The HOL pair Library

Jim Grundy

University of Cambridge, Computer Laboratory New Museums Site, Pembroke Street Cambridge, CB2 3QG, England.

November 1992

Copyright © Jim Grundy 1992 All rights reserved start at page 1

Statement of Rights

Jim Grundy, hereafter referred to as 'the Author', retains the copyright and all other legal rights to the software contained in the pair library, hereafter referred to as 'the Software'. The Software is made available free of charge on an 'as is' basis. No guarantee, either express or implied, of maintenance, reliability, merchantability or suitability for any purpose is made by the Author.

The user is granted the right to make personal or internal use of the Software provided that both:

- 1. The Software is not used for commercial gain.
- 2. The user shall not hold the Author liable for any consequences arising from use of the Software.

The user is granted the right to further distribute the Software provided that both:

- 1. The Software and this statement of rights is not modified.
- 2. The Software does not form part or the whole of a system distributed for commercial gain.

The user is granted the right to modify the Software for personal or internal use provided that all of the following conditions are observed:

- 1. The user does not distribute the modified software.
- 2. The modified software is not used for commercial gain.
- 3. The Author retains all rights to the modified software.

Anyone seeking a licence to use this software for commercial purposes is invited to contact the Author.

The pair Library

This manual describes the use of the pair library. The pair library has been provided to reduce the difficulty of reasoning about pairs (and tuples), particularly paired quantifications and abstractions. The pair library contains a version of every standard HOL function for manipulating abstractions and quantifications. The table below sets out all the standard HOL functions for which the pair library provides paired equivalents:

Function	Paired Version	Function	Paired Version
ABS	PABS	LEFT_IMP_FORALL_CONV	LEFT_IMP_PFORALL_CONV
ABS_CONV	PABS_CONV	LEFT_OR_EXISTS_CONV	LEFT_OR_PEXISTS_CONV
aconv	paconv	LEFT_OR_FORALL_CONV	LEFT_OR_PFORALL_CONV
ALPHA	PALPHA	LIST_BETA_CONV	LIST_PBETA_CONV
ALPHA_CONV	PALPHA_CONV	list_mk_abs	list_mk_pabs
AND_EXISTS_CONV	AND_PEXISTS_CONV	LIST_MK_EXISTS	LIST_MK_PEXISTS
AND_FORALL_CONV	AND_PFORALL_CONV	list_mk_exists	list_mk_pexists
BETA_CONV	PBETA_CONV	list_mk_forall	list_mk_pforall
BETA_RULE	PBETA_RULE	MATCH_MP	PMATCH_MP
BETA_TAC	PBETA_TAC	MATCH_MP_TAC	PMATCH_MP_TAC
bndvar	bndpair	MK_ABS	MK_PABS
body	pbody	mk_abs	mk_pabs
CHOOSE	PCHOOSE	MK_EXISTS	MK_PEXISTS
CHOOSE_TAC	PCHOOSE_TAC	mk_exists	mk_pexists
CHOOSE_THEN	PCHOOSE_THEN	mk_forall	mk_pforall
dest_abs	dest_pabs	mk_select	mk_pselect
dest_exists	dest_pexists	NOT_EXISTS_CONV	NOT_PEXISTS_CONV
dest_forall	dest_pforall	NOT_FORALL_CONV	NOT_PFORALL_CONV
dest_select	dest_pselect	OR_EXISTS_CONV	OR_PEXISTS_CONV
ETA_CONV	PETA_CONV	OR_FORALL_CONV	OR_PFORALL_CONV
EXISTENCE	PEXISTENCE	PART_MATCH	PART_PMATCH
EXISTS	PEXISTS	RIGHT_AND_EXISTS_CONV	RIGHT_AND_PEXISTS_CONV
EXISTS_AND_CONV	PEXISTS_AND_CONV	RIGHT_AND_FORALL_CONV	RIGHT_AND_PFORALL_CONV
EXISTS_EQ	PEXISTS_EQ	RIGHT_BETA	RIGHT_PBETA
EXISTS_IMP	PEXISTS_IMP	RIGHT_IMP_EXISTS_CONV	RIGHT_IMP_PEXISTS_CONV
EXISTS_IMP_CONV	PEXISTS_IMP_CONV	RIGHT_IMP_FORALL_CONV	RIGHT_IMP_PFORALL_CONV
EXISTS_NOT_CONV	PEXISTS_NOT_CONV	RIGHT_LIST_BETA	RIGHT_LIST_PBETA
EXISTS_OR_CONV	PEXISTS_OR_CONV	RIGHT_OR_EXISTS_CONV	RIGHT_OR_PEXISTS_CONV
EXISTS_TAC	PEXISTS_TAC	RIGHT_OR_FORALL_CONV	RIGHT_OR_PFORALL_CONV
EXISTS_UNIQUE_CONV	PEXISTS_UNIQUE_CONV	SELECT_CONV	PSELECT_CONV
EXT	PEXT	SELECT_ELIM	PSELECT_ELIM
FILTER_GEN_TAC	FILTER_PGEN_TAC	SELECT_EQ	PSELECT_EQ
FILTER_STRIP_TAC	FILTER_PSTRIP_TAC	SELECT_INTRO	PSELECT_INTRO
FILTER_STRIP_THEN	FILTER_PSTRIP_THEN	SELECT_RULE	PSELECT_RULE
FORALL_AND_CONV	PFORALL_AND_CONV	SKOLEM_CONV	PSKOLEM_CONV
FORALL_EQ	PFORALL_EQ	SPEC	PSPEC
FORALL IMP_CONV	PFORALL_IMP_CONV	SPECL	PSPECL
FORALL_NOT_CONV	PFORALL_NOT_CONV	SPEC_ALL	PSPEC_ALL
FORALL_OR_CONV	PFORALL_OR_CONV	SPEC_IAC	PSPEC_IAC
Iree_In	OCCS_IN	SPEC_VAR	PSPEC_PAIR
GEN CEN ALDUA CONV	CEN DALDUA CONV	STIP_ADS	SUID-pads
GEN ALPHA_CONV	GEN_PALPHA_CONV	STRIP_ASSUME_TAC	PSTRIP_ASSUME_TAC
GEN_IAC	PGEN_IAC	strip_exists	strip_pexists
GEINL	rgenliko	STIP_IOTAL	SUIP_PIOTAII
CEDEC	CDEDEC	STRIP_GOAL_ITEN	PSIRIP_GOAL_ITEN
UNIE MV ADS	UNIE MV DADS	STRIP_IAC STRIP_IAC	DSTDID TUM TUEN
in aba	ia noba	STRIF_ITIM_ITIEN	DETRUCT CASES TAC
is ovists	is povists	SIRCONV	DELIR CONV
is forall	is pforall	SWAD FYISTS CONV	SWAD DEVISTS CONV
is select	is protect	variant	nvariant
is var	is pyar	Y CHOOSE TAC	P PCHOOSE TAC
ISDEC	IDSDEC	X CHOOSE THEN	P PCHOOSE THEN
ISPECI	IDSDECI	X FUN FO CONV	P FUN FO CONV
I FFT AND FXISTS CONV	LEET AND PEXISTS CONV	X GEN TAC	P PGFN TAC
LEFT AND FORALL CONV	LEET AND PEORALL CONV	X SKOLFM CONV	P PSKOLFM CONV
LEFT IMP_EXISTS_CONV	LEFT_IMP_PEXISTS_CONV	A-DICOLEWI-GOINV	

The pair library also contains many functions for which there are no analogous nonpaired functions.

2.1 Getting Started

Before you can use any of the functions described in this manual, you must load the pair library. To load the pair library, issue the following command:

```
load_library 'pair';;
```

The pair library contains no theories, so it is always possible to load it.

2.2 The pair Library Philosophy

Two main design decisions should be noted about the pair library. These decisions run counter to the usual HOL philosophy that each inference rule should perform a single simple inference, and should do so only under a particular restricted set of circumstances. The philosophy of the pair library is that each inference rule should do whatever is necessary to eliminate the distinctions between reasoning about paired and unpaired abstractions and quantifications.

The first design decision is that all the functions for dealing with paired quantifications and abstractions have a very general notion of what a pair is. For the purposes of such functions, a pair may be an arbitrary *paired structure*. A paired structure is either a term, or a pair of terms which may themselves be paired structures. For example, the following are all considered to be paired structures:

a (a,b) (a,b,c) ((a1,a2),(b1,b2)) ((a1,a2),(b2,b2),(c1,c2)) Note that it is always possible to use the paired version of an inference rule in place of the standard version.

The other design decision is that the a pair (or subpair) bound by a paired abstraction should be treated as much like a single variable as possible. This means that paired and nonpaired abstractions can be considered α -equivalent. For example:

```
#PALPHA "\(x,y). (f (x,y))" "\xy. (f xy)";;
|- (\(x,y). f(x,y)) = (\xy. f xy)
```

The effect of this decision can be seen in evidence in β -conversion and other inference rules:

```
#PBETA_CONV "(\(x,y). (f x y (x,y))) ab";;
|- (\(x,y). f x y(x,y))xy = f(FST ab)(SND ab)ab
```

2.3 Bugs and Future Changes

At the time of release there were no known bugs in the system. However, this is more likely to be a result of poor testing than of good coding. If you do find a bug please report it to me, preferably along with a short example that exhibits the bug and the version number of the pair library that you are using. The constant pair_version contains the version number of the pair library. I will provide bug fixes as soon as possible. I can be contacted at:

Jim Grundy		
Defence Science & Technology Organisation	phone:	+61 8 259 6162
Building 171 Laboratories Area	fax:	+61 8 259 5980
PO Box 1500	telex:	AA82799
Salisbury SA 5108	email:	Jim.Grundy@dsto.defence.gov.au
AUSTRALIA		jim@grundy-j.apana.org.au

I would also welcome any suggestions for improving to the library, including optimisations and suggestions for new functions.

ML Functions in the pair Library

This chapter provides documentation on the ML functions that are made available in HOL when the pair library is loaded. This documentation is also available online via the help facility.

AND_PEXISTS_CONV

AND_PEXISTS_CONV : conv

Synopsis

Moves a paired existential quantification outwards through a conjunction.

Description

When applied to a term of the form (?p. t) /\ (?p. u), where no variables in p are free in either t or u, AND_PEXISTS_CONV returns the theorem:

|-(?p. t) / (?p. u) = (?p. t / u)

Failure

AND_PEXISTS_CONV fails if it is applied to a term not of the form (?p. t) /\ (?p. u), or if it is applied to a term (?p. t) /\ (?p. u) in which variables from p are free in either t or u.

See also

AND_EXISTS_CONV, PEXISTS_AND_CONV, LEFT_AND_PEXISTS_CONV, RIGHT_AND_PEXISTS_CONV.

AND_PFORALL_CONV

AND_PFORALL_CONV : conv

Moves a paired universal quantification outwards through a conjunction.

Description

When applied to a term of the form (!p. t) / (!p. t), the conversion AND_PFORALL_CONV returns the theorem:

|-(!p. t) / (!p. u) = (!p. t / u)

Failure

Fails if applied to a term not of the form (!p. t) /\ (!p. t).

See also

AND_FORALL_CONV, PFORALL_AND_CONV, LEFT_AND_PFORALL_CONV, RIGHT_AND_PFORALL_CONV.

bndpair

bndpair : (term -> term)

Synopsis

Returns the bound pair of a paired abstraction.

Description

bndpair "\pair. t" returns "pair".

Failure

Fails unless the term is a paired abstraction.

See also

bndvar, pbody, dest_pabs.

CURRY_CONV

CURRY_CONV : conv

10

Currys an application of a paired abstraction.

Example

#CURRY_CONV "(\(x,y). x + y) (1,2)";; |- (\(x,y). x + y)(1,2) = (\x y. x + y)1 2

#CURRY_CONV "(\(x,y). x + y) z";; |- (\(x,y). x + y)z = (\x y. x + y)(FST z)(SND z)

Failure

CURRY_CONV tm fails if tm is not an application of a paired abstraction.

See also

UNCURRY_CONV.

CURRY_EXISTS_CONV

CURRY_EXISTS_CONV : conv

Synopsis

Currys paired existential quantifications into consecutive existential quantifications.

Example

#CURRY_EXISTS_CONV "?(x,y). x + y = y + x";; |- (?(x,y). x + y = y + x) = (?x y. x + y = y + x) #CURRY_EXISTS_CONV "?((w,x),(y,z)). w+x+y+z = z+y+x+w";; |- (?((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w))) = (?(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure

CURRY_EXISTS_CONV tm fails if tm is not a paired existential quantification.

See also

CURRY_CONV, UNCURRY_CONV, UNCURRY_EXISTS_CONV, CURRY_FORALL_CONV, UNCURRY_FORALL_CONV.

CURRY_FORALL_CONV

CURRY_FORALL_CONV : conv

Synopsis

Currys paired universal quantifications into consecutive universal quantifications.

Example

 $#CURRY_FORALL_CONV "!(x,y). x + y = y + x";;$ |- (!(x,y). x + y = y + x) = (!x y. x + y = y + x)

#CURRY_FORALL_CONV "!((w,x),(y,z)). w+x+y+z = z+y+x+w";; |- (!((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w))) = (!(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure

CURRY_FORALL_CONV tm fails if tm is not a paired universal quantification.

See also

CURRY_CONV, UNCURRY_CONV, UNCURRY_FORALL_CONV, CURRY_EXISTS_CONV, UNCURRY_EXISTS_CONV.

dest_pabs

dest_pabs : (term -> (term # term))

Synopsis

Breaks apart a paired abstraction into abstracted pair and body.

Description

dest_pabs is a term destructor for paired abstractions: dest_abs "\pair. t" returns
("pair","t").

Failure

Fails with dest_pabs if term is not a paired abstraction.

See also

dest_abs, mk_pabs, is_pabs, strip_pabs.

dest_pexists

```
dest_pexists : (term -> (term # term))
```

Synopsis

Breaks apart paired existential quantifiers into the bound pair and the body.

Description

dest_pexists is a term destructor for paired existential quantification. The application of dest_pexists to "?pair. t" returns ("pair","t").

Failure

Fails with dest_pexists if term is not a paired existential quantification.

See also

dest_exists, mk_pexists, is_pexists, strip_pexists.

dest_pforall

```
dest_pforall : (term -> (term # term))
```

Synopsis

Breaks apart paired universal quantifiers into the bound pair and the body.

Description

```
dest_pforall is a term destructor for paired universal quantification. The application of
dest_pforall to "!pair. t" returns ("pair","t").
```

Failure

Fails with dest_pforall if term is not a paired universal quantification.

See also

dest_forall, mk_pforall, is_pforall, strip_pforall.

dest_prod

```
dest_prod : (type -> (type # type))
```

Synopsis

Breaks apart a product type into its component types.

