t2

When stripping a paired existentially quantified theorem A’|- ?p. u, the tactic resulting
from applying ttac to the body of the paired existential quantification, ttac(u|-u), is
applied to the goal. That is, if:

A ?- t
========= ttac (u|-u)
A ?- t1

then:

A ?- t
============= PSTRIP_THM_THEN ttac (A’|- ?p. u)

A ?- t1

The assumptions of the theorem being split are not added to the assumptions of the
goal(s) but are recorded in the proof. If A’ is not a subset of the assumptions A of the
goal (up to alpha-conversion), PSTRIP_THM_THEN ttac th results in an invalid tactic.
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Failure
PSTRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction
or a paired existentially quantification. Failure also occurs if the application of ttac

fails, after stripping the outer connective from the conclusion of th.

Uses
PSTRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a
previously-proved theorem.

See also
STRIP_THM_THEN, , PSTRIP_ASSUME_TAC, PSTRIP_GOAL_THEN, PSTRIP_TAC.

PSTRUCT_CASES_TAC

PSTRUCT_CASES_TAC : thm_tactic

Synopsis
Performs very general structural case analysis.

Description
When it is applied to a theorem of the form:

th = A’ |- ?p11...p1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?pn1...pnp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)

in which there may be no paired existential quantifiers where a ‘vector’ of them is shown
above, PSTRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

A ?- s
===============================================================
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]

that is, performs a case split over the possible constructions (the ti) of a term, providing
as assumptions the given constraints, having split conjoined constraints into separate
assumptions. Note that unless A’ is a subset of A, this is an invalid tactic.

Failure
Fails unless the theorem has the above form, namely a conjunction of (possibly multiply
paired existentially quantified) terms which assert the equality of the same variable x

and the given terms.
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Uses
Generating a case split from the axioms specifying a structure.

See also
STRUCT_CASES_TAC.

PSUB_CONV

PSUB_CONV : (conv -> conv)

Synopsis
Applies a conversion to the top-level subterms of a term.

Description
For any conversion c, the function returned by PSUB_CONV c is a conversion that applies
c to all the top-level subterms of a term. If the conversion c maps t to |- t = t’, then
SUB_CONV c maps a paired abstraction "\p.t" to the theorem:

|- (\p.t) = (\p.t’)

That is, PSUB_CONV c "\p.t" applies c to the body of the paired abstraction "\p.t". If
c is a conversion that maps "t1" to the theorem |- t1 = t1’ and "t2" to the theorem
|- t2 = t2’, then the conversion PSUB_CONV c maps an application "t1 t2" to the theo-
rem:

|- (t1 t2) = (t1’ t2’)

That is, PSUB_CONV c "t1 t2" applies c to the both the operator t1 and the operand
t2 of the application "t1 t2". Finally, for any conversion c, the function returned by
PSUB_CONV c acts as the identity conversion on variables and constants. That is, if "t" is
a variable or constant, then PSUB_CONV c "t" returns |- t = t.

Failure
PSUB_CONV c tm fails if tm is a paired abstraction "\p.t" and the conversion c fails when
applied to t, or if tm is an application "t1 t2" and the conversion c fails when applied
to either t1 or t2. The function returned by PSUB_CONV c may also fail if the ML function
c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem
|- t = t’).

See also
SUB_CONV, PABS_CONV, RAND_CONV, RATOR_CONV.
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pvariant

pvariant : (term list -> term -> term)

Synopsis
Modifies variable and constant names in a paired structure to avoid clashes.

Description
When applied to a list of (possibly paired structures of) variables to avoid clashing
with, and a pair to modify, pvariant returns a variant of the pair. That is, it changes
the names of variables and constants in the pair as intuitively as possible to make them
distinct from any variables in the list, or any (non-hidden) constants. This is normally
done by adding primes to the names.

The exact form of the altered names should not be relied on, except that the original
variables will be unmodified unless they are in the list to avoid clashing with. Also note
that if the same variable occurs more that one in the pair, then each instance of the
variable will be modified in the same way.

