
HolSatLib Documentation

Version 1.0β

Mike Gordon

June 7, 2002

Preface

This document describes HolSatLib as distributed with the Kananaskis re-
lease of Hol98. Section 2 describes how to install it with Taupo releases.

HolSatLib provides a very simple harness in Hol98 for invoking SAT solvers
on HOL terms. Currently the following solvers are supported

Solver Home Page

SATO http://www.cs.uiowa.edu/~hzhang/sato.html

GRASP http://sat.inesc.pt/~jpms/grasp

ZCHAFF http://www.ee.princeton.edu/~chaff/zchaff.html

These solvers all require input in the standard DIMACS format1 for conjunc-
tive normal form (CNF). It should be straightforward to add other DIMACS
compatible SAT solvers.

The purpose of HolSatLib is to provide a platform for experimenting with
combinations of theorem proving and SAT. Hol98 can be used to deductively
manipulate terms into CNF as required for SAT analysis, and then the results
of the analysis can be reimported into HOL and either checked or just trusted.

Currently HolSatLib has only been tested under Linux, though it should be
possible to run it under Windows.

Mike Gordon
June 7, 2002

1ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/

i

Contents

1 Introduction 1

2 Installing HolSatLib under Linux 3

3 HolSatLib Documentation 4
3.1 Contents of HolSatLib module 4

3.1.1 sat solver . 5
3.1.2 sato, grasp and zchaff 5
3.1.3 tmp name, sat command, prefix and showSatVarMap . 5
3.1.4 satOracle . 5
3.1.5 satProve . 7
3.1.6 readDimacs . 7

3.2 Contents of SatSolvers module 7
3.3 Contents of canonTools module 8

ii

1 Introduction

The following examples illustrates HolSatLib in action.

- load "HolSatLib"; open HolSatLib

[output omitted]

> val it = () : unit

- show_tags := true;

> val it = () : unit

- satOracle grasp ‘‘(x \/ ~y \/ z) /\ (~z \/ y)‘‘;

> val it = [oracles: grasp] [axioms:] []

|- z /\ y ==> (x \/ ~y \/ z) /\ (~z \/ y) : thm

- satProve grasp ‘‘(x \/ ~y \/ z) /\ (~z \/ y)‘‘;

> val it = [oracles:] [axioms:] []

|- z /\ y ==> (x \/ ~y \/ z) /\ (~z \/ y) : thm

Setting show tags to true makes the Hol98 top level print theorem tags.

The function satOracle takes a SAT solver (currently either sato, grasp or
zchaff, but more could be added) and a term t and

1. writes a DIMACS format file corresponding to the term t

2. invokes the solver on the file to create an output file

3. parses the output file to extract the model found

4. creates a theorem, tagged with the name of the solver, that shows the
model.

The function satProve performs steps 1–3 above, but then uses Hol98 to
check that the model is really a model and then returns an untagged theorem.
Note that checking a model is generally much quicker than finding it (one
just ‘evaluates’ the term with the values supplied by the model).

Thus if one is prepared to trust the solver then use satOracle, but if one
wants to verify the results (which could be time-consuming) use satProve.

The next example illustrates what happens on unsatisfiable terms.

1

- satOracle grasp ‘‘(x \/ ~y \/ z) /\ ~z /\ y /\ ~x‘‘;

> val it = [oracles: grasp] [axioms:] []

|- ~((x \/ ~y \/ z) /\ ~z /\ y /\ ~x)

- satProve grasp ‘‘(x \/ ~y \/ z) /\ ~z /\ y /\ ~x‘‘;

! Uncaught exception:

! satProveError

If a term t is unsatisfiable then satOracle will return |- ~t, tagged with the
name of the SAT solver used. However, satProve will raise an exception,
since there is no efficient way to check for unsatisfiability using pure Hol98
theorem proving.

A tautology checker that uses SAT can be easily programmed using CNF CONV,
which is supplied in the structure canonTools that comes with HolSatLib. To
check the validity of a term t

[th1] use CNF CONV to prove |- ~t = t′, where t′ is in CNF;

[th2] use SAT to prove |- ~t′;

[th3] by negating both sides of th1, prove |- ~~t = ~t′;

[th4] hence by combining th2 and th3 derive |- ~~t.

