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Preface

The development of HolBddLib has gone through two phases. The first
phase consisted in experiments with different ways of linking higher order
logic (HOL) terms to binary decision diagrams (BDDs). These are described
in the paper Reachability programming in HOL98 using BDDs [6]. The first
release of HolBddLib, now called Version 1, consisted of an ad hoc collection
of tools developed for these experiments. One of the approaches we exper-
imented with was based on a protected type of ‘BDD representation judge-
ments’, analogous to the LCF protected type of theorems. Positive results
of Hasan Amjad [3] have lead us to narrow attention to just this approach.
HolBddLib Version 2, which is described here, provides a set of representa-
tion judgement rules as core infrastructure for building ‘fully-expansive’ or
‘LCF-style’ combinations of HOL theorem proving and BDD-based symbolic
calculation algorithms. All higher level tools, such as model checkers, are
programmed in ML as ‘derived rules’.

The primitive inference rules for representation judgements are in the struc-
ture PrimitiveBddRules. A few example derived rules are in the structure
DerivedBddRules. Currently the only derived rules are ones to compute
reachable states and find sequences of transitions to states with given prop-
erties. It is hoped to soon add a module for checking properties expressed in
the modal µ-calculus (and hence CTL).

Version 1 of HolBddLib was more elaborate than Version 2 because it mixed
together code from a number of experiments. In Version 1 there was a func-
tion, called termToBdd, that tried to represent a HOL term as a BDD us-
ing a dynamically extendable global table mapping HOL terms to BDDs.
TermToBdd constructed the BDD of a term t using any BDDs of subterms of
t that were stored in the global table. HolBddLib Version 2 has jettisoned
this imperative style in favour of purely functional rules. Some of the ideas
of BDD tables are likely to return in the future, but as contexts, similar to
HOL simpsets, that are passed functionally, rather than as a single global
state held in references.

HolBddLib Version 1 only supported a single variable ordering, held in a
global variable map. In Version 2, each representation judgement carries its
own variable ordering, so that local scopes are possible. For convenience,
DerivedBddRules provides a way of storing a default variable ordering in a
global variable, but this is just a derived facility, not part of the kernel.
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HolBddLib Version 2 adds assumptions to representation judgements anal-
ogous to assumptions of HOL theorems. This enables Coudert, Berthet
and Madre simplification to be represented as a primitive rule (see the rule
BddSimplify in Section 17.1). It also allows the term part of a representa-
tion judgements to be simplified using equations with assumptions (see the
rule BddEqMp in Section 17.2).

HolBddLib uses Jørn Lind-Nielsen’s BuDDy package as a BDD engine. The
interface from BuDDy to Moscow ML, called MuDDy, is due to Ken Friis
Larsen and Jakob Lichtenberg, and is described in Part I. HolBddLib is built
on top of MuDDy and is described in Part II.

Some of the material in this document derives from University of Cambridge
Computer Laboratory Technical Report No. 481, December 1999, by Mike
Gordon and Ken Friis Larsen [7]. Although this report has examples that
might be of tutorial use, it has much obsolete material and methodology
deriving for early experiments pre-dating the release of HolBddLib Version 1.

Overview

In the fully expansive (or ‘LCF style’) approach, theorems are represented
by an abstract type whose primitive operations are the axioms and infer-
ence rules of a logic. Theorem proving tools are implemented by composing
together the inference rules using ML programs.

This idea can be generalised to computing valid judgements that represent
other kinds of information. In particular, consider judgements (a, ρ, t, b),
where a is a set of boolean terms (assumptions) that are assumed true, ρ
represents a variable order, t is a boolean term all of whose free variables are
boolean and b is a BDD. Such a judgement is valid if under the assumptions
a, the BDD representing t with respect to ρ is b, and we will write a ρ t 7→ b

when this is the case.

The derivation of ‘theorems’ like a ρ t 7→ b can be viewed as ‘proof’ in the
style of LCF by defining an abstract type term bdd that models judgements
a ρ t 7→ b analogously to the way the type thm models theorems ` t.

HolBddLib currently contains two main structures: PrimitiveBddRuleswhich
defines a protected type term bdd and rules for generating values of this
type, and DerivedBddRules that contains derived rules for performing simple
fixed-point calculations. There is also a theory MachineTransitionTheory
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containing the theorems on reachability and fixed points needed by the de-
rived rules, and two small subsidiary structures Varmap and PrintBdd.

Relation to the Voss system1

The Voss system [13] has strongly influenced and inspired the ideas described
here. Voss consists of a lazy ML-like functional language, called FL, with
BDDs as a built-in datatype. Quantified boolean formulae can be input and
are parsed to BDDs. The normal boolean operations ¬, ∧, ∨, ≡, ∀, ∃ are
interpreted as BDD operations. Algorithms for model checking are easily
programmed.

Joyce and Seger interfaced an early HOL system (HOL88) to Voss and in a
pioneering paper showed how to verify complex systems by a combination
of theorem proving deduction and symbolic trajectory evaluation (STE) [9].
The HOL-Voss system integrates HOL88 deduction with BDD computations.
BDD tools are programmed in FL and can then be invoked by HOL-Voss
tactics, which can make external calls into the Voss system, passing subgoals
via a translation between the HOL88 and Voss term representations.

In later work Lee, Seger and Greenstreet [10] showed how various optimised
BDD algorithms could be programmed in FL.

The early experiments with HOL-Voss suggested that a lighter theorem prov-
ing component was sufficient, since all that was really needed was a way of
combining results obtained from STE. A system based on this idea, called
VossProver, was developed by Carl Seger and his student Scott Hazelhurst.
It provides operations in FL for combining assertions generated by Voss using
proof rules corresponding to the laws of composition of the temporal logic
assertions verified by STE [8]. VossProver was used to verify impressive in-
teger and floating-point examples (see the DAC98 paper by Aagaard, Jones
and Seger [1] for further discussion and references).