Failure
pvariant l p fails if any term in the list l is not a paired structure of variables, or if p is
not a paired structure of variables and constants.

Example
The following shows a case that exhibits most possible behaviours:

#pvariant ["b:*"; "(c:*,c’:*)"] "((a:*,b:*),(c:*,b’:*,T,b:*))";;
"(a,b’’),c’’,b’,T’,b’’" : term

Uses
The function pvariant is extremely useful for complicated derived rules which need to
rename pairs variable to avoid free variable capture while still making the role of the
pair obvious to the user.

See also
variant, genvar, hide_constant, genlike.

P_FUN_EQ_CONV

P_FUN_EQ_CONV : (term -> conv)
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Synopsis
Performs extensionality conversion for functions (function equality).

Description
The conversion P_FUN_EQ_CONV embodies the fact that two functions are equal precisely
when they give the same results for all values to which they can be applied. For any
paired variable structure "p" and equation "f = g", where p is of type ty1 and f and
g are functions of type ty1->ty2, a call to P_FUN_EQ_CONV "p" "f = g" returns the theo-
rem:

|- (f = g) = (!p. f p = g p)

Failure
P_FUN_EQ_CONV p tm fails if p is not a paired structure of variables or if tm is not an
equation f = g where f and g are functions. Furthermore, if f and g are functions
of type ty1->ty2, then the pair x must have type ty1; otherwise the conversion fails.
Finally, failure also occurs if any of the variables in p is free in either f or g.

See also
FUN_EQ_CONV, PEXT.

P_PCHOOSE_TAC

P_PCHOOSE_TAC : (term -> thm_tactic)

Synopsis
Assumes a theorem, with existentially quantified pair replaced by a given witness.

Description
P_PCHOOSE_TAC expects a pair q and theorem with a paired existentially quantified con-
clusion. When applied to a goal, it adds a new assumption obtained by introducing the
pair q as a witness for the pair p whose existence is asserted in the theorem.

A ?- t
=================== P_CHOOSE_TAC "q" (A1 |- ?p. u)
A u {u[q/p]} ?- t ("y" not free anywhere)

Failure
Fails if the theorem’s conclusion is not a paired existential quantification, or if the
first argument is not a paired structure of variables. Failures may arise in the tactic-
generating function. An invalid tactic is produced if the introduced variable is free in u
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or t, or if the theorem has any hypothesis which is not alpha-convertible to an assump-
tion of the goal.

See also
X_CHOOSE_TAC, PCHOOSE, PCHOOSE_THEN, P_PCHOOSE_THEN.

P_PCHOOSE_THEN

P_PCHOOSE_THEN : (term -> thm_tactical)

Synopsis
Replaces existentially quantified pair with given witness, and passes it to a theorem-
tactic.

Description
P_PCHOOSE_THEN expects a pair q, a tactic-generating function f:thm->tactic, and a theo-
rem of the form (A1 |- ?p. u) as arguments. A new theorem is created by introducing
the given pair q as a witness for the pair p whose existence is asserted in the original the-
orem, (u[q/p] |- u[q/p]). If the tactic-generating function f applied to this theorem
produces results as follows when applied to a goal (A ?- u):

A ?- t
========= f ({u[q/p]} |- u[q/p])
A ?- t1

then applying (P_PCHOOSE_THEN "q" f (A1 |- ?p. u)) to the goal (A ?- t) produces
the subgoal:

A ?- t
========= P_PCHOOSE_THEN "q" f (A1 |- ?p. u)
A ?- t1 ("q" not free anywhere)

Failure
Fails if the theorem’s conclusion is not existentially quantified, or if the first argument is
not a paired structure of variables. Failures may arise in the tactic-generating function.
An invalid tactic is produced if the introduced variable is free in u or t, or if the theorem
has any hypothesis which is not alpha-convertible to an assumption of the goal.