Description

dest_prod is a type destructor for products: dest_pair ":t1#t2" returns (":t1",":t2").

Failure

Fails with dest_prod if the argument is not a product type.

See also

is_prod, mk_prod.

dest_pselect

dest_pselect : (term -> (term # term))

Synopsis

Breaks apart a paired choice-term into the selected pair and the body.

Description

dest_pselect is a term destructor for paired choice terms. The application of dest_select to "@pair. t" returns ("pair", "t").

Failure

Fails with dest_pselect if term is not a paired choice-term.

See also

dest_select, mk_pselect, is_pselect.

FILTER_PGEN_TAC

FILTER_PGEN_TAC : (term -> tactic)

Strips off a paired universal quantifier, but fails for a given quantified pair.

Description

When applied to a term q and a goal A ?- !p. t, the tactic FILTER_PGEN_TAC fails if the quantified pair p is the same as p, but otherwise advances the goal in the same way as PGEN_TAC, i.e. returns the goal A ?- t[p'/p] where p' is a variant of p chosen to avoid clashing with any variables free in the goal's assumption list. Normally p' is just p.

A ?- !p. t ============ FILTER_PGEN_TAC "q" A ?- t[p'/p]

Failure

Fails if the goal's conclusion is not a paired universal quantifier or the quantified pair is equal to the given term.

See also

FILTER_GEN_TAC, PGEN, PGEN_TAC, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC, PSTRIP_TAC.

FILTER_PSTRIP_TAC

FILTER_PSTRIP_TAC : (term -> tactic)

Synopsis

Conditionally strips apart a goal by eliminating the outermost connective.

Description

Stripping apart a goal in a more careful way than is done by PSTRIP_TAC may be necessary when dealing with quantified terms and implications. FILTER_PSTRIP_TAC behaves like PSTRIP_TAC, but it does not strip apart a goal if it contains a given term.

If u is a term, then FILTER_PSTRIP_TAC u is a tactic that removes one outermost occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t, provided the term being stripped does not contain u. FILTER_PSTRIP_TAC will strip paired universal quantifications. A negation ~t is treated as the implication t ==> F. FILTER_PSTRIP_TAC also breaks apart conjunctions without applying any filtering. If t is a universally quantified term, FILTER_PSTRIP_TAC u strips off the quantifier:

where p' is a primed variant of the pair p that does not contain any variables that appear free in the assumptions A. If t is a conjunction, no filtering is done and FILTER_PSTRIP_TAC simply splits the conjunction:

A ?- v /\ w ============= FILTER_PSTRIP_TAC "u" A ?- v A ?- w

If t is an implication and the antecedent does not contain a free instance of u, then FILTER_PSTRIP_TAC u moves the antecedent into the assumptions and recursively splits the antecedent according to the following rules (see PSTRIP_ASSUME_TAC):

A ?- v1 /\ ... /\ vn ==> v A u {v1,...,vn} ?- v A ?- (?p. w) ==> v A u {w[p'/p]} ?- v

where p' is a variant of the pair p.

Failure

FILTER_PSTRIP_TAC u (A,t) fails if t is not a universally quantified term, an implication, a negation or a conjunction; or if the term being stripped contains u in the sense described above (conjunction excluded).

Uses

FILTER_PSTRIP_TAC is used when stripping outer connectives from a goal in a more delicate way than PSTRIP_TAC. A typical application is to keep stripping by using the tactic REPEAT (FILTER_PSTRIP_TAC u) until one hits the term u at which stripping is to stop.

See also

PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_PSTRIP_THEN, PSTRIP_TAC, FILTER_STRIP_TAC.

FILTER_PSTRIP_THEN

FILTER_PSTRIP_THEN : (thm_tactic -> term -> tactic)

Conditionally strips a goal, handing an antecedent to the theorem-tactic.

Description

Given a theorem-tactic ttac, a term u and a goal (A,t), FILTER_STRIP_THEN ttac u removes one outer connective (!, ==>, or ~) from t, if the term being stripped does not contain a free instance of u. Note that FILTER_PSTRIP_THEN will strip paired universal quantifiers. A negation ~t is treated as the implication t ==> F. The theorem-tactic ttac is applied only when stripping an implication, by using the antecedent stripped off. FILTER_PSTRIP_THEN also breaks conjunctions.

FILTER_PSTRIP_THEN behaves like PSTRIP_GOAL_THEN, if the term being stripped does not contain a free instance of u. In particular, FILTER_PSTRIP_THEN PSTRIP_ASSUME_TAC behaves like FILTER_PSTRIP_TAC.

Failure

FILTER_PSTRIP_THEN ttac u (A,t) fails if t is not a paired universally quantified term, an implication, a negation or a conjunction; or if the term being stripped contains the term u (conjunction excluded); or if the application of ttac fails, after stripping the goal.

Uses

FILTER_PSTRIP_THEN is used to manipulate intermediate results using theorem-tactics, after stripping outer connectives from a goal in a more delicate way than PSTRIP_GOAL_THEN.

See also

PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_STRIP_THEN, PSTRIP_TAC, FILTER_PSTRIP_TAC.

genlike

genlike : (term -> term)

Synopsis

Returns a pair structure of variables whose names have not been previously used.

Description

When given a pair structure, genlike returns a paired structure of variables whose names have not been used for variables or constants in the HOL session so far. The structure of the term returned will be identical to the structure of the argument.

Failure

Never fails.

Example

The following example illustrates the behaviour of genlike:

```
#genlike "((1,2),(x:*,x:*))";;
"(GEN%VAR%487,GEN%VAR%488),GEN%VAR%489,GEN%VAR%490" : term
```

Uses

Unique variables are useful in writing derived rules, for specializing terms without having to worry about such things as free variable capture. It is often important in such rules to keep the same structure. If not, genvar will be adequate. If the names are to be visible to a typical user, the function pvariant can provide rather more meaningful names.

See also

```
genvar, GPSPEC, pvariant.
```

GEN_PALPHA_CONV

```
GEN_PALPHA_CONV : (term -> conv)
```

Synopsis

Renames the bound pair of a paired abstraction, quantified term, or other binder.

Description

The conversion GEN_PALPHA_CONV provides alpha conversion for lambda abstractions of the form "\p.t", quantified terms of the forms "!p.t", "?p.t" or "?!p.t", and epsilon terms of the form "@p.t". In general, if B is a binder constant, then GEN_ALPHA_CONV implements alpha conversion for applications of the form "B p.t". The function is_binder determines what is regarded as a binder in this context.

The renaming of pairs is as described for PALPHA_CONV.

Failure

GEN_PALPHA_CONV q tm fails if q is not a variable, or if tm does not have one of the forms "\p.t" or "B p.t", where B is a binder (that is, is_binder 'B' returns true). GEN_ALPHA_CONV q tm also fails if tm does have one of these forms, but types of the variables p and q differ.

18

See also

GEN_ALPHA_CONV, PALPHA, PALPHA_CONV, is_binder.

GPSPEC

GPSPEC : (thm -> thm)

Synopsis

Specializes the conclusion of a theorem with unique pairs.

Description

When applied to a theorem A |-!p1...pn. t, where the number of universally quantified variables may be zero, GPSPEC returns A |-t[g1/p1]...[gn/pn], where the gi is paired structures of the same structure as pi and made up of distinct variables, chosen by genvar.

A |- !p1...pn. t ----- GPSPEC A |- t[g1/p1]...[gn/pn]

Failure

Never fails.

Uses

GPSPEC is useful in writing derived inference rules which need to specialize theorems while avoiding using any variables that may be present elsewhere.

See also

GSPEC, PGEN, PGENL, genvar, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC, PSPEC_PAIR.

HALF_MK_PABS

HALF_MK_PABS : (thm -> thm)

Synopsis

Converts a function definition to lambda-form.

Description

When applied to a theorem $A \mid - !p. t1 p = t2$, whose conclusion is a universally quantified equation, HALF_MK_PABS returns the theorem $A \mid - t1 = (p. t2)$.

A |- !p. t1 p = t2 ------ HALF_MK_PABS [where p is not free in t1] A |- t1 = (\p. t2)

Failure

Fails unless the theorem is a singly paired universally quantified equation whose lefthand side is a function applied to the quantified pair, or if any of the the variables in the quantified pair is free in that function.

See also

HALF_MK_ABS, PETA_CONV, MK_PABS, MK_PEXISTS.

IPSPEC

```
IPSPEC : (term -> thm -> thm)
```

Synopsis

Specializes a theorem, with type instantiation if necessary.

Description

This rule specializes a paired quantification as does PSPEC; it differs from it in also instantiating the type if needed:

A |- !p:ty.tm ----- IPSPEC "q:ty'" A |- tm[q/p]

(where q is free for p in tm, and ty' is an instance of ty).

Failure

IPSPEC fails if the input theorem is not universally quantified, if the type of the given term is not an instance of the type of the quantified variable, or if the type variable is free in the assumptions.

See also

ISPEC, INST_TY_TERM, INST_TYPE, IPSPECL, PSPEC, match.

20

IPSPECL

IPSPECL : (term list -> thm -> thm)

Synopsis

Specializes a theorem zero or more times, with type instantiation if necessary.

Description

IPSPECL is an iterative version of IPSPEC

A |- !p1...pn.tm ------ IPSPECL ["q1",...,"qn"] A |- t[q1,...qn/p1,...,pn]

(where qi is free for pi in tm).

Failure

IPSPECL fails if the list of terms is longer than the number of quantified variables in the term, if the type instantiation fails, or if the type variable being instantiated is free in the assumptions.

See also

ISPECL, INST_TYPE, INST_TY_TERM, IPSPEC, MATCH, SPEC, PSPECL.

is_pabs

```
is_pabs : (term -> bool)
```

Synopsis

Tests a term to see if it is a paired abstraction.

Description

is_pabs "\pair. t" returns true. If the term is not a paired abstraction the result is false.

Failure

Never fails.

See also

is_abs, mk_pabs, dest_pabs.

is_pexists

is_pexists : (term -> bool)

Synopsis

Tests a term to see if it as a paired existential quantification.

Description

is_pexists "?pair. t" returns true. If the term is not a paired existential quantification
the result is false.

Failure

Never fails.

See also

is_exists, mk_pexists, dest_pexists.

is_pforall

is_pforall : (term -> bool)

Synopsis

Tests a term to see if it is a paired universal quantification.

Description

is_pforall "!pair. t" returns true. If the term is not a a paired universal quantification the result is false.

Failure

Never fails.

See also

```
is_forall, mk_pforall, dest_pforall.
```

is_prod

is_prod : (type -> bool)

Synopsis

Tests a type to see if it is a product type.

Description

is_prod ":t1#t2" returns true.

Failure Never fails.

See also dest_prod, mk_prod.

is_pselect

is_pselect : (term -> bool)

Synopsis

Tests a term to see if it is a paired choice-term.

Description

is_select "@pair. t" returns true. If the term is not a paired choice-term the result is
false.

Failure

Never fails.

See also

is_select, mk_pselect, dest_pselect.

is_pvar

is_pvar : (term -> bool)

Tests a term to see if it is a paired structure of variables.

Description

is_pvar "pvar" returns true iff pvar is a paired structure of variables. For example, ((a:*,b:*),(d:*,e:*)) is a paired structure of variables, (1,2) is not.

Failure

Never fails.

See also

is_var.

LEFT_AND_PEXISTS_CONV

LEFT_AND_PEXISTS_CONV : conv

Synopsis

Moves a paired existential quantification of the left conjunct outwards through a conjunction.

Description

When applied to a term of the form (?p. t) /\ u, the conversion LEFT_AND_PEXISTS_CONV returns the theorem:

|- (?p. t) /\ u = (?p'. t[p'/p] /\ u)

where p' is a primed variant of the pair p that does not contains variables free in the input term.

Failure

Fails if applied to a term not of the form (?p. t) / u.

See also

```
LEFT_AND_EXISTS_CONV, AND_PEXISTS_CONV, PEXISTS_AND_CONV, RIGHT_AND_PEXISTS_CONV.
```

LEFT_AND_PFORALL_CONV

LEFT_AND_PFORALL_CONV : conv

24

Moves a paired universal quantification of the left conjunct outwards through a conjunction.

Description

When applied to a term of the form (!p. t) /\ u, the conversion LEFT_AND_PFORALL_CONV returns the theorem:

|- (!p. t) /\ u = (!p'. t[p'/p] /\ u)

where p^{γ} is a primed variant of p that does not appear free in the input term.

Failure

Fails if applied to a term not of the form (!p. t) / u.

See also

```
LEFT_AND_FORALL_CONV, AND_PFORALL_CONV, PFORALL_AND_CONV, RIGHT_AND_PFORALL_CONV.
```

LEFT_IMP_PEXISTS_CONV

```
LEFT_IMP_PEXISTS_CONV : conv
```

Synopsis

Moves a paired existential quantification of the antecedent outwards through an implication.

Description

When applied to a term of the form (?p. t) ==> u, the conversion LEFT_IMP_PEXISTS_CONV returns the theorem:

|- (?p. t) ==> u = (!p'. t[p'/p] ==> u)

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form (?p. t) = u.

See also

LEFT_IMP_EXISTS_CONV, PFORALL_IMP_CONV, RIGHT_IMP_PFORALL_CONV.

LEFT_IMP_PFORALL_CONV

LEFT_IMP_PFORALL_CONV : conv

Synopsis

Moves a paired universal quantification of the antecedent outwards through an implication.

Description

When applied to a term of the form (!p. t) ==> u, the conversion LEFT_IMP_PFORALL_CONV returns the theorem:

|- (!p. t) ==> u = (?p'. t[p'/p] ==> u)

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form $(!p. t) \implies u$.

See also

```
LEFT_IMP_FORALL_CONV, PEXISTS_IMP_CONV, RIGHT_IMP_PFORALL_CONV.
```

LEFT_LIST_PBETA

```
LEFT_LIST_PBETA : (thm -> thm)
```

Synopsis

Iteratively beta-reduces a top-level paired beta-redex on the left-hand side of an equation.

Description

When applied to an equational theorem, LEFT_LIST_PBETA applies paired beta-reduction over a top-level chain of beta-redexes to the left-hand side (only). Variables are renamed

if necessary to avoid free variable capture.

A |- (\p1...pn. t) q1 ... qn = s
------ LEFT_LIST_BETA
A |- t[q1/p1]...[qn/pn] = s

Failure

Fails unless the theorem is equational, with its left-hand side being a top-level paired beta-redex.

See also

RIGHT_LIST_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV, LEFT_PBETA, RIGHT_PBETA, RIGHT_LIST_PBETA.