After Seger and Aagaard moved to Intel, the development of the Voss and
VossProver systems evolved into a new system called Forte. Only partial
details of this are in the public domain [12, 2], but a key idea is that FL
is used both as a specification language and as an LCF-style metalanguage.
The connection between symbolic trajectory evaluation and proof is obtained
via a tactic Eval tac that converts the result of executing an FL program

1Adapted from Reachability programming in HOL using BDDs [6]
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performing STE into a theorem in the logic. Theorem proving in Forte is used
both to split goals into smaller subgoals that are tractable for model checking,
and to transform formulae so that they can be checked more efficiently.

The combination of HOL and BuDDy in Version 1 of HolBddLib provides a
somewhat similar programming environment to Voss’s FL (though with eager
rather than lazy evaluation and no special support for STE). BuDDy pro-
vides BDD operations corresponding to ¬, ∧, ∨, ≡, ∀, ∃ and the HOL term
parser plus termToBdd provides a way of using these to create BDDs from
logical terms. Voss enables efficient computations on BDDs using functional
programming. So does HolBddLib. However, in addition it allows FL-like
BDD programming in ML to be intimately mixed with HOL deduction, so
that, for example, theorem proving tools (e.g. simplifiers) can be directly
applied to terms to optimise them for BDD purposes (e.g. disjunctive par-
titioning). This is in line with future developments discussed by Joyce and
Seger [9] and it appears that the Forte system has similar capabilities.

HolBddLib Version 2 provides a less developed interactive programming envi-
ronment than Version 1. It is more oriented to providing a clean and simple
API allowing implementers to create their own ‘fully-expansive’ combina-
tions of model checking and theorem proving. Such a combination could be
a Voss-like verification platform.
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Part I

MuDDy

MuDDy is the Moscow ML interface to BuDDy. It provides ML functions
for constructing and manipulating BDDs via three structures:

• bdd defines the ML type bdd representing BDDs and associated oper-
ations derived from BuDDy;

• fdd provides support for blocks of BDD variables used to encode values
representing elements of finite domains;

• bvec provides support for Boolean vectors.

The current HolBddLib system only uses bdd and so the documentation of
fdd and bvec provided here is minimal (see Sections 12 and 13 below).

1 Initialisation, termination and tuning ses-

sions

The BuDDy package must be initialised before any BDD operations are done.
Initialisation is done with the ML function

init : int -> int -> unit

Evaluating init m n initialises BuDDy with m nodes in the nodetable and
a cachesize of n. The library HolBddLib (Part II) initialises the nodetable
to 1000000 and cachesize to be 10000. The following is a quotation from the
BuDDy documentation [11].

Good initial values are

Example nodenum cachesize

Small test examples 1000 100
Small examples 10000 1000
Medium sized examples 100000 10000
Large examples 1000000 10000
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Too few nodes will only result in reduced performance and this increases the
number of garbage collections needed. If the package needs more nodes, then
it will automatically increase the size of the node table.

The initial number of nodes is not critical for any BDD operation as the
table will be resized whenever there are too few nodes left after a garbage
collection. But it does have some impact on the efficiency of the operations.

The function

done : unit -> unit

frees all memory used by BuDDy and resets the package to its initial state.

The functions init and done should only be called once per session.

The function

isRunning : unit -> bool

tests whether BuDDy is running (i.e. init has been called and done has not
been called). It is useful for checking if initialialisation is needed.

The functions init and done should only be called once in a session.

Statistical information from BuDDy is available using the function stats

stats : unit -> {produced : int,

nodenum : int,

maxnodenum : int,

freenodes : int,

minfreenodes : int,

varnum : int,

cachesize : int,

gbcnum : int}

The meaning of the values of the various named fields in the record returned
by evaluating stats() are
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Field name Meaning

produced total number of new nodes ever produced
nodenum currently allocated number of BDD nodes
maxnodenum user defined maximum number of BDD nodes
freenodes number of currently free BDD nodes
minfreenodes minimum number of nodes left after a BDD garbage collection
varnum number of defined BDD variables
cachesize number of cache entries
gbcnum number of BDD garbage collections done

The management of the node table and internal caches can be tuned using
the following functions

setMaxincrease : int -> int

setCacheratio : int -> int

Evaluating setMaxincrease n tells BuDDy that the maximum of new nodes
added when doing an expansion of the nodetable should be n. The previous
maximum is returned.

Evaluating setCacheratio n sets the cache ratio to n. For example, if n is
4 then the internal caches will a quarter the size of the nodetable.

2 BDDs representing true and false

The atomic BDDs representing the two truthvalues are bound to the ML
identifiers TRUE and FALSE, both of type bdd.

Functions for mapping from ML Booleans to BDDs and vice versa are, re-
spectively

fromBool : bool -> bdd

toBool : bdd -> bool

The function toBool returns true on TRUE and false on FALSE. It raises
the exception Domain on non-atomic BDDs.

equal : bdd -> bdd -> bool

tests the equality of two BDDs. Thus TRUE is equal to fromBool(true) and
FALSE is equal to fromBool(false).
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3 Variables

In BuDDy, BDD variables are encoded as integers (type int in ML) and the
BDD variable ordering is the numerical ordering. Thus to build a BDD to
represent a HOL term with a particular variable ordering it is necessary to
map HOL variables to integers so that the numerical order corresponds to
the desired variable order.

The number of variables in use must be declared using

setVarnum : int -> unit

Evaluating setVarnum n declares that the n variables 0, 1, . . . , n−1 are
available for use. The number of variables can be increased dynamically
during a session by calling setVarnum with a larger number. The number of
variables cannot be decreased dynamically. The function

getVarnum : unit -> int

returns the number of variables in use (i.e. the argument of the last applica-
tion of setVarnum).

The function

ithvar : int -> bdd

maps an ML integer to a BDD that consists of just the variable corresponding
to the integer and

nithvar : int -> bdd

maps an integer to the BDD representing the negation of the variable.

Note that evaluating ithvar n or nithvar n will raise the exception Fail

(with string argument "Unknown variable") if n has not been declared as
in use, i.e. if setVarnum m has not been previously evaluated for some m

greater than n.
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4 Sets of variables and quantification

BuDDy provides operations on BDDs for quantifying with respect to sets of
variables. The module bdd provides a type varSet to represent such sets
with, respectively, a constructor and two destructors:

makeset : int list -> varSet

scanset : varSet -> int vector

fromSet : varSet -> bdd

The destructor scanset returns a vector of the variables in the set and
the destructor fromSet returns a BDD representing the conjunction of the
variables in the set.