See also
X_CHOOSE_THEN, PCHOOSE, PCHOOSE_THEN, P_PCHOOSE_TAC.
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P_PGEN_TAC

P_PGEN_TAC : (term -> tactic)

Synopsis
Specializes a goal with the given paired structure of variables.

Description
When applied to a paired structure of variables p’, and a goal A ?- !p. t, the tactic
P_PGEN_TAC returns the goal A ?- t[p’/p].

A ?- !p. t
============== P_PGEN_TAC "p’"
A ?- t[p’/x]

Failure
Fails unless the goal’s conclusion is a paired universal quantification and the term a
paired structure of variables of the appropriate type. It also fails if any of the variables
of the supplied structure occurs free in either the assumptions or (initial) conclusion of
the goal.

See also
X_GEN_TAC, FILTER_PGEN_TAC, PGEN, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL,
PSPEC_TAC.

P_PSKOLEM_CONV

P_PSKOLEM_CONV : (term -> conv)

Synopsis
Introduces a user-supplied Skolem function.

Description
P_PSKOLEM_CONV takes two arguments. The first is a variable f, which must range over
functions of the appropriate type, and the second is a term of the form !p1...pn. ?q. t
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(where pi and q may be pairs). Given these arguments, P_PSKOLEM_CONV returns the
theorem:

|- (!p1...pn. ?q. t) = (?f. !p1...pn. tm[f p1 ... pn/q])

which expresses the fact that a skolem function f of the universally quantified variables
p1...pn may be introduced in place of the the existentially quantified pair p.

Failure
P_PSKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of
the form !p1...pn. ?q. t, or if the variable f is free in tm, or if the type of f does not
match its intended use as an n-place curried function from the pairs p1...pn to a value
having the same type as p.

See also
X_SKOLEM_CONV, PSKOLEM_CONV.

RIGHT_AND_PEXISTS_CONV

RIGHT_AND_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right conjunct outwards through a con-
junction.

Description
When applied to a term of the form t /\ (?p. t), the conversion RIGHT_AND_PEXISTS_CONV

returns the theorem:

|- t /\ (?p. u) = (?p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (?p. u).

See also
RIGHT_AND_EXISTS_CONV, AND_PEXISTS_CONV, PEXISTS_AND_CONV,
LEFT_AND_PEXISTS_CONV.
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RIGHT_AND_PFORALL_CONV

RIGHT_AND_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the right conjunct outwards through a con-
junction.

Description
When applied to a term of the form t /\ (!p. u), the conversion RIGHT_AND_PFORALL_CONV

returns the theorem:

|- t /\ (!p. u) = (!p’. t /\ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t /\ (!p. u).

See also
RIGHT_AND_FORALL_CONV, AND_PFORALL_CONV, PFORALL_AND_CONV,
LEFT_AND_PFORALL_CONV.

RIGHT_IMP_PEXISTS_CONV

RIGHT_IMP_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (?p. u), RIGHT_IMP_PEXISTS_CONV returns the
theorem:

|- t ==> (?p. u) = (?p’. t ==> (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.
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Failure
Fails if applied to a term not of the form t ==> (?p. u).

See also
RIGHT_IMP_EXISTS_CONV, PEXISTS_IMP_CONV, LEFT_IMP_PFORALL_CONV.

RIGHT_IMP_PFORALL_CONV

RIGHT_IMP_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the consequent outwards through an impli-
cation.

Description
When applied to a term of the form t ==> (!p. u), the conversion RIGHT_IMP_FORALL_CONV

returns the theorem:

|- t ==> (!p. u) = (!p’. t ==> (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t ==> (!p. u).

See also
RIGHT_IMP_FORALL_CONV, PFORALL_IMP_CONV, LEFT_IMP_PEXISTS_CONV.