LEFT_OR_PEXISTS_CONV

LEFT_OR_PEXISTS_CONV : conv

Synopsis

Moves a paired existential quantification of the left disjunct outwards through a disjunction.

Description

When applied to a term of the form (?p. t) \/ u, the conversion LEFT_OR_PEXISTS_CONV returns the theorem:

|- (?p. t) \/ u = (?p'. t[p'/p] \/ u)

where p, is a primed variant of the pair p that does not contain any variables free in the input term.

Failure

Fails if applied to a term not of the form (?p. t) // u.

See also

LEFT_OR_EXISTS_CONV, PEXISTS_OR_CONV, OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

LEFT_OR_PFORALL_CONV

LEFT_OR_PFORALL_CONV : conv

Moves a paired universal quantification of the left disjunct outwards through a disjunction.

Description

When applied to a term of the form (!p. t) // u, the conversion LEFT_OR_FORALL_CONV returns the theorem:

|- (!p. t) \/ u = (!p'. t[p'/p] \/ u)

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form (!p. t) // u.

See also

LEFT_OR_FORALL_CONV, OR_PFORALL_CONV, PFORALL_OR_CONV, RIGHT_OR_PFORALL_CONV.

LEFT_PBETA

LEFT_PBETA : (thm -> thm)

Synopsis

Beta-reduces a top-level paired beta-redex on the left-hand side of an equation.

Description

When applied to an equational theorem, LEFT_PBETA applies paired beta-reduction at top level to the left-hand side (only). Variables are renamed if necessary to avoid free variable capture.

A |- (\x. t1) t2 = s ----- LEFT_PBETA A |- t1[t2/x] = s

Failure

Fails unless the theorem is equational, with its left-hand side being a top-level paired beta-redex.

See also

RIGHT_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, RIGHT_PBETA, RIGHT_LIST_PBETA, LEFT_LIST_PBETA.

list_mk_pabs

list_mk_pabs : ((term list # term) -> term)

Synopsis

Iteratively constructs paired abstractions.

Description

list_mk_pabs(["p1";...;"pn"],"t") returns "\p1 ... pn. t".

Failure

Fails with list_mk_pabs if the terms in the list are not paired structures of variables.

Comments

The system shows the type as goal -> term.

See also

list_mk_abs, strip_pabs, mk_pabs.

list_mk_pexists

list_mk_pexists : ((term list # term) -> term)

Synopsis

Iteratively constructs paired existential quantifications.

Description

list_mk_pexists(["p1";...;"pn"],"t") returns "?p1 ... pn. t".

Failure

Fails with list_mk_pexists if the terms in the list are not paired structures of variables or if t is not of type ":bool" and the list of terms is nonempty. If the list of terms is empty the type of t can be anything.

Comments

The system shows the type as (goal -> term).

See also

list_mk_exists, strip_pexists, mk_pexists.

LIST_MK_PEXISTS

LIST_MK_PEXISTS : (term list -> thm -> thm)

Synopsis

Multiply existentially quantifies both sides of an equation using the given pairs.

Description

When applied to a list of terms [p1; ...; pn], where the pi are all paired structures of variables, and a theorem A |-t1 = t2, the inference rule LIST_MK_PEXISTS existentially quantifies both sides of the equation using the pairs given, none of the variables in the pairs should be free in the assumption list.

A |- t1 = t2 ----- LIST_MK_PEXISTS ["x1";...;"xn"] A |- (?x1...xn. t1) = (?x1...xn. t2)

Failure

Fails if any term in the list is not a paired structure of variables, or if any variable is free in the assumption list, or if the theorem is not equational.

See also

LIST_MK_EXISTS, PEXISTS_EQ, MK_PEXISTS.

list_mk_pforall

list_mk_pforall : ((term list # term) -> term)

Synopsis

Iteratively constructs a paired universal quantification.

30

Description

list_mk_pforall(["p1";...;"pn"],"t") returns "!p1 ... pn. t".

Failure

Fails with list_mk_pforall if the terms in the list are not paired structures of variables or if t is not of type ":bool" and the list of terms is nonempty. If the list of terms is empty the type of t can be anything.

Comments

The system shows the type as (goal -> term).

See also

list_mk_forall, strip_pforall, mk_pforall.

LIST_MK_PFORALL

LIST_MK_PFORALL : (term list -> thm -> thm)

Synopsis

Multiply universally quantifies both sides of an equation using the given pairs.

Description

When applied to a list of terms [p1; ...; pn], where the pi are all paired structures of variables, and a theorem A |-t1 = t2, the inference rule LIST_MK_PFORALL universally quantifies both sides of the equation using the pairs given, none of the variables in the pairs should be free in the assumption list.

A |- t1 = t2 ----- LIST_MK_PFORALL ["x1";...;"xn"] A |- (!x1...xn. t1) = (!x1...xn. t2)

Failure

Fails if any term in the list is not a paired structure of variables, or if any variable is free in the assumption list, or if the theorem is not equational.

See also

LIST_MK_EXISTS, PFORALL_EQ, MK_PFORALL.

LIST_PBETA_CONV

LIST_PBETA_CONV : conv

Synopsis

Performs an iterated paired beta-conversion.

Description

The conversion LIST_PBETA_CONV maps terms of the form

"(\p1 p2 ... pn. t) q1 q2 ... qn"

to the theorems of the form

|- (\p1 p2 ... pn. t) q1 q2 ... qn = t[q1/p1][q2/p2] ... [qn/pn]

where t[qi/pi] denotes the result of substituting qi for all free occurrences of pi in t, after renaming sufficient bound variables to avoid variable capture.

Failure

LIST_PBETA_CONV tm fails if tm does not have the form "(\p1 ... pn. t) q1 ... qn" for n greater than 0.

Example

```
#LIST_PBETA_CONV "(\(a,b) (c,d) . a + b + c + d) (1,2) (3,4)";;
|- (\(a,b) (c,d). a + (b + (c + d)))(1,2)(3,4) = 1 + (2 + (3 + 4))
```

See also

LIST_BETA_CONV, PBETA_CONV, BETA_RULE, BETA_TAC, RIGHT_PBETA, RIGHT_LIST_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.

mk_pabs

mk_pabs : ((term # term) -> term)

Synopsis

Constructs a paired abstraction.

Description

mk_pabs "pair", "t" returns the abstraction "\pair. t".

Failure

Fails with mk_pabs if first term is not a pair structure of variables.

See also

mk_abs, dest_pabs, is_pabs, list_mk_pabs.

MK_PABS

 MK_PABS : (thm -> thm)

Synopsis

Abstracts both sides of an equation.

Description

When applied to a theorem A |-!p. t1 = t2, whose conclusion is a paired universally quantified equation, MK_PABS returns the theorem A $|-(\p. t1) = (\p. t2)$.

A |- !p. t1 = t2 ----- MK_PABS A |- (\p. t1) = (\p. t2)

Failure

Fails unless the theorem is a (singly) paired universally quantified equation.

See also

MK_ABS, PABS, HALF_MK_PABS, MK_PEXISTS.

MK_PAIR

 MK_PAIR : (thm -> thm -> thm)

Synopsis

Proves equality of pairs constructed from equal components.

Description

When applied to theorems A1 |-a = x and A2 |-b = y, the inference rule MK_PAIR returns the theorem A1 u A2 |-(a,b) = (x,y).

A1 |-a = x A2 |-b = y----- MK_PAIR A1 u A2 |-(a,b) = (x,y)

Failure

Fails unless both theorems are equational.

See also

mk_pexists

```
mk_pexists : ((term # term) -> term)
```

Synopsis

Constructs a paired existential quantification.

Description

mk_pexists("pair","t") returns "?pair. t".

Failure

Fails with mk_exists if first term is not a paired structure of variables or if t is not of type ":bool".

See also

mk_exists, dest_pexists, is_pexists, list_mk_pexists.

MK_PEXISTS

MK_PEXISTS : (thm -> thm)

Synopsis

Existentially quantifies both sides of a universally quantified equational theorem.

34
When applied to a theorem A |-!p. t1 = t2, the inference rule MK_PEXISTS returns the theorem A |-(?x. t1) = (?x. t2).

A |- !p. t1 = t2 ----- MK_PEXISTS A |- (?p. t1) = (?p. t2)

Failure

Fails unless the theorem is a singly paired universally quantified equation.

See also

PEXISTS_EQ, PGEN, LIST_MK_PEXISTS, MK_PABS.

mk_pforall

```
mk_pforall : ((term # term) -> term)
```

Synopsis

Constructs a paired universal quantification.

Description

mk_pforall("pair","t") returns "!pair. t".

Failure

Fails with mk_pforall if first term is not a a paired structure of variables or if t is not of type ":bool".

See also

mk_forall, dest_pforall, is_pforall, list_mk_pforall.

MK_PFORALL

MK_PFORALL : (thm -> thm)

Synopsis

Universally quantifies both sides of a universally quantified equational theorem.

When applied to a theorem A |-!p. t1 = t2, the inference rule MK_PFORALL returns the theorem A |-(!x. t1) = (!x. t2).

A |- !p. t1 = t2 ----- MK_PFORALL A |- (!p. t1) = (!p. t2)

Failure

Fails unless the theorem is a singly paired universally quantified equation.

See also

PFORALL_EQ, LIST_MK_PFORALL, MK_PABS.

mk_prod

mk_prod : ((type # type) -> type)

Synopsis

Constructs a product type from two constituent types.

Description

mk_prod(":t1",":t2") returns ":t1#t2".

Failure

Never fails.

See also

is_prod, dest_prod.

mk_pselect

mk_pselect : ((term # term) -> term)

Synopsis

Constructs a paired choice-term.

mk_pselect("pair","t") returns "@pair. t".

Failure

Fails with mk_select if first term is not a paired structure of variables or if t is not of type ":bool".

See also

mk_select, dest_pselect, is_pselect.

MK_PSELECT

MK_PSELECT : (thm -> thm)

Synopsis

Quantifies both sides of a universally quantified equational theorem with the choice quantifier.

Description

When applied to a theorem A |-!p. t1 = t2, the inference rule MK_PSELECT returns the theorem A |-(@x. t1) = (@x. t2).

A |- !p. t1 = t2 ----- MK_PSELECT A |- (@p. t1) = (@p. t2)

Failure

Fails unless the theorem is a singly paired universally quantified equation.

See also

PSELECT_EQ, MK_PABS.

NOT_PEXISTS_CONV

NOT_PEXISTS_CONV : conv

Moves negation inwards through a paired existential quantification.

Description

When applied to a term of the form ~(?p. t), the conversion NOT_PEXISTS_CONV returns the theorem:

|-~(?p. t) = (!p.~t)

Failure

Fails if applied to a term not of the form ~(?p. t).

See also

NOT_EXISTS_CONV, PEXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PFORALL_CONV.

NOT_PFORALL_CONV

NOT_PFORALL_CONV : conv

Synopsis

Moves negation inwards through a paired universal quantification.

Description

When applied to a term of the form ~(!p. t), the conversion NOT_PFORALL_CONV returns the theorem:

|- ~(!p. t) = (?p. ~t)

It is irrelevant whether any variables in p occur free in t.

Failure

Fails if applied to a term not of the form ~(!p. t).

See also

```
NOT_FORALL_CONV, PEXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PEXISTS_CONV.
```

occs_in

occs_in : (term -> term -> bool)

38

Occurrence check for bound variables.

Description

When applied to two terms p and t, where p is a paired structure of variables, the function occs_in returns true if and of the constituent variables of p occurs free in t, and false otherwise.

Failure

Fails of p is not a paired structure of variables.

See also

free_in, frees, freesl, thm_frees.

OR_PEXISTS_CONV

OR_PEXISTS_CONV : conv

Synopsis

Moves a paired existential quantification outwards through a disjunction.

Description

When applied to a term of the form (?p. t) / (?p. u), the conversion OR_PEXISTS_CONV returns the theorem:

|- (?p. t) \/ (?p. u) = (?p. t \/ u)

Failure

Fails if applied to a term not of the form (?p. t) // (?p. u).

See also

OR_EXISTS_CONV, PEXISTS_OR_CONV, LEFT_OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

OR_PFORALL_CONV

OR_PFORALL_CONV : conv

Moves a paired universal quantification outwards through a disjunction.

Description

When applied to a term of the form (!p. t) \/ (!p. u), where no variables from p are free in either t nor u, OR_PFORALL_CONV returns the theorem:

|- (!p. t) \/ (!p. u) = (!p. t \/ u)

Failure

OR_PFORALL_CONV fails if it is applied to a term not of the form (!p. t) \/ (!p. u), or if it is applied to a term (!p. t) \/ (!p. u) in which the variables from p are free in either t or u.

See also

OR_FORALL_CONV, PFORALL_OR_CONV, LEFT_OR_PFORALL_CONV, RIGHT_OR_PFORALL_CONV.

PABS

PABS : (term \rightarrow thm \rightarrow thm)

Synopsis

Paired abstraction of both sides of an equation.

Description

A |- t1 = t2 ----- ABS "p" A |- (\p.t1) = (\p.t2)

[Where p is not free in A]

Failure

If the theorem is not an equation, or if any variable in the paired structure of variables p occurs free in the assumptions A.

EXAMPLE

#PABS "(x:*,y:**)" (REFL "(x:*,y:**)");; |- (\(x,y). (x,y)) = (\(x,y). (x,y))

See also

ABS, PABS_CONV, PETA_CONV, PEXT, MK_PABS.

40

PABS_CONV

```
PABS_CONV : (conv -> conv)
```

Synopsis

Applies a conversion to the body of a paired abstraction.

Description

If c is a conversion that maps a term "t" to the theorem |-t = t', then the conversion PABS_CONV c maps abstractions of the form "\p.t" to theorems of the form:

|-(p.t) = (p.t')

That is, ABS_CONV c "\p.t" applies p to the body of the paired abstraction "\p.t".

Failure

PABS_CONV c tm fails if tm is not a paired abstraction or if tm has the form "\p.t" but the conversion c fails when applied to the term t. The function returned by ABS_CONV p may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem |-t = t').

Example

#PABS_CONV SYM_CONV "\(x,y). (1,2) = (x,y)";; |- (\(x,y). 1,2 = x,y) = (\(x,y). x,y = 1,2)

See also

ABS_CONV, PSUB_CONV.

paconv

paconv : (term -> term -> bool)

Synopsis

Tests for alpha-equivalence of terms.

When applied to a pair of terms t1 and t2, paconv returns true if the terms are alphaequivalent.

Failure

Never fails.

Comments

paconv is implemented as curry (can (uncurry PALPHA)).

See also

PALPHA, aconv.

PAIR_CONV

PAIR_CONV : (conv -> conv)

Synopsis

Applies a conversion to all the components of a pair structure.