The following functions quantify BDDs with respect to sets of variables:

forall : varSet -> bdd -> bdd

exist : varSet -> bdd -> bdd

5 Assignments, composition, replacement and

restriction

MuDDy provides a function for general purpose simultaneous substitution
of arbitrary BDDs for variables in a given BDD (veccompose). It also pro-
vides and three optimised special cases: substituting for a single variable
(compose), renaming variables (replace) and substituting with boolean con-
stants (restrict).

The operation veccompose performs the simultaneous substitution of BDDs
for variables in a BDD. The argument of veccompose is a value of type
composeSet (created with a constructor composeSet) that specifies a list if
pairs [((n1,b1),. . .,, where BDD variable n is to be pre

composeSet : (int * bdd) list -> composeSet

veccompose : composeSet -> bdd -> bdd

A single variable can be replaced with a BDD using
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compose : bdd -> bdd -> int -> bdd

Evaluating compose b1 b2 n substitutes b2 for the variable n in b1.

Variables can be renamed using the function replace that takes an argu-
ment of type pairSet representing sets of pairs of variables (with constructor
makepairSet)

makepairSet : (int * int)list -> pairSet

replace : bdd -> pairSet -> bdd

Evaluating makepairSet[(x1,x
′
1), . . . , (xn,x

′
n)] creates a set of pairs

specifying that x′
i be substituted for xi (for 1 ≤ i ≤ n). A renaming with

replace will fail if it would result in distinct variables being identified (i.e. if
the shape of the BDD would change).

BDDs can be restricted by instantiating variables to TRUE or FALSE using
the function restrict that takes as argument a value of type assignment

(which has a constructor assignment and destructor getAssignment).

assignment : (int * bool)list -> assignment

getAssignment : assignment -> (int * bool) list

restrict : bdd -> assignment -> bdd

Evaluating assignment[(v1,t1), . . . , (vn,tn)] creates an assignment spec-
ifying that each vi be instantiated to fromBool(ti) (for 1≤i≤n).

6 Finding satisfying assignments

An assignment satisfying a BDD can be computed via BuDDy using

satone : bdd -> assignment

The exception Domain is raised if the argument to satone is unsatisfiable.
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Alternatively, a model can be computed by an ML program such as:

val findSat =

let fun findSatAux bdd =

if bdd.equal bdd bdd.TRUE

then []

else

if bdd.equal bdd bdd.FALSE

then raise Domain

else

((bdd.var bdd,true) :: findSatAux(bdd.high bdd)

handle Domain =>

(bdd.var bdd, false) :: findSatAux(bdd.low bdd))

in

assignment o findSatAux

end;

The functions satone and findSat do not necessarily find the same satis-
fying assignment, if more than one exists. Also, findSat stops when it has
found enough variable bindings to satisfy the BDD, so may not return an
assignment giving values to all the variables.

7 Boolean operations on BDDs

The structure bdd introduces a type bddop corresponding to Boolean opera-
tions on BDDs. The ML function

apply : bdd -> bdd -> bddop -> bdd

applies a BDD operation to BDD values.

BuDDy provides functions for calculating in a single step the result of per-
forming a Boolean operation and then quantifying the result with respect to
several variables.

appall : bdd -> bdd -> bddop -> varSet -> bdd

appex : bdd -> bdd -> bddop -> varSet -> bdd
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The function appall universally quantifies the result of the Boolean opera-
tion and appex existentially quantifies it.

MuDDy provides ten operations of type bddop and for each of these an ML
infix, pre-defined using apply, of type bdd * bdd -> bdd.

bddop bdd * bdd -> bdd Result of applying to (b1, b2)

And AND b1 ∧ b2
Nand NAND ¬(b1 ∧ b2)
Or OR b1 ∨ b2
Nor NOR ¬(b1 ∨ b2)
Biimp BIIMP b1 = b2
Xor XOR ¬(b1 = b2)
Imp IMP b1⇒b2
Invimp INVIMP b2⇒b1
Lessth LESSTH ¬b1 ∧ b2
Diff DIFF b1 ∧ ¬b2

MuDDy also provides a unary negation operator and ternary conditional
operator.

NOT : bdd -> bdd

ITE : bdd -> bdd -> bdd -> bdd

NOT b is the BDD corresponding to ‘¬b’ and ITE b b1 b2 is the BDD corre-
sponding to ‘if b then b1 else b2’.

8 Inspecting and counting nodes and states

The integer labelling a BDD node and the BDDs corresponding to the high
(i.e. true) and low (i.e. false) nodes are obtained, respectively, with

var : bdd -> int

high : bdd -> bdd

low : bdd -> bdd

9



Thus if b is the BDD of “if x then t1 else t2” then var b will return the
number representing variable x, high b will return the BDD of t1 and low b

will return the BDD of t2.

Note that var, high and low raise an exception if applied to TRUE or FALSE.

The entire BuDDy node table of a BDD can be copied into ML using

nodetable : bdd -> int * (int * int * int)vector

The integer returned as the first component of the pair is a pointer (starting
from 0) into the second component, a vector of node descriptors. This pointer
points to the root node. Each node descriptor is a triple of integers (v, l, h),
where v is the node label (i.e. a number representing a variable), l points to
the low (false) node in the vector and h points to the high (true) node.
The first two nodes in the vector are special: they represent true and false,
respectively, and arbitrarily have the structure (0, 0, 0).

The number of nodes in a BDD is computed by the function

nodecount : bdd -> int

This could be defined by

fun nodecount bdd = Vector.length(snd(nodetable bdd));

However, nodecount defined this way is likely to run out of space on large
BDDs (since it involves copying the argument BDD from BuDDy’s repre-
sentation into an ML vector). Thus the ML function provided by MuDDy
invokes BuDDy’s nodecount function directly and so is space-efficient.