RIGHT_LIST_PBETA

RIGHT_LIST_PBETA : (thm -> thm)

Synopsis
Iteratively beta-reduces a top-level paired beta-redex on the right-hand side of an equa-
tion.
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Description
When applied to an equational theorem, RIGHT_LIST_PBETA applies paired beta-reduction
over a top-level chain of beta-redexes to the right-hand side (only). Variables are re-
named if necessary to avoid free variable capture.

A |- s = (\p1...pn. t) q1 ... qn
---------------------------------- RIGHT_LIST_BETA

A |- s = t[q1/p1]...[qn/pn]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

See also
RIGHT_LIST_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV,
RIGHT_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.

RIGHT_OR_PEXISTS_CONV

RIGHT_OR_PEXISTS_CONV : conv

Synopsis
Moves a paired existential quantification of the right disjunct outwards through a dis-
junction.

Description
When applied to a term of the form t \/ (?p. u), the conversion RIGHT_OR_PEXISTS_CONV

returns the theorem:

|- t \/ (?p. u) = (?p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables free in the
input term.

Failure
Fails if applied to a term not of the form t \/ (?p. u).

See also
RIGHT_OR_EXISTS_CONV, OR_PEXISTS_CONV, PEXISTS_OR_CONV, LEFT_OR_PEXISTS_CONV.
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RIGHT_OR_PFORALL_CONV

RIGHT_OR_PFORALL_CONV : conv

Synopsis
Moves a paired universal quantification of the right disjunct outwards through a dis-
junction.

Description
When applied to a term of the form t \/ (!p. u), the conversion RIGHT_OR_FORALL_CONV

returns the theorem:

|- t \/ (!p. u) = (!p’. t \/ (u[p’/p]))

where p’ is a primed variant of the pair p that does not contain any variables that appear
free in the input term.

Failure
Fails if applied to a term not of the form t \/ (!p. u).

See also
RIGHT_OR_FORALL_CONV, OR_PFORALL_CONV, PFORALL_OR_CONV, LEFT_OR_PFORALL_CONV.

RIGHT_PBETA

RIGHT_PBETA : (thm -> thm)

Synopsis
Beta-reduces a top-level paired beta-redex on the right-hand side of an equation.

Description
When applied to an equational theorem, RIGHT_PBETA applies paired beta-reduction at
top level to the right-hand side (only). Variables are renamed if necessary to avoid free
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variable capture.

A |- s = (\p. t1) t2
---------------------- RIGHT_PBETA

A |- s = t1[t2/p]

Failure
Fails unless the theorem is equational, with its right-hand side being a top-level paired
beta-redex.

See also
RIGHT_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, RIGHT_LIST_PBETA, LEFT_PBETA,
LEFT_LIST_PBETA.

rip_pair

rip_pair : (term -> term list)

Synopsis
Recursively breaks a paired structure into its constituent pieces.

Example

#rip_pair "((1,2),(3,4))";;
["1"; "2"; "3"; "4"] : term list

Comments
Note that rip_pair is similar, but not identical, to strip_pair which iteratively breaks
apart tuples (flat paired structures).

Failure
Never fails.

See also
strip_pair.

strip_pabs

strip_pabs : (term -> goal)



92 Chapter 3. ML Functions in the pair Library

Synopsis
Iteratively breaks apart paired abstractions.

Description
strip_pabs "\p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that

strip_pabs(list_mk_abs(["p1";...;"pn"],"t"))

will not return (["p1";...;"pn"],"t") if t is a paired abstraction.

Failure
Never fails.

See also
strip_abs, list_mk_pabs, dest_pabs.

strip_pexists

strip_pexists : (term -> goal)

Synopsis
Iteratively breaks apart paired existential quantifications.

Description
strip_pexists "?p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that

strip_pexists(list_mk_pexists(["[p1";...;"pn"],"t"))

will not return (["p1";...;"pn"],"t") if t is a paired existential quantification.

Failure
Never fails.