Description

For any conversion c, the function returned by PAIR_CONV c is a conversion that applies c to all the components of a pair. If the term t is not a pair, them PAIR_CONV c t applies c to t. If the term t is the pair (t1,t2) then PAIR c t recursively applies PAIR_CONV c to t1 and t2.

Failure

The conversion returned by PAIR_CONV c will fail for the pair structure t if the conversion c would fail for any of the components of t.

See also

RAND_CONV, RATOR_CONV.

PALPHA

PALPHA : (term -> term -> thm)

42

Proves equality of paired alpha-equivalent terms.

Description

When applied to a pair of terms t1 and t1' which are alpha-equivalent, ALPHA returns the theorem |-t1 = t1'.

```
----- PALPHA "t1" "t1'"
|- t1 = t1'
```

The difference between PALPHA and ALPHA is that PALPHA is prepared to consider pair structures of different structure to be alpha-equivalent. In its most trivial case this means that PALPHA can consider a variable and a pair to alpha-equivalent.

Failure

Fails unless the terms provided are alpha-equivalent.

Example

```
#PALPHA "\(x:*,y:*). (x,y)" "\xy:*#*.xy";;
|- (\(x,y). (x,y)) = (\xy. xy)
```

Comments

The system shows the type of PALPHA as term -> conv.

Alpha-converting a paired abstraction to a nonpaired abstraction can introduce instances of the terms "FST" and "SND". A paired abstraction and a nonpaired abstraction will be considered equivalent by PALPHA if the nonpaired abstraction contains all those instances of "FST" and "SND" present in the paired abstraction, plus the minimum additional instances of "FST" and "SND". For example:

```
#PALPHA
   "\(x:*,y:**). (f x y (x,y)):***"
   "\xy:*#**. (f (FST xy) (SND xy) xy):***";;
|- (\(x,y). f x y(x,y)) = (\xy. f(FST xy)(SND xy)xy)
#PALPHA
   "\(x:*,y:**). (f x y (x,y)):***"
   "\xy:*#**. (f (FST xy) (SND xy) (FST xy, SND xy)):***";;
evaluation failed PALPHA
```

See also

ALPHA, aconv, PALPHA_CONV, GEN_PALPHA_CONV.

PALPHA_CONV

```
PALPHA_CONV : (term -> conv)
```

Synopsis

Renames the bound variables of a paired lambda-abstraction.

Description

If "q" is a variable of type ty and "\p.t" is a paired abstraction in which the bound pair p also has type ty, then ALPHA_CONV "q" "\p.t" returns the theorem:

|-(p.t) = (q'. t[q'/p])

where the pair q':ty is a primed variant of q chosen so that none of its components are free in "\p.t". The pairs p and q need not have the same structure, but they must be of the same type.

Example

PALPHA_CONV renames the variables in a bound pair:

#PALPHA_CONV
 "((w:*,x:*),(y:*,z:*))"
 "\((a:*,b:*),(c:*,d:*)). (f a b c d):*";;
 |- (\((a,b),c,d). f a b c d) = (\((w,x),y,z). f w x y z)

The new bound pair and the old bound pair need not have the same structure.

```
#PALPHA_CONV
  "((wx:*#*),(y:*,z:*))"
  "\((a:*,b:*),(c:*,d:*)). (f a b c d):*";;
  |- (\((a,b),c,d). f a b c d) = (\(wx,y,z). f(FST wx)(SND wx)y z)
```

PALPHA_CONV recognises subpairs of a pair as variables and preserves structure accordingly.

```
#PALPHA_CONV
"((wx:*#*),(y:*,z:*))"
"\((a:*,b:*),(c:*,d:*)). (f (a,b) c d):*";;
|- (\((a,b),c,d). f(a,b)c d) = (\(wx,y,z). f wx y z)
```

Comments

PALPHA_CONV will only ever add the terms "FST" and "SND". (i.e. it will never remove them). This means that while "(x,y). x + y" can be converted to "xy. (FST xy) + (SND xy)", it can not be converted back again.

Failure

PALPHA_CONV "q" "tm" fails if q is not a variable, if tm is not an abstraction, or if q is a variable and tm is the lambda abstraction p.t but the types of p and q differ.

See also

ALPHA_CONV, PALPHA, GEN_PALPHA_CONV.

PART_PMATCH

PART_PMATCH : ((term -> term) -> thm -> term -> thm)

Synopsis

Instantiates a theorem by matching part of it to a term.

Description

When applied to a 'selector' function of type term -> term, a theorem and a term:

PART_MATCH fn (A |- !p1...pn. t) tm

the function PART_PMATCH applies fn to t' (the result of specializing universally quantified pairs in the conclusion of the theorem), and attempts to match the resulting term to the argument term tm. If it succeeds, the appropriately instantiated version of the theorem is returned.

Failure

Fails if the selector function fn fails when applied to the instantiated theorem, or if the match fails with the term it has provided.

See also

PART_MATCH.

PBETA_CONV

PBETA_CONV : conv

Synopsis

Performs a general beta-conversion.

The conversion PBETA_CONV maps a paired beta-redex "(\p.t)q" to the theorem

|-(p.t)q = t[q/p]

where u[q/p] denotes the result of substituting q for all free occurrences of p in t, after renaming sufficient bound variables to avoid variable capture. Unlike PAIRED_BETA_CONV, PBETA_CONV does not require that the structure of the argument match the structure of the pair bound by the abstraction. However, if the structure of the argument does match the structure of the pair bound by the abstraction, then PAIRED_BETA_CONV will do the job much faster.

Failure

PBETA_CONV tm fails if tm is not a paired beta-redex.

Example

PBETA_CONV will reduce applications with arbitrary structure.

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f a b c d) ((w,x),(y,z))):*";; |- (\((a,b),c,d). f a b c d)((w,x),y,z) = f w x y z

PBETA_CONV does not require the structure of the argument and the bound pair to match.

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f a b c d) ((w,x),yz)):*";; |- (\((a,b),c,d). f a b c d)((w,x),yz) = f w x(FST yz)(SND yz)

PBETA_CONV regards component pairs of the bound pair as variables in their own right and preserves structure accordingly:

#PBETA_CONV "((\((a:*,b:*),(c:*,d:*)). f (a,b) (c,d)) (wx,(y,z))):*";; |- (\((a,b),c,d). f(a,b)(c,d))(wx,y,z) = f wx(y,z)

See also

BETA_CONV, PAIRED_BETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV, RIGHT_PBETA, RIGHT_LIST_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.

PBETA_RULE

PBETA_RULE : (thm -> thm)

Beta-reduces all the paired beta-redexes in the conclusion of a theorem.

Description

When applied to a theorem $A \mid -t$, the inference rule PBETA_RULE beta-reduces all beta-redexes, at any depth, in the conclusion t. Variables are renamed where necessary to avoid free variable capture.

A |-((\p. s1) s2).... BETA_RULE A |-(s1[s2/p])....

Failure

Never fails, but will have no effect if there are no paired beta-redexes.

See also

BETA_RULE, PBETA_CONV, PBETA_TAC, RIGHT_PBETA, LEFT_PBETA.

PBETA_TAC

```
PBETA_TAC : tactic
```

Synopsis

Beta-reduces all the paired beta-redexes in the conclusion of a goal.

Description

When applied to a goal A ?- t, the tactic PBETA_TAC produces a new goal which results from beta-reducing all paired beta-redexes, at any depth, in t. Variables are renamed where necessary to avoid free variable capture.

Failure

Never fails, but will have no effect if there are no paired beta-redexes.

See also

BETA_TAC, PBETA_CONV, PBETA_RULE.

pbody

pbody : (term -> term)

Synopsis

Returns the body of a paired abstraction.

Description

pbody "\pair. t" returns "t".

Failure

Fails unless the term is a paired abstraction.

See also

body, bndpair, dest_pabs.

PCHOOSE

PCHOOSE : ((term # thm) -> thm -> thm)

Synopsis

Eliminates paired existential quantification using deduction from a particular witness.

Description

When applied to a term-theorem pair (q, A1 | - ?p. s) and a second theorem of the form A2 u {s[q/p]} |- t, the inference rule PCHOOSE produces the theorem A1 u A2 |- t.

A1 |- ?p. s A2 u {s[q/p]} |- t ----- PCHOOSE ("q",(A1 |- ?q. s)) A1 u A2 |- t

Where no variable in the paired variable structure q is free in A1, A2 or t.

Failure

Fails unless the terms and theorems correspond as indicated above; in particular q must have the same type as the pair existentially quantified over, and must not contain any variable free in A1, A2 or t.

48

See also

CHOOSE, PCHOOSE_TAC, PEXISTS, PEXISTS_TAC, PSELECT_ELIM.

PCHOOSE_TAC

PCHOOSE_TAC : thm_tactic

Synopsis

Adds the body of a paired existentially quantified theorem to the assumptions of a goal.

Description

When applied to a theorem A' |-?p. t and a goal, CHOOSE_TAC adds t[p'/p] to the assumptions of the goal, where p' is a variant of the pair p which has no components free in the assumption list; normally p' is just p.

A ?- u ============= CHOOSE_TAC (A' |- ?q. t) A u {t[p'/p]} ?- u

Unless A' is a subset of A, this is not a valid tactic.

Failure

Fails unless the given theorem is a paired existential quantification.

See also

CHOOSE_TAC, PCHOOSE_THEN, P_PCHOOSE_TAC.

PCHOOSE_THEN

PCHOOSE_THEN : thm_tactical

Synopsis

Applies a tactic generated from the body of paired existentially quantified theorem.

When applied to a theorem-tactic ttac, a paired existentially quantified theorem:

A' |- ?p. t

and a goal, CHOOSE_THEN applies the tactic ttac (t[p'/p] | - t[p'/p]) to the goal, where p' is a variant of the pair p chosen to have no components free in the assumption list of the goal. Thus if:

```
A ?- s1
======== ttac (t[q'/q] |- t[q'/q])
B ?- s2
```

then

```
A ?- s1
======== CHOOSE_THEN ttac (A' |- ?q. t)
B ?- s2
```

This is invalid unless A' is a subset of A.

Failure

Fails unless the given theorem is a paired existential quantification, or if the resulting tactic fails when applied to the goal.

See also

CHOOSE_THEN, PCHOOSE_TAC, P_PCHOOSE_THEN.

PETA_CONV

PETA_CONV : conv

Synopsis

Performs a top-level paired eta-conversion.

Description

PETA_CONV maps an eta-redex "\p. t p", where none of variables in the paired structure of variables p occurs free in t, to the theorem |-(p, t p) = t.

Failure

Fails if the input term is not a paired eta-redex.

PEXISTENCE

PEXISTENCE : (thm -> thm)

Synopsis

Deduces paired existence from paired unique existence.

Description

When applied to a theorem with a paired unique-existentially quantified conclusion, EXISTENCE returns the same theorem with normal paired existential quantification over the same pair.

A |- ?!p. t ----- PEXISTENCE A |- ?p. t

Failure

Fails unless the conclusion of the theorem is a paired unique-existential quantification.

See also

EXISTENCE, PEXISTS_UNIQUE_CONV.

PEXISTS

PEXISTS : ((term # term) -> thm -> thm)

Synopsis

Introduces paired existential quantification given a particular witness.

Description

When applied to a pair of terms and a theorem, where the first term a paired existentially quantified pattern indicating the desired form of the result, and the second a witness whose substitution for the quantified pair gives a term which is the same as the conclusion of the theorem, PEXISTS gives the desired theorem.

```
A |- t[q/p]
----- EXISTS ("?p. t","q")
A |- ?p. t
```

Failure

Fails unless the substituted pattern is the same as the conclusion of the theorem.

Example

The following examples illustrate the various uses of PEXISTS:

```
#PEXISTS ("?x. x + 2 = x + 2", "1") (REFL "1 + 2");;
|- ?x. x + 2 = x + 2
#PEXISTS ("?y. 1 + y = 1 + y", "2") (REFL "1 + 2");;
|- ?y. 1 + y = 1 + y
#PEXISTS ("?(x,y). x + y = x + y", "(1,2)") (REFL "1 + 2");;
|- ?(x,y). x + y = x + y
#PEXISTS ("?(a:*,b:*). (a,b) = (a,b)", "ab:*#*") (REFL "ab:*#*");;
|- ?(a,b). a,b = a,b
```

See also

EXISTS, PCHOOSE, PEXISTS_TAC.

PEXISTS_AND_CONV

PEXISTS_AND_CONV : conv

Synopsis

Moves a paired existential quantification inwards through a conjunction.

Description

When applied to a term of the form ?p. t / u, where variables in p are not free in both t and u, PEXISTS_AND_CONV returns a theorem of one of three forms, depending on

occurrences of variables from p in t and u. If p contains variables free in t but none in u, then the theorem:

|- (?p. t /\ u) = (?p. t) /\ u

is returned. If p contains variables free in u but none in t, then the result is:

|- (?p. t /\ u) = t /\ (?x. u)

And if p does not contain any variable free in either t nor u, then the result is:

|-(?p. t / u) = (?x. t) / (?x. u)

Failure

PEXISTS_AND_CONV fails if it is applied to a term not of the form ?p. t /\ u, or if it is applied to a term ?p. t /\ u in which variables in p are free in both t and u.

See also

EXISTS_AND_CONV, AND_PEXISTS_CONV, LEFT_AND_PEXISTS_CONV, RIGHT_AND_PEXISTS_CONV.

PEXISTS_CONV

PEXISTS_CONV : conv

Synopsis

Eliminates paired existential quantifier by introducing a paired choice-term.

Description

The conversion PEXISTS_CONV expects a boolean term of the form (?p. t[p]), where p may be a paired structure or variables, and converts it to the form (t [@p. t[p]]).

----- PEXISTS_CONV "(?p. t[p])" (|- (?p. t[p]) = (t [@p. t[p]])

Failure

Fails if applied to a term that is not a paired existential quantification.

See also

PSELECT_RULE, PSELECT_CONV, PEXISTS_RULE, PSELECT_INTRO, PSELECT_ELIM.

PEXISTS_EQ

```
PEXISTS_EQ : (term -> thm -> thm)
```

Synopsis

Existentially quantifies both sides of an equational theorem.

Description

When applied to a paired structure of variables p and a theorem whose conclusion is equational:

A | - t1 = t2

the inference rule PEXISTS_EQ returns the theorem:

 $A \mid - (?p. t1) = (?p. t2)$

provided the none of the variables in p is not free in any of the assumptions.

A |- t1 = t2 ----- PEXISTS_EQ "p" [where p is not free in A] A |- (?p. t1) = (?p. t2)

Failure

Fails unless the theorem is equational with both sides having type bool, or if the term is not a paired structure of variables, or if any variable in the pair to be quantified over is free in any of the assumptions.