The number of assignments to all variables in use in the current session that
satisfy a BDD (i.e. make it true) is given by the ML function

satcount : bdd -> real

The answer is exact until the result is too big to be represented as a Moscow
ML integer. Real numbers are used so that results can be returned when this
happens.

The function
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support : bdd -> varSet

gives the variables that a BDD depends on.

An application is to define a function that counts the number of valuations
of a BDD using satcount.

statecount : bdd -> real

The definition of statecount is

fun statecount bdd =

let val sat = satcount bdd

val total = Real.fromInt(getVarnum())

val sup = scanset(support bdd)

val numsup = Real.fromInt(Vector.length sup)

val free = total - numsup

in

if equal bdd TRUE

then 0.0

else sat / Math.pow(2.0, free)

end

If a BDD is representing a set of states, then statecount gives the number
of states in the set (hence the name).

9 Coudert, Berthet & Madre simplification

The ML function

simplify : bdd -> bdd -> bdd

simplifies its second argument under the assumption that the first argument
is true. Thus evaluating simplify b1 b2 results in a BDD b′2, hopefully sim-
pler than b2, such that b1 ⇒ (b2 = b′2) or, equivalently, b1 ∧ b2 = b1 ∧ b′2.
More precisely, the relationship between b1, b2 and b′2 is that the BDD
IMP(b1,BIIMP(b2,b

′
2)) is the BDD TRUE (or, equivalently, that AND(b1,b2)

and AND(b1,b
′
2) are equal, i.e. the same BDD).
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For more details see Henrik Reif Andersen’s lecture notes on BDDs [4], where
the algorithm underlying simplify is described and attributed to a paper
by Coudert, Berthet and Madre [5].

10 Saving, hashing and printing BDDs

BDDs can be saved on disk with the functions

bddSave : string -> bdd -> unit

bddLoad : string -> bdd

The string argument is a file name.

BuDDy provides two ways of printing BDDs: (i) as the set of paths from
the root node to the true node and (ii) to the format used by the dot graph
drawing program2.

The function

hash : bdd -> int

hashes a bdd to an integer.

The functions for printing BDDs are;

printset : bdd -> unit

printdot : bdd -> unit

fnprintset : string -> bdd -> unit

fnprintdot : string -> bdd -> unit

printset and printdot print to standard output, whilst fnprintset and
fnprintdot print to a file with the supplied name.

printset and fnprintset print out a sequence of paths, each one having
the form

< m0:n0, . . . ,ml:nl>

where the n0, . . . , nl after the colon (:) are 0 or 1 and indicate that the
next node in the path is reached by following the low (false) or high (true)
pointer, respectively.

2http://www.research.att.com/sw/tools/graphviz/
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For example, evaluating

printset (AND(ithvar 0, OR(ithvar 1, NOT(ithvar 2))))

results in

<0:1, 1:0, 2:0><0:1, 1:1>

which is best understood by looking at the diagram of the BDD drawn by
dot that appears below.

To illustrate printing to dot format, the same BDD can be printed to a file
ex by evaluating

fnprintdot "ex" (AND(ithvar 0, OR(ithvar 1, NOT(ithvar 2))))

executing dot -Tps ex > ex.ps (in Unix) results in the following Postscript
diagram of a BDD

0 1

0

1

2

11 Dynamic variable reordering

BuDDy provides functions for dynamic variable reordering using a variety
of methods. See the BuDDy documentation [11] for further details. The
dynamic reordering types and functions provided in ML via MuDDy are in
the structure bdd and are

eqtype fixed

FIXED : fixed

FREE : fixed

addvarblock : varnum -> varnum -> fixed -> unit
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clrvarblocks : unit -> unit

eqtype method

WIN2 : method

WIN2ITE : method

SIFT : method

SIFTITE : method

RANDOM : method

REORDER_NONE : method

reorder : method -> unit

autoReorder : method -> method

autoReorderTimes : method -> int -> method

getMethod : unit -> method

getTimes : unit -> int

disableReorder : unit -> unit

enableReorder : unit -> unit

varToLevel : varnum -> int

varAtLevel : int -> varnum

12 The MuDDy structure fdd

The structure fdd provides functions for manipulating values of finite do-
mains. Functions are provided to allocate blocks of BDD variables to repre-
sent integer values instead of only Booleans.

Encoding is done with the least significant bits first in the BDD ordering. For
example, if variables v0, v1, v2, v3 are used to encode 12, then the encoding
would yield v0 = 0, v1 = 0, v2 = 1 and v3 = 1.

See the BuDDy documentation [11] for further details. See the ML structure
fdd for the BuDDy facilities provides in ML via MuDDy:

type fddvar

extDomain : int list -> fddvar list

clearAll : unit -> unit

domainNum : unit -> int

domainSize : fddvar -> int

varNum : fddvar -> int
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vars : fddvar -> bdd.varnum list

ithSet : fddvar -> bdd.varSet

domain : fddvar -> bdd.bdd

setPairs : (fddvar * fddvar) list -> bdd.pairSet

13 The MuDDy structure bvec

The structure bvec provides tools for encoding integers as arrays of BDDs,
where each BDD represents one bit of an expression.

See the BuDDy documentation [11] for further details. See the ML structure
bvec for the BuDDy facilities provides in ML via MuDDy.

type bvec

bvectrue : fdd.precision -> bvec

bvecfalse : fdd.precision -> bvec

con : fdd.precision -> int -> bvec

var : fdd.precision -> bdd.varnum -> int -> bvec

varfdd : fdd.fddvar -> bvec

coerce : fdd.precision -> bvec -> bvec

isConst : bvec -> bool

getConst : bvec -> int

lookupConst : bvec -> int option

add : bvec * bvec -> bvec

sub : bvec * bvec -> bvec

mul : bvec * bvec -> bvec

mulfixed : bvec * int -> bvec

div : bvec * bvec -> bvec * bvec

divfixed : bvec * int -> bvec * bvec

divi : bvec * bvec -> bvec

divifixed : bvec * int -> bvec

modu : bvec * bvec -> bvec

modufixed : bvec * int -> bvec

shl : bvec -> bvec -> bdd.bdd -> bvec

shlfixed : bvec -> int -> bdd.bdd -> bvec

shr : bvec -> bvec -> bdd.bdd -> bvec

shrfixed : bvec -> int -> bdd.bdd -> bvec
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lth : bvec * bvec -> bdd.bdd

lte : bvec * bvec -> bdd.bdd

gth : bvec * bvec -> bdd.bdd

gte : bvec * bvec -> bdd.bdd

equ : bvec * bvec -> bdd.bdd

neq : bvec * bvec -> bdd.bdd

14 Storage allocation and garbage collection

The heart of the MuDDy package is mostly stub code that mirrors the BuDDy
API and takes care of translating C values into SML values and vice versa.