See also
strip_exists, list_mk_pexists, dest_pexists.

strip_pforall

strip_pforall : (term -> goal)
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Synopsis
Iteratively breaks apart paired universal quantifications.

Description
strip_pforall "!p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that

strip_pforall(list_mk_pforall(["p1";...;"pn"],"t"))

will not return (["p1";...;"pn"],"t") if t is a paired universal quantification.

Failure
Never fails.

See also
strip_forall, list_mk_pforall, dest_pforall.

SWAP_PEXISTS_CONV

SWAP_PEXISTS_CONV : conv

Synopsis
Interchanges the order of two existentially quantified pairs.

Description
When applied to a term argument of the form ?p q. t, the conversion SWAP_PEXISTS_CONV

returns the theorem:

|- (?p q. t) = (?q t. t)

Failure
SWAP_PEXISTS_CONV fails if applied to a term that is not of the form ?p q. t.

See also
SWAP_EXISTS_CONV, SWAP_PFORALL_CONV.

SWAP_PFORALL_CONV

SWAP_PFORALL_CONV : conv
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Synopsis
Interchanges the order of two universally quantified pairs.

Description
When applied to a term argument of the form !p q. t, the conversion SWAP_PFORALL_CONV

returns the theorem:

|- (!p q. t) = (!q t. t)

Failure
SWAP_PFORALL_CONV fails if applied to a term that is not of the form !p q. t.

See also
SWAP_PEXISTS_CONV.

UNCURRY_CONV

UNCURRY_CONV : conv

Synopsis
Uncurrys an application of an abstraction.

Example

#UNCURRY_CONV "(\x y. x + y) 1 2";;
|- (\x y. x + y)1 2 = (\(x,y). x + y)(1,2)

Failure
UNCURRY_CONV tm fails if tm is not double abstraction applied to two arguments

See also
CURRY_CONV.

UNCURRY_EXISTS_CONV

UNCURRY_EXISTS_CONV : conv
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Synopsis
Uncurrys consecutive existential quantifications into a paired existential quantification.

Example

#UNCURRY_EXISTS_CONV "?x y. x + y = y + x";;
|- (?x y. x + y = y + x) = (?(x,y). x + y = y + x)

#UNCURRY_EXISTS_CONV "?(w,x) (y,z). w+x+y+z = z+y+x+w";;
|- (?(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w))) =

(?((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure
UNCURRY_EXISTS_CONV tm fails if tm is not a consecutive existential quantification.

See also
CURRY_CONV, UNCURRY_CONV, CURRY_EXISTS_CONV, CURRY_FORALL_CONV,
UNCURRY_FORALL_CONV.

UNCURRY_FORALL_CONV

UNCURRY_FORALL_CONV : conv

Synopsis
Uncurrys consecutive universal quantifications into a paired universal quantification.

Example

#UNCURRY_FORALL_CONV "!x y. x + y = y + x";;
|- (!x y. x + y = y + x) = (!(x,y). x + y = y + x)

#UNCURRY_FORALL_CONV "!(w,x) (y,z). w+x+y+z = z+y+x+w";;
|- (!(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w))) =

(!((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure
UNCURRY_FORALL_CONV tm fails if tm is not a consecutive universal quantification.

See also
CURRY_CONV, UNCURRY_CONV, CURRY_FORALL_CONV, CURRY_EXISTS_CONV,
UNCURRY_EXISTS_CONV.
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UNPBETA_CONV

UNPBETA_CONV : (term -> conv)

Synopsis
Creates an application of a paired abstraction from a term.

Description
The user nominates some pair structure of variables p and a term t, and UNPBETA_CONV

turns t into an abstraction on p applied to p.

------------------ UNPBETA_CONV "p" "t"
|- t = (\p. t) p

Failure
Fails if p is not a paired structure of variables.

See also
PBETA_CONV, PAIRED_BETA_CONV.
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Pre-proved Theorems

The section that follows lists the theorems in the pair library.