See also

EXISTS_EQ, PEXISTS_IMP, PFORALL_EQ, MK_PEXISTS, PSELECT_EQ.

PEXISTS_IMP

PEXISTS_IMP : (term -> thm -> thm)

Synopsis

Existentially quantifies both the antecedent and consequent of an implication.

When applied to a paired structure of variables p and a theorem A |-t1 => t2, the inference rule PEXISTS_IMP returns the theorem A |-(?p. t1) => (?p. t2), provided no variable in p is free in the assumptions.

A |- t1 ==> t2
----- EXISTS_IMP "x" [where x is not free in A]
A |- (?x.t1) ==> (?x.t2)

Failure

Fails if the theorem is not implicative, or if the term is not a paired structure of variables, of if any variable in the pair is free in the assumption list.

See also

EXISTS_IMP, PEXISTS_EQ.

PEXISTS_IMP_CONV

PEXISTS_IMP_CONV : conv

Synopsis

Moves a paired existential quantification inwards through an implication.

Description

When applied to a term of the form p. t ==> u, where variables from p are not free in both t and u, PEXISTS_IMP_CONV returns a theorem of one of three forms, depending on occurrences of variable from p in t and u. If variables from p are free in t but none are in u, then the theorem:

|- (?p. t ==> u) = (!p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (?p. t ==> u) = t ==> (?p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (?p. t ==> u) = (!p. t) ==> (?p. u)

Failure

PEXISTS_IMP_CONV fails if it is applied to a term not of the form ?p. t ==> u, or if it is applied to a term ?p. t ==> u in which the variables from p are free in both t and u.

See also

EXISTS_IMP_CONV, LEFT_IMP_PFORALL_CONV, RIGHT_IMP_PEXISTS_CONV.

PEXISTS_NOT_CONV

PEXISTS_NOT_CONV : conv

Synopsis

Moves a paired existential quantification inwards through a negation.

Description

When applied to a term of the form ?p. ~t, the conversion PEXISTS_NOT_CONV returns the theorem:

|-(?p.~t) = (!p. t)

Failure

Fails if applied to a term not of the form ?p. ~t.

See also

EXISTS_NOT_CONV, PFORALL_NOT_CONV, NOT_PEXISTS_CONV, NOT_PFORALL_CONV.

PEXISTS_OR_CONV

PEXISTS_OR_CONV : conv

Synopsis

Moves a paired existential quantification inwards through a disjunction.

Description

When applied to a term of the form p. t // u, the conversion PEXISTS_OR_CONV returns the theorem:

|- (?p. t \/ u) = (?p. t) \/ (?p. u)

Failure

Fails if applied to a term not of the form $?p. t \neq u$.

See also

EXISTS_OR_CONV, OR_PEXISTS_CONV, LEFT_OR_PEXISTS_CONV, RIGHT_OR_PEXISTS_CONV.

PEXISTS_RULE

PEXISTS_RULE : (thm -> thm)

Synopsis

Introduces a paired existential quantification in place of a paired choice.

Description

The inference rule PEXISTS_RULE expects a theorem asserting that (@p. t) denotes a pair for which t holds. The equivalent assertion that there exists a p for which t holds is returned.

A |- t[(@p. t)/p] ----- PEXISTS_RULE A |- ?p. t

Failure

Fails if applied to a theorem the conclusion of which is not of the form (t[(@p.t)/p]).

See also PEXISTS_CONV, PSELECT_RULE, PSELECT_CONV, PSELECT_INTRO, PSELECT_ELIM.

PEXISTS_TAC

PEXISTS_TAC : (term -> tactic)

Synopsis

Reduces paired existentially quantified goal to one involving a specific witness.

When applied to a term q and a goal ?p. t, the tactic PEXISTS_TAC reduces the goal to t[q/p].

A ?- ?p. t ========== EXISTS_TAC "q" A ?- t[q/p]

Failure

Fails unless the goal's conclusion is a paired existential quantification and the term supplied has the same type as the quantified pair in the goal.

Example

The goal:

?- ?(x,y). (x,y)=(1,2)

can be solved by:

```
PEXISTS_TAC "(1,2)" THEN REFL_TAC
```

See also

EXISTS_TAC, PEXISTS.

PEXISTS_UNIQUE_CONV

PEXISTS_UNIQUE_CONV : conv

Synopsis

Expands with the definition of paired unique existence.

Description

Given a term of the form "?!p. t[p]", the conversion PEXISTS_UNIQUE_CONV proves that this assertion is equivalent to the conjunction of two statements, namely that there exists at least one pair p such that t[p], and that there is at most one value p for which t[p] holds. The theorem returned is:

|-(?!p. t[p]) = (?p. t[p]) / (!p p'. t[p] / t[p'] ==> (p = p'))

where p' is a primed variant of the pair p none of the components of which appear free in the input term. Note that the quantified pair p need not in fact appear free in the body of the input term. For example, PEXISTS_UNIQUE_CONV "?!(x,y). T" returns the theorem:

|- (?!(x,y). T) =
 (?(x,y). T) /\ (!(x,y) (x',y'). T /\ T ==> ((x,y) = (x',y')))

Failure

PEXISTS_UNIQUE_CONV tm fails if tm does not have the form "?!p.t".

See also EXISTS_UNIQUE_CONV, PEXISTENCE.

PEXT

PEXT : (thm -> thm)

Synopsis

Derives equality of functions from extensional equivalence.

Description

When applied to a theorem A |-!p. t1 p = t2 p, the inference rule PEXT returns the theorem A |-t1 = t2.

A |- !p. t1 p = t2 p ----- PEXT A |- t1 = t2

[where p is not free in t1 or t2]

Failure

Fails if the theorem does not have the form indicated above, or if any of the component variables in the paired variable structure p is free either of the functions t1 or t2.

Example

```
#PEXT (ASSUME "!(x,y). ((f:(*#*)->*) (x,y)) = (g (x,y))");;
. |- f = g
```

See also

EXT, AP_THM, PETA_CONV, FUN_EQ_CONV, P_FUN_EQ_CONV.

PFORALL_AND_CONV

PFORALL_AND_CONV : conv

Synopsis

Moves a paired universal quantification inwards through a conjunction.

Description

When applied to a term of the form $!p. t \land u$, the conversion PFORALL_AND_CONV returns the theorem:

|-(!p. t / u) = (!p. t) / (!p. u)

Failure

Fails if applied to a term not of the form !p. t / u.

See also

```
FORALL_AND_CONV, AND_PFORALL_CONV, LEFT_AND_PFORALL_CONV, RIGHT_AND_PFORALL_CONV.
```

PFORALL_EQ

 $PFORALL_EQ$: (term -> thm -> thm)

Synopsis

Universally quantifies both sides of an equational theorem.

When applied to a paired structure of variables p and a theorem

A | - t1 = t2

whose conclusion is an equation between boolean terms:

PFORALL_EQ

returns the theorem:

 $A \mid - (!p. t1) = (!p. t2)$

unless any of the variables in p is free in any of the assumptions.

A |- t1 = t2
----- PFORALL_EQ "p" [where p is not free in A]
A |- (!p. t1) = (!p. t2)

Failure

Fails if the theorem is not an equation between boolean terms, or if the supplied term is not a paired structure of variables, or if any of the variables in the supplied pair is free in any of the assumptions.

See also

FORALL_EQ, PEXISTS_EQ, PSELECT_EQ.

PFORALL_IMP_CONV

PFORALL_IMP_CONV : conv

Synopsis

Moves a paired universal quantification inwards through an implication.

Description

When applied to a term of the form !p. t => u, where variables from p are not free in both t and u, PFORALL_IMP_CONV returns a theorem of one of three forms, depending on

occurrences of the variables from p in t and u. If variables from p are free in t but none are in u, then the theorem:

|- (!p. t ==> u) = (?p. t) ==> u

is returned. If variables from p are free in u but none are in t, then the result is:

|- (!p. t ==> u) = t ==> (!p. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t ==> u) = (?p. t) ==> (!p. u)

Failure

PFORALL_IMP_CONV fails if it is applied to a term not of the form !p. t ==> u, or if it is applied to a term !p. t ==> u in which variables from p are free in both t and u.

See also

FORALL_IMP_CONV, LEFT_IMP_PEXISTS_CONV, RIGHT_IMP_PFORALL_CONV.

PFORALL_NOT_CONV

PFORALL_NOT_CONV : conv

Synopsis

Moves a paired universal quantification inwards through a negation.

Description

When applied to a term of the form <code>!p. ~t</code>, the conversion <code>PFORALL_NOT_CONV</code> returns the theorem:

|-(!p.~t) = ~(?p.~t)

Failure

Fails if applied to a term not of the form !p. ~t.

See also

FORALL_NOT_CONV, PEXISTS_NOT_CONV, NOT_PEXISTS_CONV, NOT_PFORALL_CONV.

PFORALL_OR_CONV

PFORALL_OR_CONV : conv

Synopsis

Moves a paired universal quantification inwards through a disjunction.

Description

When applied to a term of the form $!p. t \lor u$, where no variable in p is free in both t and u, PFORALL_OR_CONV returns a theorem of one of three forms, depending on occurrences of the variables from p in t and u. If variables from p are free in t but not in u, then the theorem:

|- (!p. t \/ u) = (!p. t) \/ u

is returned. If variables from p are free in u but none are free in t, then the result is:

|- (!p. t \/ u) = t \/ (!t. u)

And if no variable from p is free in either t nor u, then the result is:

|- (!p. t \/ u) = (!p. t) \/ (!p. u)

Failure

PFORALL_OR_CONV fails if it is applied to a term not of the form !p. t // u, or if it is applied to a term !p. t // u in which variables from p are free in both t and u.

See also

FORALL_OR_CONV, OR_PFORALL_CONV, LEFT_OR_PFORALL_CONV, RIGHT_OR_PFORALL_CONV.

PGEN

PGEN : (term \rightarrow thm \rightarrow thm)

Synopsis

Generalizes the conclusion of a theorem.

When applied to a paired structure of variables p and a theorem $A \mid -t$, the inference rule PGEN returns the theorem $A \mid - p$. t, provided that no variable in p occurs free in the assumptions A. There is no compulsion that the variables of p should be free in t.

A |- t ----- PGEN "p" [where p does not occur free in A] A |- !p. t

Failure

Fails if p is not a paired structure of variables, of if any variable in p is free in the assumptions.

See also

GEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC.

PGENL

```
PGENL : (term list -> thm -> thm)
```

Synopsis

Generalizes zero or more pairs in the conclusion of a theorem.

Description

When applied to a list of paired variable structures [p1;...;pn] and a theorem A |-t, the inference rule PGENL returns the theorem A |-!p1...pn.t, provided none of the constituent variables from any of the pairs pi occur free in the assumptions.

A |- t ----- PGENL "[p1;...;pn]" [where no pi is free in A] A |- !p1...pn. t

Failure

Fails unless all the terms in the list are paired structures of variables, none of the variables from which are free in the assumption list.

See also

GENL, PGEN, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC.

PGEN_TAC

PGEN_TAC : tactic

Synopsis

Strips the outermost paired universal quantifier from the conclusion of a goal.

Description

When applied to a goal A ?- !p. t, the tactic PGEN_TAC reduces it to A ?- t[p'/p] where p' is a variant of the paired variable structure p chosen to avoid clashing with any variables free in the goal's assumption list. Normally p' is just p.

A ?- !p. t ========= PGEN_TAC A ?- t[p'/p]

Failure

Fails unless the goal's conclusion is a paired universally quantification.

See also

GEN_TAC, FILTER_PGEN_TAC, PGEN, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC, PSTRIP_TAC, P_PGEN_TAC.

PMATCH_MP

PMATCH_MP : (thm -> thm -> thm)

Synopsis

Modus Ponens inference rule with automatic matching.

Description

When applied to theorems A1 |- !p1...pn. t1 ==> t2 and A2 |- t1', the inference rule PMATCH_MP matches t1 to t1' by instantiating free or paired universally quantified variables in the first theorem (only), and returns a theorem A1 u A2 |- !pa..pk. t2', where t2' is a correspondingly instantiated version of t2. Polymorphic types are also instantiated if necessary.

Variables free in the consequent but not the antecedent of the first argument theorem will be replaced by variants if this is necessary to maintain the full generality of the theorem, and any pairs which were universally quantified over in the first argument theorem will be universally quantified over in the result, and in the same order.

A1 |- !p1..pn. t1 ==> t2 A2 |- t1' ----- MATCH_MP A1 u A2 |- !pa..pk. t2'

Failure

Fails unless the first theorem is a (possibly repeatedly paired universally quantified) implication whose antecedent can be instantiated to match the conclusion of the second theorem, without instantiating any variables which are free in A1, the first theorem's assumption list.

See also

MATCH_MP.

PMATCH_MP_TAC

PMATCH_MP_TAC : thm_tactic

Synopsis

Reduces the goal using a supplied implication, with matching.

Description

When applied to a theorem of the form

A' |- !p1...pn. s ==> !q1...qm. t

PMATCH_MP_TAC produces a tactic that reduces a goal whose conclusion t' is a substitution and/or type instance of t to the corresponding instance of s. Any variables free in s but not in t will be existentially quantified in the resulting subgoal:

where w1, ..., wp are (type instances of) those pairs among p1, ..., pn having variables that do not occur free in t. Note that this is not a valid tactic unless A' is a subset of A.

Failure

Fails unless the theorem is an (optionally paired universally quantified) implication whose consequent can be instantiated to match the goal. The generalized pairs u1, ..., ui must occur in s' in order for the conclusion t of the supplied theorem to match t'.

See also

MATCH_MP_TAC.

PSELECT_CONV

PSELECT_CONV : conv

Synopsis

Eliminates a paired epsilon term by introducing a existential quantifier.

Description

The conversion PSELECT_CONV expects a boolean term of the form "t[@p.t[p]/p]", which asserts that the epsilon term @p.t[p] denotes a pair, p say, for which t[p] holds. This assertion is equivalent to saying that there exists such a pair, and PSELECT_CONV applied to a term of this form returns the theorem |-t[@p.t[p]/p] = ?p.t[p].

Failure

Fails if applied to a term that is not of the form "p[@p.t[p]/p]".

See also

SELECT_CONV, PSELECT_ELIM, PSELECT_INTRO, PSELECT_RULE.

PSELECT_ELIM

PSELECT_ELIM : (thm -> (term # thm) -> thm)

Synopsis

Eliminates a paired epsilon term, using deduction from a particular instance.

Description

PSELECT_ELIM expects two arguments, a theorem th1, and a pair (p,th2):(term # thm). The conclusion of th1 must have the form P(\$@ P), which asserts that the epsilon term

\$@ P denotes some value at which P holds. The paired variable structure p appears only in the assumption P p of the theorem th2. The conclusion of the resulting theorem matches that of th2, and the hypotheses include the union of all hypotheses of the premises excepting P p.