The most tricky part is to make the Moscow ML garbage collector cooperate
with the BuDDy garbage collector (we don’t want either collector to try to
collect the other’s garbage). The cooperation is done by using the finalized
values facility of the Moscow ML runtime system. That is, whenever a bdd

value is returned from the BuDDy library, MuDDy register it as an external
root (via bdd_addref) and wraps it into a finalized value.

A finalized value, in the Moscow ML runtime system, is a pair where the first
component is the destructor (a function pointer) and the second component
is the data (typicaly a pointer). When the Moscow ML collector collect a
finalized value it apply the destructor on the data. In the case of the MuDDy
package the destructor is bdd_delref and the data is the node-index returned
by BuDDy.

Output showing the activation of the BuDDy garbage collector can be gen-
erated using the function

verbosegc : (string * string) option -> unit

Evaluating verbosegc(SOME(pregc,postgc)) instructs BuDDy to print pregc
when a BuDDy GC is initiated and print postgc when the BuDDy GC is
completed.
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Part II

Description of HolBddLib

HolBddLib currently consists of five modules

1. Varmap defines the ML type varmap that represents mappings, often
denoted by ρ, from HOL variables to BDD variables;

2. PrintBdd provides rudimentary facilities for printing BDDs with re-
spect to a varmap;

3. PrimitiveBddRules defines the protected type term bdd representing
BDD representation judgements a ρ t 7→ b with the semantics that
under assumptions a, term t is represented by BDD b with respect to
varmap ρ;

4. DerivedBddRules defines some derived rules for computing the repre-
sentation of the reachable states of a transition system, and also for
finding shortest paths to states satisfying a given property;

5. MachineTransitionTheory contains HOL reachability and fixedpoint
theorems needed for the derived rules in DerivedBddRules.

Executing

load "HolBddLib";

loades these five modules and initialises BuDDy with a nodesize of 1000000
and cachesize of 10000.

If you want to perform your own BuDDy initialisation with different values,
then instead of loading HolBddLib, load bdd and then call bdd.init with
the parameters you want (see Section 1). PrimitiveBddRulesTheory and/or
MachineTransitionTheory etc. can then be loaded.

15 The structure Varmap

The type varmap is defined by
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type varmap = (string, int) Binarymap.dict

Strings are the names of HOL boolean variables and the integers associated
with them are the corresponding BDD variables.

The following operations and predicates on varmaps are provided:

empty : varmap

insert : string * int -> varmap -> varmap

remove : string -> varmap -> varmap

peek : varmap -> string -> int option

dest : varmap -> (string * int) list

eq : varmap * varmap -> bool

size : varmap -> int

extends : varmap -> varmap -> bool

unify : varmap -> varmap -> varmap

with the semantics

Varmap.empty the empty varmap
Varmap.insert add an entry
Varmap.remove delete an entry for a variable
Varmap.peek lookup the value of a variable
Varmap.dest convert to a list of pairs
Varmap.eq pointer equality of varmaps (not general equality)
Varmap.size number of entries
Varmap.extends test if first argument included in second argument
Varmap.unify compute smallest varmap that extends both arguments

16 The structure PrintBdd

PrintBdd builds on top of MuDDy’s support for drawing BDDs using the
dot program (see Section 10). Three functions are provided.

dotBdd : string -> string -> bdd -> bdd

dotLabelledTermBdd : string -> string -> term_bdd -> unit

dotTermBdd : term_bdd -> unit
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dotBdd file label bdd

prints the BDD bdd to file.dot with the label being the string label.
The BDD variables are printed as the numbers used by BuDDy. The
dot program is then invoked to create a postscript file file.ps. The
argument BDD is returned.

dotLabelledTermBdd file label tb

prints the BDD part of term bdd tb with the nodes labelled with the
variables specified in the varmap part of tb. A file file.ps is created,
and the BDD is labelled with the string label.

dotTermBdd tb

prints the BDD part of term bdd tb with the nodes labelled with the
variables specified in the varmap part of tb. A file ScratchBdd.ps is
created, and the BDD is labelled by default with a representation of
the term part of tb. The default labels can be suppressed (i.e. set to
be always the empty string) by assigning false to the global reference
dotTermBddFlag.

17 The structure PrimitiveBddRules

The structure PrimitiveBddRules defines the type term bdd by

type assums = term HOLset.set;

datatype term_bdd = TermBdd of assums * varmap * term * bdd;

The constructor TermBdd is not exported, so the only way to construct values
of type term bdd is using the following inference rules (which are described
in more detail in the rest of this section).

BddExtendVarmap : varmap->term_bdd->term_bdd
BddFreevarsContractVarmap : term->term_bdd->term_bdd
BddSupportContractVarmap : term->term_bdd->term_bdd
BddVar : bool->varmap->term->term_bdd
BddCon : bool->varmap->term_bdd
BddNot : term_bdd->term_bdd
BddIte : term_bdd*term_bdd*term_bdd->term_bdd
BddOp : bddop*term_bdd*term_bdd->term_bdd
BddForall : term list->term_bdd->term_bdd
BddExists : term list->term_bdd->term_bdd
BddAppall : term list->bddop*term_bdd*term_bdd->term_bdd
BddAppex : term list->bddop*term_bdd*term_bdd->term_bdd
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BddCompose : term_bdd*term_bdd->term_bdd->term_bdd
BddListCompose : (term_bdd*term_bdd)list->term_bdd->term_bdd
BddRestrict : (term_bdd*term_bdd)list->term_bdd->term_bdd
BddReplace : (term_bdd*term_bdd)list->term_bdd->term_bdd
BddEqMp : thm->term_bdd->term_bdd
BddSimplify : term_bdd*term_bdd->term_bdd
BddFindModel : term_bdd->term_bdd

Destructor functions dest term bdd, getAssums, getVarmap, getTerm and
getBdd for values of type term bdd are described in Section 17.3

There is also a single oracle function BddThmOracle that derives the HOL
theorem a ` t from the representation judgement a ρ t 7→ TRUE (details are
in Section 17.2).