4.1 Theorems

ABS_PAIR_THM (pair)
|- !x. ?q r. x = (q,r)

ABS_REP_prod (pair)
|- (!a. ABS_prod (REP_prod a) = a) /\

!r. IS_PAIR r = (REP_prod (ABS_prod r) = r)

CLOSED_PAIR_EQ (pair)
|- !x y a b. ((x,y) = (a,b)) = (x = a) /\ (y = b)

COMMA_DEF (pair)
|- !x y. (x,y) = ABS_prod (MK_PAIR x y)

CURRY_DEF (pair)
|- !f x y. CURRY f x y = f (x,y)

CURRY_ONE_ONE_THM (pair)
|- (CURRY f = CURRY g) = (f = g)

CURRY_UNCURRY_THM (pair)
|- !f. CURRY (UNCURRY f) = f

EXISTS_PROD (pair)
|- (?p. P p) = ?p_1 p_2. P (p_1,p_2)

FORALL_PROD (pair)
|- (!p. P p) = !p_1 p_2. P (p_1,p_2)

FST (pair)
|- !x y. FST (x,y) = x

97
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FST_DEF (pair)
|- !p. FST p = @x. ?y. p = (x,y)

IS_PAIR_DEF (pair)
|- !P. IS_PAIR P = ?x y. P = MK_PAIR x y

LET2_RAND (pair)
|- !P M N. P (let (x,y) = M in N x y) = (let (x,y) = M in P (N x y))

LET2_RATOR (pair)
|- !M N b. (let (x,y) = M in N x y) b = (let (x,y) = M in N x y b)

LEX_DEF (pair)
|- !R1 R2. R1 LEX R2 = (\(s,t) (u,v). R1 s u \/ (s = u) /\ R2 t v)

MK_PAIR_DEF (pair)
|- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y))

PAIR (pair)
|- !x. (FST x,SND x) = x

pair_Axiom (pair)
|- !f. ?fn. !x y. fn (x,y) = f x y

pair_case_cong (pair)
|- !f’ f M’ M.

(M = M’) /\ (!x y. (M’ = (x,y)) ==> (f x y = f’ x y)) ==>
(pair_case f M = pair_case f’ M’)

pair_case_def (pair)
|- pair_case = UNCURRY

pair_case_thm (pair)
|- pair_case f (x,y) = f x y

PAIR_EQ (pair)
|- ((x,y) = (a,b)) = (x = a) /\ (y = b)

pair_induction (pair)
|- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p

PEXISTS_THM (pair)
|- !P. (?x y. P x y) = ?(x,y). P x y

PFORALL_THM (pair)
|- !P. (!x y. P x y) = !(x,y). P x y
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prod_TY_DEF (pair)
|- ?rep. TYPE_DEFINITION IS_PAIR rep

RPROD_DEF (pair)
|- !R1 R2. RPROD R1 R2 = (\(s,t) (u,v). R1 s u /\ R2 t v)

SND (pair)
|- !x y. SND (x,y) = y

SND_DEF (pair)
|- !p. SND p = @y. ?x. p = (x,y)

UNCURRY_CONG (pair)
|- !f’ f M’ M.

(M = M’) /\ (!x y. (M’ = (x,y)) ==> (f x y = f’ x y)) ==>
(UNCURRY f M = UNCURRY f’ M’)

UNCURRY_CURRY_THM (pair)
|- !f. UNCURRY (CURRY f) = f

UNCURRY_DEF (pair)
|- !f x y. UNCURRY f (x,y) = f x y

UNCURRY_ONE_ONE_THM (pair)
|- (UNCURRY f = UNCURRY g) = (f = g)

UNCURRY_VAR (pair)
|- !f v. UNCURRY f v = f (FST v) (SND v)

WF_LEX (pair)
|- !R Q. WF R /\ WF Q ==> WF (R LEX Q)

WF_RPROD (pair)
|- !R Q. WF R /\ WF Q ==> WF (RPROD R Q)
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