A1 |- P(\$@ P) A2 u {P p} |- t ----- PSELECT_ELIM th1 (p ,th2) A1 u A2 |- t

where p is not free in A2. If p appears in the conclusion of th2, the epsilon term will NOT be eliminated, and the conclusion will be t[\$0 P/p].

Failure

Fails if the first theorem is not of the form A1 \mid – P(\$@ P), or if any of the variables from the variable structure p occur free in any other assumption of th2.

See also

SELECT_ELIM, PCHOOSE, SELECT_AX, PSELECT_CONV, PSELECT_INTRO, PSELECT_RULE.

PSELECT_EQ

PSELECT_EQ : (term -> thm -> thm)

Synopsis

Applies epsilon abstraction to both terms of an equation.

Description

When applied to a paired structure of variables p and a theorem whose conclusion is equational:

A | - t1 = t2

the inference rule PSELECT_EQ returns the theorem:

 $A \mid - (@p. t1) = (@p. t2)$

provided no variable in p is free in the assumptions.

A |- t1 = t2 ----- SELECT_EQ "p" [where p is not free in A] A |- (@p. t1) = (@p. t2)

Failure

Fails if the conclusion of the theorem is not an equation, of if p is not a paired structure

of variables, or if any variable in p is free in A.

See also

SELECT_EQ, PFORALL_EQ, PEXISTS_EQ.

PSELECT_INTRO

PSELECT_INTRO : (thm -> thm)

Synopsis

Introduces an epsilon term.

Description

PSELECT_INTRO takes a theorem with an applicative conclusion, say $P \times a$, and returns a theorem with the epsilon term \$@ P in place of the original operand x.

A |- P x ----- PSELECT_INTRO A |- P(\$@ P)

The returned theorem asserts that \$0 P denotes some value at which P holds.

Failure

Fails if the conclusion of the theorem is not an application.

Comments

This function is exactly the same as SELECT_INTRO, it is duplicated in the pair library for completeness.

See also

SELECT_INTRO, PEXISTS, SELECT_AX, PSELECT_CONV, PSELECT_ELIM, PSELECT_RULE.

PSELECT_RULE

PSELECT_RULE : (thm -> thm)

Synopsis

Introduces a paired epsilon term in place of a paired existential quantifier.

The inference rule PSELECT_RULE expects a theorem asserting the existence of a pair p such that t holds. The equivalent assertion that the epsilon term @p.t denotes a pair p for which t holds is returned as a theorem.

A |- ?p. t ----- PSELECT_RULE A |- t[(@p.t)/p]

Failure

Fails if applied to a theorem the conclusion of which is not a paired existential quantifier.

See also

```
SELECT_RULE, PCHOOSE, SELECT_AX, PSELECT_CONV, PEXISTS_CONV, PSELECT_ELIM, PSELECT_INTRO.
```

PSKOLEM_CONV

PSKOLEM_CONV : conv

Synopsis

Proves the existence of a pair of Skolem functions.

Description

When applied to an argument of the form !p1...pn. ?q. tm, the conversion PSKOLEM_CONV returns the theorem:

|- (!p1...pn. ?q. tm) = (?q'. !p1...pn. tm[q' p1 ... pn/yq)

where q, is a primed variant of the pair q not free in the input term.

Failure

PSKOLEM_CONV tm fails if tm is not a term of the form !p1...pn. ?q. tm.

70
Example

Both q and any pi may be a paired structure of variables:

```
#PSKOLEM_CONV
"!(x11:*,x12:*) (x21:*,x22:*). ?(y1:*,y2:*). tm x11 x12 x21 x21 y1 y2";;
|- (!(x11,x12) (x21,x22). ?(y1,y2). tm x11 x12 x21 x21 y1 y2) =
    (?(y1,y2).
    !(x11,x12) (x21,x22).
    tm x11 x12 x21 x21(y1(x11,x12)(x21,x22))(y2(x11,x12)(x21,x22)))
```

See also

SKOLEM_CONV, P_PSKOLEM_CONV.

PSPEC

PSPEC : (term \rightarrow thm \rightarrow thm)

Synopsis

Specializes the conclusion of a theorem.

Description

When applied to a term q and a theorem $A \mid - !p. t$, then PSPEC returns the theorem $A \mid - t[q/p]$. If necessary, variables will be renamed prior to the specialization to ensure that q is free for p in t, that is, no variables free in q become bound after substitution.

A |- !p. t ----- PSPEC "q" A |- t[q/p]

Failure

Fails if the theorem's conclusion is not a paired universal quantification, or if $_{\rm P}$ and $_{\rm q}$ have different types.

Example

PSPEC specialised paired quantifications.

```
#PSPEC "(1,2)" (ASSUME "!(x,y). (x + y) = (y + x)");;
. |- 1 + 2 = 2 + 1
```

PSPEC treats paired structures of variables as variables and preserves structure accord-

ingly.

```
#PSPEC "x:*#*" (ASSUME "!(x:*,y:*). (x,y) = (x,y)");;
. |- x = x
```

See also

SPEC, IPSPEC, PSPECL, PSPEC_ALL, PSPEC_VAR, PGEN, PGENL, PGEN_ALL.

PSPECL

PSPECL : (term list -> thm -> thm)

Synopsis

Specializes zero or more pairs in the conclusion of a theorem.

Description

When applied to a term list [q1;...;qn] and a theorem A |-!p1...pn. t, the inference rule SPECL returns the theorem A |-t[q1/p1]...[qn/pn], where the substitutions are made sequentially left-to-right in the same way as for PSPEC.

A |- !p1...pn. t ----- SPECL "[q1;...;qn]" A |- t[q1/p1]...[qn/pn]

It is permissible for the term-list to be empty, in which case the application of PSPECL has no effect.

Failure

Fails unless each of the terms is of the same type as that of the appropriate quantified variable in the original theorem. Fails if the list of terms is longer than the number of quantified pairs in the theorem.

See also

SPECL, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPEC_ALL, PSPEC_TAC.

PSPEC_ALL

PSPEC_ALL : (thm -> thm)

Specializes the conclusion of a theorem with its own quantified pairs.

Description

When applied to a theorem $A \mid - !p1...pn$. t, the inference rule PSPEC_ALL returns the theorem $A \mid - t[p1'/p1]...[pn'/pn]$ where the pi' are distinct variants of the corresponding pi, chosen to avoid clashes with any variables free in the assumption list and with the names of constants. Normally pi' is just pi, in which case PSPEC_ALL simply removes all universal quantifiers.

A |- !p1...pn. t ----- PSPEC_ALL A |- t[p1'/x1]...[pn'/xn]

Failure

Never fails.

See also SPEC_ALL, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_TAC.

PSPEC_PAIR

PSPEC_PAIR : (thm -> (term # thm))

Synopsis

Specializes the conclusion of a theorem, returning the chosen variant.

Description

When applied to a theorem $A \mid - p$. t, the inference rule PSPEC_PAIR returns the term q' and the theorem $A \mid -t[q'/p]$, where q' is a variant of p chosen to avoid free variable capture.

A |- !p. t ----- PSPEC_PAIR A |- t[q'/q]

Failure

Fails unless the theorem's conclusion is a paired universal quantification.

Comments

This rule is very similar to plain PSPEC, except that it returns the variant chosen, which may be useful information under some circumstances.

See also

SPEC_VAR, PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL.

PSPEC_TAC

```
PSPEC_TAC : ((term # term) -> tactic)
```

Synopsis

Generalizes a goal.

Description

When applied to a pair of terms (q,p), where p is a paired structure of variables and a goal A ?- t, the tactic PSPEC_TAC generalizes the goal to A ?- !p. t[p/q], that is, all components of q are turned into the corresponding components of p.

A ?- t ============== PSPEC_TAC ("q","p") A ?- !x. t[p/q]

Failure

Fails unless p is a paired structure of variables with the same type as q.

Example

```
g "1 + 2 = 2 + 1";;
"1 + 2 = 2 + 1"
() : void
#e (PSPEC_TAC ("(1,2)","(x:num,y:num)"));;
OK..
"!(x,y). x + y = y + x"
() : void
```

Uses

Removing unnecessary speciality in a goal, particularly as a prelude to an inductive proof.

See also

PGEN, PGENL, PGEN_ALL, PGEN_TAC, PSPEC, PSPECL, PSPEC_ALL, PSTRIP_TAC.

PSTRIP_ASSUME_TAC

PSTRIP_ASSUME_TAC : thm_tactic

Synopsis

Splits a theorem into a list of theorems and then adds them to the assumptions.

Description

Given a theorem th and a goal (A,t), PSTRIP_ASSUME_TAC th splits th into a list of theorems. This is done by recursively breaking conjunctions into separate conjuncts, cases-splitting disjunctions, and eliminating paired existential quantifiers by choosing arbitrary variables. Schematically, the following rules are applied:

where p' is a variant of the pair p.

If the conclusion of th is not a conjunction, a disjunction or a paired existentially quantified term, the whole theorem th is added to the assumptions.

As assumptions are generated, they are examined to see if they solve the goal (either by being alpha-equivalent to the conclusion of the goal or by deriving a contradiction).

The assumptions of the theorem being split are not added to the assumptions of the goal(s), but they are recorded in the proof. This means that if A' is not a subset of the assumptions A of the goal (up to alpha-conversion), PSTRIP_ASSUME_TAC (A'|-v) results in an invalid tactic.

Failure

Never fails.

Uses

PSTRIP_ASSUME_TAC is used when applying a previously proved theorem to solve a goal, or when enriching its assumptions so that resolution, rewriting with assumptions and other operations involving assumptions have more to work with.

See also

```
PSTRIP_THM_THEN, ,PSTRIP_ASSUME_TAC, PSTRIP_GOAL_THEN, PSTRIP_TAC.
```

PSTRIP_GOAL_THEN

```
PSTRIP_GOAL_THEN : (thm_tactic -> tactic)
```

Synopsis

Splits a goal by eliminating one outermost connective, applying the given theorem-tactic to the antecedents of implications.

Description

Given a theorem-tactic ttac and a goal (A,t), PSTRIP_GOAL_THEN removes one outermost occurrence of one of the connectives !, ==>, ~ or /\ from the conclusion of the goal t. If t is a universally quantified term, then STRIP_GOAL_THEN strips off the quantifier. Note that PSTRIP_GOAL_THEN will strip off paired universal quantifications.

where p^{γ} is a primed variant that contains no variables that appear free in the assumptions A. If t is a conjunction, then PSTRIP_GOAL_THEN simply splits the conjunction into

two subgoals:

A ?- v /\ w =========== PSTRIP_GOAL_THEN ttac A ?- v A ?- w

If t is an implication "u = v" and if:

then:

A ?- u ==> v
=============== PSTRIP_GOAL_THEN ttac
A' ?- v'

Finally, a negation \tilde{t} is treated as the implication t ==> F.

Failure

PSTRIP_GOAL_THEN ttac (A,t) fails if t is not a paired universally quantified term, an implication, a negation or a conjunction. Failure also occurs if the application of ttac fails, after stripping the goal.

Uses

PSTRIP_GOAL_THEN is used when manipulating intermediate results (obtained by stripping outer connectives from a goal) directly, rather than as assumptions.

See also

PGEN_TAC, STRIP_GOAL_THEN, FILTER_PSTRIP_THEN, PSTRIP_TAC, FILTER_PSTRIP_TAC.

PSTRIP_TAC

PSTRIP_TAC : tactic

Synopsis

Splits a goal by eliminating one outermost connective.

Description

Given a goal (A,t), PSTRIP_TAC removes one outermost occurrence of one of the connectives $!, ==>, \sim$ or /\ from the conclusion of the goal t. If t is a universally quantified

term, then STRIP_TAC strips off the quantifier. Note that PSTRIP_TAC will strip off paired quantifications.

A ?- !p. u ========== PSTRIP_TAC A ?- u[p'/p]

where p' is a primed variant of the pair p that does not contain any variables that appear free in the assumptions A. If t is a conjunction, then PSTRIP_TAC simply splits the conjunction into two subgoals:

A ?- v /\ w ============ PSTRIP_TAC A ?- v A ?- w

If t is an implication, PSTRIP_TAC moves the antecedent into the assumptions, stripping conjunctions, disjunctions and existential quantifiers according to the following rules:

A ?- v1 // ... // vn ==> v A ?- v1 // ... // vn ==> v A u {v1,...,vn} ?- v A ?- (?p. w) ==> v A u {w[p'/p]} ?- v

where p' is a primed variant of the pair p that does not appear free in A. Finally, a negation \tilde{t} is treated as the implication t ==> F.

Failure

PSTRIP_TAC (A,t) fails if t is not a paired universally quantified term, an implication, a negation or a conjunction.

Uses

When trying to solve a goal, often the best thing to do first is REPEAT PSTRIP_TAC to split the goal up into manageable pieces.

See also

PGEN_TAC, PSTRIP_GOAL_THEN, FILTER_PSTRIP_THEN, STRIP_TAC, FILTER_PSTRIP_TAC.

PSTRIP_THM_THEN

PSTRIP_THM_THEN : thm_tactical

PSTRIP_THM_THEN applies the given theorem-tactic using the result of stripping off one outer connective from the given theorem.

Description

Given a theorem-tactic ttac, a theorem th whose conclusion is a conjunction, a disjunction or a paired existentially quantified term, and a goal (A,t), STRIP_THM_THEN ttac th first strips apart the conclusion of th, next applies ttac to the theorem(s) resulting from the stripping and then applies the resulting tactic to the goal.

In particular, when stripping a conjunctive theorem A' |-u / v, the tactic

```
ttac(u|-u) THEN ttac(v|-v)
```

resulting from applying ttac to the conjuncts, is applied to the goal. When stripping a disjunctive theorem A' \mid u \mid v, the tactics resulting from applying ttac to the disjuncts, are applied to split the goal into two cases. That is, if

 A ?- t
 A ?- t

 ========
 ttac (u|-u) and ========
 ttac (v|-v)

 A ?- t1
 A ?- t2

then:

When stripping a paired existentially quantified theorem $A' \mid -?p$. u, the tactic resulting from applying ttac to the body of the paired existential quantification, ttac(u|-u), is applied to the goal. That is, if:

```
A ?- t
========= ttac (u|-u)
A ?- t1
```

then:

The assumptions of the theorem being split are not added to the assumptions of the goal(s) but are recorded in the proof. If A' is not a subset of the assumptions A of the goal (up to alpha-conversion), PSTRIP_THM_THEN ttac th results in an invalid tactic.

Failure

PSTRIP_THM_THEN ttac th fails if the conclusion of th is not a conjunction, a disjunction or a paired existentially quantification. Failure also occurs if the application of ttac fails, after stripping the outer connective from the conclusion of th.