Many of the rules assume that the varmaps in their term bdd arguments
are all equal. To apply these rules to hypotheses with different varmaps it
may be possible to use BddExtendVarmap, BddFreevarsContractVarmap or
BddSupportContractVarmap to make the varmaps equal. It is expected that
derived rules to enable judgements with different varmaps to be combined
will be implemented, however, as the soundness conditions for these are po-
tentially subtle, such rules have not been included in the ‘trusted kernel’.

Currently we have no formal treatment of notions of soundness or complete-
ness for the rules in PrimitiveBddRules, though this is being thought about.
We think the rules are ‘obviously sound’, but such intuitions are known to be
unreliable! Our intuition about completeness is weaker: it is probable that as
more experience with derived rules is obtained, the need for additional primi-
tive rules will appear. Support for ‘local scopes’ (combining judgements with
different variable orders) is an area that may reveal incompleteness in the
current rules.

17.1 Rules for generating representation judgements

The notation a1∪a2 denotes the union of a1 and a2 Assumptions of represen-
tation judgements are identified up to α-conversion (as are assumptions of
HOL theorems). The implementation is a1∪a2 = HOLset.union a1 a2. The
empty set of assumptions is denoted by {}, a set of assumptions containing
terms t1, . . . , tn is denoted by {t1, . . . , tn} and {} ρ t 7→ b is abbreviated to
ρ t 7→ b.
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Extending and contracting the varmap

BddExtendVarmap : varmap -> term_bdd -> term_bdd

Varmap.extends ρ1 ρ2 a ρ1 t 7→ b

a ρ2 t 7→ b

Raises BddExtendVarmapError if ρ2 doesn not extend ρ1

BddFreevarsContractVarmap : term -> term_bdd -> term_bdd

a ρ t 7→ b v not free in t

a (Varmap.remove "v" ρ) t 7→ b

Raises BddFreevarsContractVarmapError if v not free in t

BddSupportContractVarmap : term -> term_bdd -> term_bdd

a ρ t 7→ b ρ(v) doesn’t occur in b

a (Varmap.remove "v" ρ) t 7→ b

Raises BddSupportContractVarmapError if ρ(v) not in the support of b

Variables and constants

BddVar : bool -> varmap -> term -> term_bdd

ρ(v) = n

ρ v 7→ ithvar n
BddVar true

ρ(v) = n

ρ ¬v 7→ nithvar n
BddVar false

Raises BddVarError if v not in the domain of ρ
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BddCon : bool -> varmap -> term_bdd

ρ T 7→ TRUE
BddCon true

ρ F 7→ FALSE
BddCon false

Always succeeds

Boolean operations

BddNot : term_bdd -> term_bdd

a ρ t 7→ b

a ρ ¬t 7→ NOT b

Always succeeds

BddIte : term_bdd * term_bdd * term_bdd -> term_bdd

a ρ t 7→ b a1 ρ t1 7→ b1 a2 ρ t2 7→ b2
a ∪ a1 ∪ a2 ρ (if t then t1 else t2) 7→ ITE b b1 b2

Raises BddIteError if the varmaps of the hypotheses are not all pointer equal

BddOp : bddop * term_bdd * term_bdd -> term_bdd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2
a1 ∪ a2 ρ (termApply t1 t2 bddop) 7→ apply b1 b2 bddop

termApply t1 t2 bddop applies the HOL operation corresponding to the BuDDy BDD

operation bddop to terms t1 and t2 (see Section 17.3). The exception BddOpError is

raised if the varmaps of the hypotheses are not pointer equal
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Quantification

BddForall : term list -> term_bdd -> term_bdd

a ρ t 7→ b ρ(v1) = n1, . . . , ρ(vi) = ni

a ρ (∀v1 · · · vi. t) 7→ forall (makeset[n1, . . . , ni]) b

Raises BddForallError if any of the terms in the term list argument are not boolean

variables in the domain of ρ, or occur free in any assumption

BddExists : term list -> term_bdd -> term_bdd

a ρ t 7→ b ρ(v1) = n1, . . . , ρ(vi) = ni

a ρ (∃v1 · · · vi. t) 7→ exist (makeset[n1, . . . , ni]) b

Raises BddExistsError if any of the terms in the term list argument are not boolean

variables in the domain of ρ, or occur free in any assumption

BddAppall : term list -> bddop * term_bdd * term_bdd -> term_bdd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2 ρ(v1) = n1, . . . , ρ(vi) = ni

a1 ∪ a2 ρ (∀v1 · · · vi. termApply t1 t2 bddop)
7→
appall b1 b2 bddop (makeset[n1, . . . , ni]) b

Raises BddAppallError if the varmaps in the hypotheses are not pointer equal, or if

any of the terms in the term list argument are not boolean variables in the domain of

ρ, or occur free in any assumption
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BddAppex : term list -> bddop * term_bdd * term_bdd -> term_bdd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2 ρ(v1) = n1, . . . , ρ(vi) = ni

a1 ∪ a2 ρ (∃v1 · · · vi. termApply t1 t2 bddop)
7→
appex b1 b2 bddop (makeset[n1, . . . , ni]) b

Raises BddAppexError if the varmaps of the hypotheses are not pointer equal, or if any

of the terms in the term list argument are not boolean variables in the domain of ρ, or

occur free in any assumption

Composition, repacement and restriction

BddCompose : term_bdd * term_bdd -> term_bdd -> term_bdd

(a1 ρ v1 7→ b1, a2 ρ t1 7→ b′1) a ρ t 7→ b

a1 ∪ a2 ∪ a ρ (subst[v1 |-> t1] t) 7→ compose(var b1, b′

1) b

Raises BddComposeError if varmaps in the hypotheses are not pointer equal, or the

term v1 is not a variable

BddListCompose : (term_bdd * term_bdd) list -> term_bdd -> term_bdd

[(a1 ρ v1 7→ b1, a′1 ρ t1 7→ b′1),
...