[th5] hence by the law of double negation conclude |- t.

Example Hol98 code to mechanise these steps is as follows:

(* NOT_CLAUSES = |- (!t. ~~t = t) /\ (~T = F) /\ (~F = T) *)

val NOT_NOT = CONJUNCT1 NOT_CLAUSES;

fun SAT_TAUT_CHECK sat_solver t =

let val th1 = canonTools.CNF_CONV(mk_neg t)

val th2 = satOracle sat_solver (rhs(concl th1))

val th3 = AP_TERM ‘‘$~‘‘ th1

val th4 = EQ_MP (SYM th3) th2

val th5 = EQ_MP (SPEC t NOT_NOT) th4

in

th5

end;

2

2 Installing HolSatLib under Linux

1. Visit http://www.cl.cam.ac.uk/~mjcg/HolSatLib and download the
file HolSatLib.tar.gz

2. place HolSatLib.tar.gz in a directory dir (where dir is an absolute
path name)

3. connect to dir and execute

gunzip HolSatLib.tar.gz; tar -xf HolSatLib.tar

this should result in a directory dir/HolSatLib containing

Cnf.sml HolSatLib.sig HolSatLib.sml SatSolvers.sml doc sat_solvers

4. connect to dir/HolSatLib and execute

Holmake cleanAll; Holmake

you should see

Analysing HolSatLib.sml

Trying to create directory .HOLMK for dependency files

Analysing HolSatLib.sig

Compiling HolSatLib.sig

Analysing SatSolvers.sml

Compiling SatSolvers.sml

Compiling HolSatLib.sml

Analysing Cnf.sml

Compiling Cnf.sml

5. download SATO, GRASP and ZCHAFF into the directories sato,
grasp, zchaff, respectively, in dir/HolSatLib/sat solvers (versions
may already be there)

6. after starting Hol98 execute

loadPath := "dir/HolSatLib" :: !loadPath;

7. you should now be able to execute

load "HolSatLib"; open HolSatLib;

3

3 HolSatLib Documentation

HolSatLib currently comes with three modules

Module Description

HolSatLib functions for invoking SAT solvers
SatSolvers specifications of sato, grasp and zchaff

Cnf tool for converting HOL terms to CNF (from Joe Hurd)

3.1 Contents of HolSatLib module

The signature of HolSatLib is shown below, followed by a description of the
components.

signature HolSatLib = sig

datatype sat_solver =

SatSolver of {name : string,

URL : string,

executable : string,

notime_run : string -> string * string -> string,

time_run : string -> (string * string) * int -> string,

only_true : bool,

failure_string : string,

start_string : string,

end_string : string}

val sato : sat_solver

val grasp : sat_solver

val zchaff : sat_solver

val tmp_name : string ref

val sat_command : string ref

val prefix : string ref

val showSatVarMap : unit -> int * (string * int) list

val satOracle : sat_solver -> Term.term -> Thm.th

val satProve : sat_solver -> Term.term -> Thm.thm

val readDimacs : string -> Term.term

4

3.1.1 sat solver

The datatype sat solver is defined in the module SatSolvers. The data in
the record argument to the constructor SatSolver is an ad-hoc list of what
is needed to invoke a SAT program and parse the results. One only needs to
know what the fields contain if one is adding another SAT prover. See the
source code SatSolvers.sml for some information in the comments.

3.1.2 sato, grasp and zchaff

The ML identifiers sato, grasp and zchaff are bound by module SatSolvers
to descriptions of the corresponding SAT solvers. These descriptions are
passed to satOracle and satProve to select which SAT solver to invoke.

3.1.3 tmp name, sat command, prefix and showSatVarMap

The reference tmp name contains the temporary file name used in the last in-
vokation of a SAT solver by satOracle or satProve. This name was generated
using FileSys.tmpName.

The reference sat command contains the actual command executed (using
Process.system) for the last invokation of a SAT solver. This command
reads from an input file and writes to an output file. The file names are
generated by extending tmp name (the input file name extension is cnf and
the out extension is the name of the SAT solver used).

The reference prefix contains the string that is concatenated to numbers to
get the HOL variables used when reading a separately generated DIMACS
file with readDimacs. Default value is "v".