Uses

PSTRIP_THM_THEN is used enrich the assumptions of a goal with a stripped version of a previously-proved theorem.

See also

STRIP_THM_THEN, , PSTRIP_ASSUME_TAC, PSTRIP_GOAL_THEN, PSTRIP_TAC.

PSTRUCT_CASES_TAC

PSTRUCT_CASES_TAC : thm_tactic

Synopsis

Performs very general structural case analysis.

Description

When it is applied to a theorem of the form:

```
th = A' |- ?p11...p1m. (x=t1) /\ (B11 /\ ... /\ B1k) \/ ... \/
?pn1...pnp. (x=tn) /\ (Bn1 /\ ... /\ Bnp)
```

in which there may be no paired existential quantifiers where a 'vector' of them is shown above, PSTRUCT_CASES_TAC th splits a goal A ?- s into n subgoals as follows:

```
A ?- s
A u {B11,...,B1k} ?- s[t1/x] ... A u {Bn1,...,Bnp} ?- s[tn/x]
```

that is, performs a case split over the possible constructions (the ti) of a term, providing as assumptions the given constraints, having split conjoined constraints into separate assumptions. Note that unless A' is a subset of A, this is an invalid tactic.

Failure

Fails unless the theorem has the above form, namely a conjunction of (possibly multiply paired existentially quantified) terms which assert the equality of the same variable x and the given terms.

Uses

Generating a case split from the axioms specifying a structure.

See also

STRUCT_CASES_TAC.

PSUB_CONV

PSUB_CONV : (conv -> conv)

Synopsis

Applies a conversion to the top-level subterms of a term.

Description

For any conversion c, the function returned by $PSUB_CONV$ c is a conversion that applies c to all the top-level subterms of a term. If the conversion c maps t to |-t = t', then SUB_CONV c maps a paired abstraction "\p.t" to the theorem:

|-(p.t) = (p.t')

That is, PSUB_CONV c "\p.t" applies c to the body of the paired abstraction "\p.t". If c is a conversion that maps "t1" to the theorem |-t1 = t1' and "t2" to the theorem |-t2 = t2', then the conversion PSUB_CONV c maps an application "t1 t2" to the theorem:

|-(t1 t2) = (t1' t2')

That is, $PSUB_CONV c "t1 t2"$ applies c to the both the operator t1 and the operand t2 of the application "t1 t2". Finally, for any conversion c, the function returned by $PSUB_CONV c$ acts as the identity conversion on variables and constants. That is, if "t" is a variable or constant, then $PSUB_CONV c "t"$ returns |-t = t.

Failure

PSUB_CONV c tm fails if tm is a paired abstraction "\p.t" and the conversion c fails when applied to t, or if tm is an application "t1 t2" and the conversion c fails when applied to either t1 or t2. The function returned by PSUB_CONV c may also fail if the ML function c:term->thm is not, in fact, a conversion (i.e. a function that maps a term t to a theorem |-t = t').

See also

SUB_CONV, PABS_CONV, RAND_CONV, RATOR_CONV.

pvariant

```
pvariant : (term list -> term -> term)
```

Synopsis

Modifies variable and constant names in a paired structure to avoid clashes.

Description

When applied to a list of (possibly paired structures of) variables to avoid clashing with, and a pair to modify, pvariant returns a variant of the pair. That is, it changes the names of variables and constants in the pair as intuitively as possible to make them distinct from any variables in the list, or any (non-hidden) constants. This is normally done by adding primes to the names.

The exact form of the altered names should not be relied on, except that the original variables will be unmodified unless they are in the list to avoid clashing with. Also note that if the same variable occurs more that one in the pair, then each instance of the variable will be modified in the same way.

Failure

pvariant 1 p fails if any term in the list 1 is not a paired structure of variables, or if p is not a paired structure of variables and constants.

Example

The following shows a case that exhibits most possible behaviours:

```
#pvariant ["b:*"; "(c:*,c':*)"] "((a:*,b:*),(c:*,b':*,T,b:*))";;
"(a,b''),c'',b',T',b''" : term
```

Uses

The function pvariant is extremely useful for complicated derived rules which need to rename pairs variable to avoid free variable capture while still making the role of the pair obvious to the user.

See also

```
variant, genvar, hide_constant, genlike.
```

P_FUN_EQ_CONV

P_FUN_EQ_CONV : (term -> conv)

Performs extensionality conversion for functions (function equality).

Description

The conversion P_FUN_EQ_CONV embodies the fact that two functions are equal precisely when they give the same results for all values to which they can be applied. For any paired variable structure "p" and equation "f = g", where p is of type ty1 and f and g are functions of type ty1->ty2, a call to P_FUN_EQ_CONV "p" "f = g" returns the theorem:

|-(f = g) = (!p. f p = g p)

Failure

P_FUN_EQ_CONV p tm fails if p is not a paired structure of variables or if tm is not an equation f = g where f and g are functions. Furthermore, if f and g are functions of type ty1->ty2, then the pair x must have type ty1; otherwise the conversion fails. Finally, failure also occurs if any of the variables in p is free in either f or g.

See also

FUN_EQ_CONV, PEXT.

P_PCHOOSE_TAC

P_PCHOOSE_TAC : (term -> thm_tactic)

Synopsis

Assumes a theorem, with existentially quantified pair replaced by a given witness.

Description

P_PCHOOSE_TAC expects a pair q and theorem with a paired existentially quantified conclusion. When applied to a goal, it adds a new assumption obtained by introducing the pair q as a witness for the pair p whose existence is asserted in the theorem.

```
A ?- t
============= P_CHOOSE_TAC "q" (A1 |- ?p. u)
A u {u[q/p]} ?- t ("y" not free anywhere)
```

Failure

Fails if the theorem's conclusion is not a paired existential quantification, or if the first argument is not a paired structure of variables. Failures may arise in the tactic-generating function. An invalid tactic is produced if the introduced variable is free in u

or t, or if the theorem has any hypothesis which is not alpha-convertible to an assumption of the goal.

See also

X_CHOOSE_TAC, PCHOOSE, PCHOOSE_THEN, P_PCHOOSE_THEN.

P_PCHOOSE_THEN

P_PCHOOSE_THEN : (term -> thm_tactical)

Synopsis

Replaces existentially quantified pair with given witness, and passes it to a theoremtactic.

Description

P_PCHOOSE_THEN expects a pair q, a tactic-generating function f:thm->tactic, and a theorem of the form (A1 |- ?p. u) as arguments. A new theorem is created by introducing the given pair q as a witness for the pair p whose existence is asserted in the original theorem, (u[q/p] |- u[q/p]). If the tactic-generating function f applied to this theorem produces results as follows when applied to a goal (A ?- u):

```
A ?- t
======== f ({u[q/p]} |- u[q/p])
A ?- t1
```

then applying (P_PCHOOSE_THEN "q" f (A1 |-?p. u)) to the goal (A ?- t) produces the subgoal:

```
A ?- t
====== P_PCHOOSE_THEN "q" f (A1 |- ?p. u)
A ?- t1 ("q" not free anywhere)
```

Failure

Fails if the theorem's conclusion is not existentially quantified, or if the first argument is not a paired structure of variables. Failures may arise in the tactic-generating function. An invalid tactic is produced if the introduced variable is free in u or t, or if the theorem has any hypothesis which is not alpha-convertible to an assumption of the goal.

See also

X_CHOOSE_THEN, PCHOOSE, PCHOOSE_THEN, P_PCHOOSE_TAC.

P_PGEN_TAC

```
P_PGEN_TAC : (term -> tactic)
```

Synopsis

Specializes a goal with the given paired structure of variables.

Description

When applied to a paired structure of variables p', and a goal A ?- !p. t, the tactic P_PGEN_TAC returns the goal A ?- t[p'/p].

A ?- !p. t ========== P_PGEN_TAC "p'" A ?- t[p'/x]

Failure

Fails unless the goal's conclusion is a paired universal quantification and the term a paired structure of variables of the appropriate type. It also fails if any of the variables of the supplied structure occurs free in either the assumptions or (initial) conclusion of the goal.

See also

X_GEN_TAC, FILTER_PGEN_TAC, PGEN, PGENL, PGEN_ALL, PSPEC, PSPECL, PSPEC_ALL, PSPEC_TAC.

P_PSKOLEM_CONV

P_PSKOLEM_CONV : (term -> conv)

Synopsis

Introduces a user-supplied Skolem function.

Description

P_PSKOLEM_CONV takes two arguments. The first is a variable f, which must range over functions of the appropriate type, and the second is a term of the form !p1...pn. ?q. t

(where pi and q may be pairs). Given these arguments, P_PSKOLEM_CONV returns the theorem:

|- (!p1...pn. ?q. t) = (?f. !p1...pn. tm[f p1 ... pn/q])

which expresses the fact that a skolem function f of the universally quantified variables $p_{1...pn}$ may be introduced in place of the the existentially quantified pair p.

Failure

P_PSKOLEM_CONV f tm fails if f is not a variable, or if the input term tm is not a term of the form !p1...pn. ?q. t, or if the variable f is free in tm, or if the type of f does not match its intended use as an n-place curried function from the pairs p1...pn to a value having the same type as p.

See also

X_SKOLEM_CONV, PSKOLEM_CONV.

RIGHT_AND_PEXISTS_CONV

```
RIGHT_AND_PEXISTS_CONV : conv
```

Synopsis

Moves a paired existential quantification of the right conjunct outwards through a conjunction.

Description

When applied to a term of the form t /\ (?p. t), the conversion RIGHT_AND_PEXISTS_CONV returns the theorem:

|- t /\ (?p. u) = (?p'. t /\ (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables free in the input term.

Failure

Fails if applied to a term not of the form t $/\ (?p. u)$.

See also

```
RIGHT_AND_EXISTS_CONV, AND_PEXISTS_CONV, PEXISTS_AND_CONV, LEFT_AND_PEXISTS_CONV.
```

RIGHT_AND_PFORALL_CONV

RIGHT_AND_PFORALL_CONV : conv

Synopsis

Moves a paired universal quantification of the right conjunct outwards through a conjunction.

Description

When applied to a term of the form t /\ (!p. u), the conversion RIGHT_AND_PFORALL_CONV returns the theorem:

|- t /\ (!p. u) = (!p'. t /\ (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables free in the input term.

Failure

Fails if applied to a term not of the form t /\ (!p. u).

See also

RIGHT_AND_FORALL_CONV, AND_PFORALL_CONV, PFORALL_AND_CONV, LEFT_AND_PFORALL_CONV.

RIGHT_IMP_PEXISTS_CONV

RIGHT_IMP_PEXISTS_CONV : conv

Synopsis

Moves a paired existential quantification of the consequent outwards through an implication.

Description

When applied to a term of the form t ==> (?p. u), RIGHT_IMP_PEXISTS_CONV returns the theorem:

|- t ==> (?p. u) = (?p'. t ==> (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form $t \implies$ (?p. u).

See also

RIGHT_IMP_EXISTS_CONV, PEXISTS_IMP_CONV, LEFT_IMP_PFORALL_CONV.

RIGHT_IMP_PFORALL_CONV

```
RIGHT_IMP_PFORALL_CONV : conv
```

Synopsis

Moves a paired universal quantification of the consequent outwards through an implication.

Description

When applied to a term of the form t ==> (!p. u), the conversion RIGHT_IMP_FORALL_CONV returns the theorem:

|- t ==> (!p. u) = (!p'. t ==> (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form $t \implies (!p. u)$.

See also

RIGHT_IMP_FORALL_CONV, PFORALL_IMP_CONV, LEFT_IMP_PEXISTS_CONV.

RIGHT_LIST_PBETA

RIGHT_LIST_PBETA : (thm -> thm)

Synopsis

Iteratively beta-reduces a top-level paired beta-redex on the right-hand side of an equation.

Description

When applied to an equational theorem, RIGHT_LIST_PBETA applies paired beta-reduction over a top-level chain of beta-redexes to the right-hand side (only). Variables are renamed if necessary to avoid free variable capture.

A |- s = (\p1...pn. t) q1 ... qn
------ RIGHT_LIST_BETA
A |- s = t[q1/p1]...[qn/pn]

Failure

Fails unless the theorem is equational, with its right-hand side being a top-level paired beta-redex.

See also

RIGHT_LIST_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, LIST_PBETA_CONV, RIGHT_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.

RIGHT_OR_PEXISTS_CONV

```
RIGHT_OR_PEXISTS_CONV : conv
```

Synopsis

Moves a paired existential quantification of the right disjunct outwards through a disjunction.

Description

When applied to a term of the form t // (?p. u), the conversion RIGHT_OR_PEXISTS_CONV returns the theorem:

|- t \/ (?p. u) = (?p'. t \/ (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables free in the input term.

Failure

Fails if applied to a term not of the form $t \neq (?p. u)$.

See also

RIGHT_OR_EXISTS_CONV, OR_PEXISTS_CONV, PEXISTS_OR_CONV, LEFT_OR_PEXISTS_CONV.

RIGHT_OR_PFORALL_CONV

RIGHT_OR_PFORALL_CONV : conv

Synopsis

Moves a paired universal quantification of the right disjunct outwards through a disjunction.

Description

When applied to a term of the form t // (!p. u), the conversion RIGHT_OR_FORALL_CONV returns the theorem:

|-t / (!p. u) = (!p'. t / (u[p'/p]))

where p^{γ} is a primed variant of the pair p that does not contain any variables that appear free in the input term.

Failure

Fails if applied to a term not of the form t // (!p. u).

See also

RIGHT_OR_FORALL_CONV, OR_PFORALL_CONV, PFORALL_OR_CONV, LEFT_OR_PFORALL_CONV.

RIGHT_PBETA

RIGHT_PBETA : (thm -> thm)

Synopsis

Beta-reduces a top-level paired beta-redex on the right-hand side of an equation.

Description

When applied to an equational theorem, RIGHT_PBETA applies paired beta-reduction at top level to the right-hand side (only). Variables are renamed if necessary to avoid free

variable capture.

A |- s = (\p. t1) t2 ----- RIGHT_PBETA A |- s = t1[t2/p]

Failure

Fails unless the theorem is equational, with its right-hand side being a top-level paired beta-redex.

See also

```
RIGHT_BETA, PBETA_CONV, PBETA_RULE, PBETA_TAC, RIGHT_LIST_PBETA, LEFT_PBETA, LEFT_LIST_PBETA.
```

rip_pair

rip_pair : (term -> term list)

Synopsis

Recursively breaks a paired structure into its constituent pieces.

Example

#rip_pair "((1,2),(3,4))";;
["1"; "2"; "3"; "4"] : term list

Comments

Note that rip_pair is similar, but not identical, to strip_pair which iteratively breaks apart tuples (flat paired structures).