(ai ρ vi 7→ bi, a′i ρ ti 7→ b′i)] a ρ t 7→ b

a1 ∪ a′1 ∪ · · · ∪ ai ∪ a′i ∪ a

ρ

subst[v1 |-> t1, . . . , vi |-> ti] t

7→
veccompose(composeSet[(var b1, b′

1), . . . , (var bi, b′

i)])b

Raises BddListComposeError if the varmaps in the hypotheses are not all pointer

equal, or if any of the terms v1, . . . , vi are repeated or are not variables
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BddRestrict : (term_bdd * term_bdd) list -> term_bdd -> term_bdd

[(a1 ρ v1 7→ b1, a′1 ρ c1 7→ b′1),
...

(ai ρ vi 7→ bi, a′i ρ ci 7→ b′i)] a ρ t 7→ b

a1 ∪ a′1 ∪ · · · ∪ ai ∪ a′i ∪ a

ρ

subst[v1 |-> c1, . . . , vi |-> ci] t

7→
restrict b (assignment[(var b1, ĉ1), . . . , (var bi, ĉi)])

Where each of c1, . . . , ci is either the constant F or the constant F, and T̂ denotes the

ML value true and F̂ denotes false. The exception BddRestrictError is raised if the

varmaps in the hypotheses are not all pointer equal, or if any of the terms v1, . . . , vi

are repeated or are not variables, or if any of c1, . . . , ci are not equal to T or F

BddReplace : (term_bdd * term_bdd) list -> term_bdd -> term_bdd

[(a1 ρ v1 7→ b1, a′1 ρ v′1 7→ b′1),
...

(ai ρ vi 7→ bi, a′i ρ v′i 7→ b′i)] a ρ t 7→ b

a1 ∪ a′1 ∪ · · · ∪ ai ∪ a′i ∪ a

ρ

subst[v1 |-> v′

1, . . . , vi |-> v′

i] t

7→
replace b (makepairSet[(var b1, var b′

1), . . . , (var bi, var b′

i)])

Raises BddReplaceError if the varmaps in the hypotheses are not all pointer equal, or

if any of the terms v1, . . . , vi are repeated or are not variables, or if any of the terms

v′

1, . . . , v
′

i are repeated or are not variables
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Coudert, Berthet & Madre simplification

BddSimplify : term_bdd * term_bdd -> term_bdd

a1 ρ t1 7→ b1 a2 ρ t2 7→ b2
a1 ∪ a2 ∪ {t1} ρ t2 7→ simplify b1 b2

The exception BddSimplifyError is raised if the varmaps in the hypotheses are not

pointer equal

Finding a satisfying assignment

BddFindModel : term_bdd -> term_bdd

a ρ t 7→ b

a ∪ {v1 = c1, . . . , vp = cp} ρ t 7→ TRUE

The set {v1 = c1, . . . , vp = cp} is a satisfying assignment for t (ci is T or F for 1 ≤ i ≤ p).

Exception BddFindModelError is raised if satone can’t find a satisfying assignment.

17.2 Linking representation judgements to theorems

BddThmOracle : term_bdd -> thm

a ρ t 7→ TRUE

[oracles: HolBdd] a ` t

Allows HOL theorems to be ‘proved’ by BDD calculation using BuDDy. Such theorems,

and any theorems deduced from them, are tagged with HolBdd and so can be easily

identified.

BddEqMp : thm -> term_bdd -> term_bdd

a1 ` t1 = t2 a2 ρ t1 7→ b

a1 ∪ a2 ρ t2 7→ b

Enables the term part of a representation judgement to be replaced by a logically

equivalent term. Raises BddEqMpError if the left hand side of the equation isn’t α-

convertable to the term part of the representation judgement
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17.3 Miscellaneous functions

dest_term_bdd : term_bdd -> assums * varmap * term * bdd

getAssums : term_bdd -> assums

getVarmap : term_bdd -> varmap

getTerm : term_bdd -> term

getBdd : term_bdd -> bdd

dest term bdd (a ρ t 7→ b) = (ρ, t, b)
getVarmap (a ρ t 7→ b) = ρ

getTerm (a ρ t 7→ b) = t

getBdd (a ρ t 7→ b) = b

inSupport : int -> bdd -> bool

inSupport n b checks if the BDD variable n occurs in the BDD b

termApply : term -> term -> bddop -> term

termApply t1 t2 bddop applies the HOL operation corresponding to bddop to t1 and t2.

fun termApply t1 t2 bddop =

case bddop of

And => mk_conj(t1,t2)

| Biimp => mk_eq(t1,t2)

| Diff => mk_conj(t1, mk_neg t2)

| Imp => mk_imp(t1,t2)

| Invimp => mk_imp(t2,t1)

| Lessth => mk_conj(mk_neg t1, t2)

| Nand => mk_neg(mk_conj(t1,t2))

| Nor => mk_neg(mk_disj(t1,t2))

| Or => mk_disj(t1,t2)

| Xor => mk_neg(mk_eq(t1,t2));

18 The structure DerivedBddRules

The documentation is this section is preliminary, reflecting the current status
of the module PrimitiveBddRules. What follows is an edited copy of the
source file PrimitiveBddRules.sml in which the comments are preserved,
but most of the ML source code has been eliminated (some is left, if it is
thought to be of pedagogical or documentation value).
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(*****************************************************************************)

(* Test equality of BDD component of two term_bdds and return true or false *)

(*****************************************************************************)

fun BddEqualTest tb1 tb2 = bdd.equal (getBdd tb1) (getBdd tb2);

(*****************************************************************************)