The function showSatVarMap returns a pair consisting of the one plus the
number of variables used (i.e. the first number not currently used as a vari-
able) and the mapping from variable names to numbers for encoding a term
in DIMACS format by satOracle or satProve.

3.1.4 satOracle

satOracle solver term

1. writes a DIMACS format file corresponding to term

5

(a) the mapping from HOL variable names to integers can be seen
using showSatVarMap

(b) the input file name is tmp.cnf, where the string tmp is in the
reference tmp name

2. invokes solver on the file and writes results to an output file

(a) the default settings (time, verbosity etc.) supplied by solver are
used

(b) the output file name is tmp.name, where the string tmp is in the
reference tmp name and name is the string given as the value of the
field name of solver

(c) the actual command executed can be seen in the reference sat command

3. parses the output file to see if a model was found and if so extracts it

(a) the presence of the string given as the value of the field failure string

in solver is assumed to indicate that term is unsatisfiable

(b) if term is not unsatisfiable, the model is assumed to be supplied as
a list of integers in the output file tmp.name between the strings
given as the values of the fields start string and end string in
solver

(c) the mapping available via showSatVarMap is used to turn the ex-
tracted model into a HOL term

(d) if the value of the field only true is true then it is assumed that
only the positive literals of the model are given (this is the case
with SATO) and so the negative literals are taken to be the nega-
tions of those variables occurring in term, but not in the computed
model

4. creates a theorem, tagged with the name of solver, showing the result

(a) if term is unsatisfiable the result is the tagged theorem |- ~term

(b) if a model is found the result is the tagged theorem |- model ==> term,
where model is the conjunction of the literals extracted from the
model

(c) the oracle tag is the name of solver.

6

3.1.5 satProve

satProve solver term goes through the same steps 1,2 and 3 as satOracle,
but instead of step 4

1. if a model is found, then proof in Hol98 is used to first check the model
is really a model (by ‘evaluating’ term using the model) and if it is an
untagged theorem |- model ==> term is returned

2. if a model is found by solver, but the Hol98 check fails, i.e. the model
is invalid, then the exception satProveError is raised

3. if term is found to be unsatisfiable by solver, the exception satProveError
is raised

3.1.6 readDimacs

readDimacs file reads a DIMACS format file and returns an CNF HOL term
corresponding the the SAT problem in the file names file. The integers in the
file are prefixed with the string in the reference prefix (the default is "v").

readDimacs is mainly intended as a tool for getting CNF examples by read-
ing in examples from the DIMACS problem set, which is distributed with
HolSatLib in the directory HolSatLib/doc/DIMACS or is available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/.

3.2 Contents of SatSolvers module

SatSolvers contains the definition of the datatype sat solver for specifying
SAT solvers.

The record that is supplied as an argument to the constructor SatSolver has
the following fields.

7

name name of the SAT solver
URL URL of the SAT executable for downloading
executable name of the SAT solver command
notime run evaluating notime run ex (infile,outfile) returns a string

giving a command to execute to run the SAT solver from input
infile and produce output outfile; the paramenter
ex should be the full path name of the SAT solver command
all command options are the defaults (see solver documentation)

time run evaluating time run ex ((infile,outfile),time) returns a string
giving a command to execute to run the SAT solver for time units
of time (the units are specified in the SAT solver’s documentation)
from input infile and produce output outfile; the paramenter
ex should be the full path name of the SAT solver command;
all command options, besides the time, are the defaults
(currently time run is not used)

failure string string whose presence in the solver output indicated unsatisfiability
start string string indicating start of model
end string string indicating end of model

Note that if a model is found, it is assumed to be bracketed by start string

and end string. SAT solvers (like satz2) for which models are not brack-
eted by a fixed pair of strings cannot currently be specified for use with
HolSatLib. If access to such solvers is needed, then it will be necessary to
extend the datatype sat solver to contain additional parsing data (e.g. reg-
ular expressions).

3.3 Contents of canonTools module

The module canonTools contains a simple conversion CNF_CONV : term -> thm,
from Joe Hurd, to convert HOL terms to a form suitable for inputting to
satOracle or satProve.

CNF_CONV t returns a theorem |- t = t′, where t′ is in CNF.

There are other tools for converting to various canonical forms. See the
source code canonTools.sml for details.

2http://www.laria.u-picardie.fr/~cli/EnglishPage.html

8