Failure

Never fails.

See also

strip_pair.

strip_pabs

```
strip_pabs : (term -> goal)
```

Iteratively breaks apart paired abstractions.

Description

```
strip_pabs "\p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that
```

```
strip_pabs(list_mk_abs(["p1";...;"pn"],"t"))
```

will not return (["p1";...;"pn"],"t") if t is a paired abstraction.

Failure

Never fails.

See also

strip_abs, list_mk_pabs, dest_pabs.

strip_pexists

```
strip_pexists : (term -> goal)
```

Synopsis

Iteratively breaks apart paired existential quantifications.

Description

```
strip_pexists "?p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that
```

```
strip_pexists(list_mk_pexists(["[p1";...;"pn"],"t"))
```

will not return (["p1";...;"pn"],"t") if t is a paired existential quantification.

Failure

Never fails.

See also

strip_exists, list_mk_pexists, dest_pexists.

strip_pforall

```
strip_pforall : (term -> goal)
```

SWAP_PEXISTS_CONV

Synopsis

Iteratively breaks apart paired universal quantifications.

Description

```
strip_pforall "!p1 ... pn. t" returns (["p1";...;"pn"],"t"). Note that
```

```
strip_pforall(list_mk_pforall(["p1";...;"pn"],"t"))
```

will not return (["p1";...;"pn"],"t") if t is a paired universal quantification.

Failure

Never fails.

See also

strip_forall, list_mk_pforall, dest_pforall.

SWAP_PEXISTS_CONV

SWAP_PEXISTS_CONV : conv

Synopsis

Interchanges the order of two existentially quantified pairs.

Description

When applied to a term argument of the form ?p q. t, the conversion SWAP_PEXISTS_CONV returns the theorem:

|-(?p q. t) = (?q t. t)

Failure

SWAP_PEXISTS_CONV fails if applied to a term that is not of the form ?p q. t.

See also

SWAP_EXISTS_CONV, SWAP_PFORALL_CONV.

SWAP_PFORALL_CONV

SWAP_PFORALL_CONV : conv

Interchanges the order of two universally quantified pairs.

Description

When applied to a term argument of the form !p q. t, the conversion SWAP_PFORALL_CONV returns the theorem:

|-(!p q. t) = (!q t. t)

Failure

SWAP_PFORALL_CONV fails if applied to a term that is not of the form !p q. t.

See also

SWAP_PEXISTS_CONV.

UNCURRY_CONV

UNCURRY_CONV : conv

Synopsis

Uncurrys an application of an abstraction.

Example

#UNCURRY_CONV "(\x y. x + y) 1 2";; |- (\x y. x + y)1 2 = (\(x,y). x + y)(1,2)

Failure

UNCURRY_CONV tm fails if tm is not double abstraction applied to two arguments

See also

CURRY_CONV.

UNCURRY_EXISTS_CONV

UNCURRY_EXISTS_CONV : conv

Uncurrys consecutive existential quantifications into a paired existential quantification.

Example

#UNCURRY_EXISTS_CONV "?x y. x + y = y + x";; |- (?x y. x + y = y + x) = (?(x,y). x + y = y + x)

```
#UNCURRY_EXISTS_CONV "?(w,x) (y,z). w+x+y+z = z+y+x+w";;
|- (?(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w))) =
(?((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w)))
```

Failure

UNCURRY_EXISTS_CONV tm fails if tm is not a consecutive existential quantification.

See also

CURRY_CONV, UNCURRY_CONV, CURRY_EXISTS_CONV, CURRY_FORALL_CONV, UNCURRY_FORALL_CONV.

UNCURRY_FORALL_CONV

UNCURRY_FORALL_CONV : conv

Synopsis

Uncurrys consecutive universal quantifications into a paired universal quantification.

Example

#UNCURRY_FORALL_CONV "!x y. x + y = y + x";; |- (!x y. x + y = y + x) = (!(x,y). x + y = y + x) #UNCURRY_FORALL_CONV "!(w,x) (y,z). w+x+y+z = z+y+x+w";; |- (!(w,x) (y,z). w + (x + (y + z)) = z + (y + (x + w))) = (!((w,x),y,z). w + (x + (y + z)) = z + (y + (x + w)))

Failure

UNCURRY_FORALL_CONV tm fails if tm is not a consecutive universal quantification.

See also

CURRY_CONV, UNCURRY_CONV, CURRY_FORALL_CONV, CURRY_EXISTS_CONV, UNCURRY_EXISTS_CONV.

UNPBETA_CONV

```
UNPBETA_CONV : (term -> conv)
```

Synopsis

Creates an application of a paired abstraction from a term.

Description

The user nominates some pair structure of variables p and a term t, and UNPBETA_CONV turns t into an abstraction on p applied to p.

----- UNPBETA_CONV "p" "t" |- t = (\p. t) p

Failure

Fails if p is not a paired structure of variables.

See also

PBETA_CONV, PAIRED_BETA_CONV.

Pre-proved Theorems

The section that follows lists the theorems in the pair library.

4.1 Theorems

```
ABS_PAIR_THM (pair)
  |-!x. ?q r. x = (q,r)
ABS_REP_prod (pair)
  |- (!a. ABS_prod (REP_prod a) = a) /\
     !r. IS_PAIR r = (REP_prod (ABS_prod r) = r)
CLOSED_PAIR_EQ (pair)
  |-!x y a b. ((x,y) = (a,b)) = (x = a) / (y = b)
COMMA_DEF (pair)
  |-!x y. (x,y) = ABS_prod (MK_PAIR x y)
CURRY_DEF (pair)
  |-!f x y. CURRY f x y = f (x,y)
CURRY_ONE_ONE_THM (pair)
  |-(CURRY f = CURRY g) = (f = g)
CURRY_UNCURRY_THM (pair)
  |-!f. CURRY (UNCURRY f) = f
EXISTS_PROD (pair)
  |- (?p. P p) = ?p_1 p_2. P (p_1,p_2)
FORALL_PROD (pair)
  |-(!p. P p) = !p_1 p_2. P (p_1,p_2)
FST (pair)
  |-!x y. FST (x,y) = x
```

```
FST_DEF (pair)
  |-!p. FST p = @x. ?y. p = (x,y)
IS_PAIR_DEF (pair)
  |-!P. IS_PAIR P = ?x y. P = MK_PAIR x y
LET2_RAND (pair)
  |- !P M N. P (let (x,y) = M in N x y) = (let (x,y) = M in P (N x y))
LET2_RATOR (pair)
  |-!M N b. (let (x,y) = M in N x y) b = (let <math>(x,y) = M in N x y b)
LEX_DEF (pair)
  |- !R1 R2. R1 LEX R2 = (\(s,t) (u,v). R1 s u \/ (s = u) /\ R2 t v)
MK_PAIR_DEF (pair)
  |- !x y. MK_PAIR x y = (\a b. (a = x) /\ (b = y))
PAIR (pair)
  |-!x. (FST x, SND x) = x
pair_Axiom (pair)
  |- !f. ?fn. !x y. fn (x,y) = f x y
pair_case_cong (pair)
  |- !f' f M' M.
       (M = M') / (!x y. (M' = (x,y)) ==> (f x y = f' x y)) ==>
       (pair_case f M = pair_case f' M')
pair_case_def (pair)
  |- pair_case = UNCURRY
pair_case_thm (pair)
  |-pair_case f(x,y) = f x y
PAIR_EQ (pair)
  |-((x,y) = (a,b)) = (x = a) / (y = b)
pair_induction (pair)
  |- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p
PEXISTS_THM (pair)
  |-!P. (?x y. P x y) = ?(x,y). P x y
PFORALL_THM (pair)
  |-!P.(!x y. P x y) = !(x,y). P x y
```

```
prod_TY_DEF (pair)
  |- ?rep. TYPE_DEFINITION IS_PAIR rep
RPROD_DEF (pair)
  |- !R1 R2. RPROD R1 R2 = (\(s,t) (u,v). R1 s u /\ R2 t v)
SND (pair)
 |-!x y. SND (x,y) = y
SND_DEF (pair)
  |-!p. SND p = @y. ?x. p = (x,y)
UNCURRY_CONG (pair)
  |- !f' f M' M.
       (M = M') / (!x y. (M' = (x,y)) ==> (f x y = f' x y)) ==>
       (UNCURRY f M = UNCURRY f' M')
UNCURRY_CURRY_THM (pair)
  |-!f. UNCURRY (CURRY f) = f
UNCURRY_DEF (pair)
  |-!f x y. UNCURRY f (x,y) = f x y
UNCURRY_ONE_ONE_THM (pair)
  |- (UNCURRY f = UNCURRY g) = (f = g)
UNCURRY_VAR (pair)
  |-!f v. UNCURRY f v = f (FST v) (SND v)
WF_LEX (pair)
  |-!R Q. WF R / WF Q ==> WF (R LEX Q)
WF_RPROD (pair)
  |- !R Q. WF R /\ WF Q ==> WF (RPROD R Q)
```

Index

ABS_PAIR_THM, 97 ABS_REP_prod, 97 AND_PEXISTS_CONV, 9 AND_PFORALL_CONV, 9 bndpair, 10 CLOSED_PAIR_EQ, 97 COMMA_DEF, 97 CURRY_CONV, 10 CURRY_DEF, 97 CURRY_EXISTS_CONV, 11 CURRY_FORALL_CONV, 12 CURRY_ONE_ONE_THM, 97 CURRY_UNCURRY_THM, 97 dest_pabs, 12 dest_pexists, 13 dest_pforall, 13 dest_prod, 14 dest_pselect, 14 EXISTS_PROD, 97 FILTER_PGEN_TAC, 14 FILTER_PSTRIP_TAC, 15 FILTER_PSTRIP_THEN, 16 FORALL_PROD, 97 FST, 97 FST_DEF, 98 GEN_PALPHA_CONV, 18 genlike, 17 GPSPEC, 19

HALF_MK_PABS, 19 IPSPEC, 20 IPSPECL, 21 is_pabs, 21 IS_PAIR_DEF, 98 is_pexists, 22 is_pforall, 22 is_prod, 23 is_pselect, 23 is_pvar, 23 LEFT_AND_PEXISTS_CONV, 24 LEFT_AND_PFORALL_CONV, 24 LEFT_IMP_PEXISTS_CONV, 25 LEFT_IMP_PFORALL_CONV, 26 LEFT_LIST_PBETA, 26 LEFT_OR_PEXISTS_CONV, 27 LEFT_OR_PFORALL_CONV, 27 LEFT_PBETA, 28 LET2_RAND, 98 LET2_RATOR, 98 LEX_DEF, 98 list_mk_pabs, 29 LIST_MK_PEXISTS, 30 list_mk_pexists, 29 LIST_MK_PFORALL, 31 list_mk_pforall, 30 LIST_PBETA_CONV, 32 MK_PABS, 33 mk_pabs, 32 MK_PAIR, 33 MK_PAIR_DEF, 98

MK_PEXISTS, 34 mk_pexists, 34 MK_PFORALL, 35 mk_pforall, 35 mk_prod, 36 MK_PSELECT, 37 mk_pselect, 36 NOT_PEXISTS_CONV, 37 NOT_PFORALL_CONV, 38 occs_in, 38 OR_PEXISTS_CONV, 39 OR_PFORALL_CONV, 39 P_FUN_EQ_CONV, 82 P_PCHOOSE_TAC, 83 P_PCHOOSE_THEN, 84 P_PGEN_TAC, 85 P_PSKOLEM_CONV, 85 PABS, 40 PABS_CONV, 41 paconv, 41 PAIR, 98 pair_Axiom, 98 pair_case_cong, 98 pair_case_def, 98 pair_case_thm, 98 PAIR_CONV, 42 PAIR_EQ, 98 pair_induction, 98 PALPHA, 42 PALPHA, 6 PALPHA_CONV, 44 PART_PMATCH, 45 PBETA_CONV, 45 PBETA_CONV, 6 PBETA_RULE, 46 PBETA_TAC, 47 pbody, 48 PCHOOSE, 48

PCHOOSE_TAC, 49 PCHOOSE_THEN, 49 PETA_CONV, 50 PEXISTENCE, 51 PEXISTS, 51 PEXISTS_AND_CONV, 52 PEXISTS_CONV, 53 PEXISTS_EQ, 54 PEXISTS_IMP, 54 PEXISTS_IMP_CONV, 55 PEXISTS_NOT_CONV, 56 PEXISTS_OR_CONV, 56 PEXISTS_RULE, 57 PEXISTS_TAC, 57 PEXISTS_THM, 98 PEXISTS_UNIQUE_CONV, 58 PEXT, 59 PFORALL_AND_CONV, 60 PFORALL_EQ, 60 PFORALL_IMP_CONV, 61 PFORALL_NOT_CONV, 62 PFORALL_OR_CONV, 63 PFORALL_THM, 98 PGEN, 63 PGEN_TAC, 65 PGENL, 64 PMATCH_MP, 65 PMATCH_MP_TAC, 66 prod_TY_DEF, 99 PSELECT_CONV, 67 PSELECT_ELIM, 67 PSELECT_EQ, 68 PSELECT_INTRO, 69 PSELECT_RULE, 69 PSKOLEM_CONV, 70 PSPEC, 71 PSPEC_ALL, 72 PSPEC_PAIR, 73 PSPEC_TAC, 74 PSPECL, 72

PSTRIP_ASSUME_TAC, 75 PSTRIP_GOAL_THEN, 76 PSTRIP_TAC, 77 PSTRIP_THM_THEN, 78 PSTRUCT_CASES_TAC, 80 PSUB_CONV, 81 pvariant, 82 RIGHT_AND_PEXISTS_CONV, 86 RIGHT_AND_PFORALL_CONV, 87 RIGHT_IMP_PEXISTS_CONV, 87 RIGHT_IMP_PFORALL_CONV, 88 RIGHT_LIST_PBETA, 88 RIGHT_OR_PEXISTS_CONV, 89 RIGHT_OR_PFORALL_CONV, 90 RIGHT_PBETA, 90 rip_pair, 91 RPROD_DEF, 99 SND, 99 SND_DEF, 99 strip_pabs, 91 strip_pexists, 92 strip_pforall, 92 SWAP_PEXISTS_CONV, 93 SWAP_PFORALL_CONV, 93 UNCURRY_CONG, 99 UNCURRY_CONV, 94 UNCURRY_CURRY_THM, 99 UNCURRY_DEF, 99 UNCURRY_EXISTS_CONV, 94 UNCURRY_FORALL_CONV, 95 UNCURRY_ONE_ONE_THM, 99 UNCURRY_VAR, 99 UNPBETA_CONV, 96 WF_LEX, 99 WF_RPROD, 99