(* Test if the BDD part is TRUE or FALSE *)

(*****************************************************************************)

fun isTRUE tb = bdd.equal (getBdd tb) bdd.TRUE

and isFALSE tb = bdd.equal (getBdd tb) bdd.FALSE;

(*****************************************************************************)

(* Count number of states (code from Ken Larsen) *)

(*****************************************************************************)

statecount : bdd -> real

(*****************************************************************************)

(* Destruct a term corresponding to a BuDDY BDD binary operation (bddop). *)

(* Fail if not such a term. *)

(*****************************************************************************)

exception dest_BddOpError;

dest_BddOp : term -> bddop * term * term

(*****************************************************************************)

(* Function that always raises exception fail *)

(* (useful as argument (leaffn) to GenTermToTermBdd) *)

(*****************************************************************************)

exception fail;

fun failfn _ = raise fail;

(*****************************************************************************)

(* Scan a term and construct a term_bdd using the primitive operations *)

(* when applicable, and a supplied function on leaves when all else fails *)

(*****************************************************************************)

GenTermToTermBdd : (term -> term_bdd) -> varmap -> term -> term_bdd
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(*****************************************************************************)

(* Extend a varmap with a list of variables *)

(* (allocating new BDD variables, if necessary) *)

(*****************************************************************************)

extendVarmap : term list -> varmap -> varmap

(*****************************************************************************)

(* Convert a BDD to a nested conditional term with respect to a varmap *)

(*****************************************************************************)

exception bddToTermError;

bddToTerm : varmap -> bdd -> term

(*****************************************************************************)

(* ass vm tm |--> b *)

(* ----------------------------------------------- *)

(* [oracles: HolBdd] ass |- tm = ^(bddToTerm vm b) *)

(*****************************************************************************)

TermBddToEqThm : term_bdd -> thm

(*****************************************************************************)

(* Global assignable varmap *)

(*****************************************************************************)

val global_varmap = ref(Varmap.empty);

fun showVarmap () = Varmap.dest(!global_varmap);

(*****************************************************************************)

(* Add variables to global_varmap and then call GenTermToTermBdd *)

(* using the global function !termToTermBddFun on leaves *)

(*****************************************************************************)

exception termToTermBddError;

val termToTermBddFun = ref(fn (tm:term) => (raise termToTermBddError));

fun termToTermBdd tm =

let val vl = rev(all_vars tm) (* all_vars returns vars in reverse order *)

val vm = extendVarmap vl (!global_varmap)

val _ = global_varmap := vm

in GenTermToTermBdd (!termToTermBddFun) vm tm end;
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(*****************************************************************************)

(* MkIterThms ReachBy_rec‘‘R((v1,...,vn),(v1’,...,vn’))‘‘ ‘‘B(v1,...,vn)‘‘ = *)

(* ([|- ReachBy R B 0 (v1,...,vn) = B(v1,...,vn), *)

(* |- !n. ReachBy R B (SUC n) (v1,...,vn) = *)

(* ReachBy R B n (v1,...,vn) *)

(* \/ *)

(* ?v1’...vn’. ReachBy R B n (v1’,...,vn’) *)

(* /\ *)

(* R ((v1’,...,vn’),(v1,...,vn))] *)

(* *)

(* MkIterThms ReachIn_rec‘‘R((v1,...,vn),(v1’,...,vn’))‘‘ ‘‘B(v1,...,vn)‘‘ = *)

(* ([|- ReachIn R B 0 (v1,...,vn) = B(v1,...,vn), *)

(* |- !n. ReachIn R B (SUC n) (v1,...,vn) = *)

(* ?v1’...vn’. ReachIn R B n (v1’,...,vn’) *)

(* /\ *)

(* R ((v1’,...,vn’),(v1,...,vn))] *)

(*****************************************************************************)

MkIterThms : thm -> term -> term -> thm * thm

(*****************************************************************************)

(* Perform disjunctive partitioning. Assume R is of the form *)

(* *)

(* R((x,y,z),(x’,y’,z’))= *)

(* ((x’ = E1(x,y,z)) /\ (y’ = y) /\ (z’ = z)) *)

(* \/ ((x’ = x) /\ (y’ = E2(x,y,z)) /\ (z’ = z)) *)

(* \/ ((x’ = x) /\ (y’ = y) /\ (z’ = E3(x,y,z))) *)

(* *)

(* Then, for example, the equation: *)

(* *)

(* ReachBy R B (SUC n) (x,y,z) = *)

(* ReachBy R B n (x,y,z) *)

(* \/ *)

(* (?x_ y_ z_. ReachBy n R B (x_,y_,z_) /\ R((x_,y_,z_),(x,y,z)))) *)

(* *)

(* is simplified to: *)

(* *)

(* ReachBy R B (SUC n) (x,y,z) = *)

(* ReachBy R B n (x,y,z) *)

(* \/ (?x_. ReachBy R B n (x_,y,z) /\ (x = E1(x_,y,z)) *)

(* \/ (?y_. ReachBy R B n (x,y_,z) /\ (y = E2(x,y_,z)) *)

(* \/ (?z_. ReachBy R B n (x,y,z_) /\ (z = E3(x,y,z_)) *)

(*****************************************************************************)
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val MakeSimpRecThm = SIMP_RULE bool_ss [LEFT_AND_OVER_OR,EXISTS_OR_THM]);

(*****************************************************************************)

(* MkPrevThm (|- R((v1,...,vn),(v1’,...,vn’)) = ...) = *)

(* |- Prev R (Eq (v1’,...,vn’))) (v1,...,vn) = ... *)

(*****************************************************************************)

MkPrevThm : thm -> thm

(*****************************************************************************)

(* asl |- t1 = t2 ass vm t1’ |--> b *)

(* ---------------------------------- *)

(* (asl U ass) vm t2’ |--> b’ *)

(* *)

(* where t1 can be instantiated to t1’ and t2’ is the corresponding *)

(* instance of t2 *)

(*****************************************************************************)

fun BddApThm th tb =

let val (_,vm,t1’,b) = dest_term_bdd tb

in BddEqMp (REWR_CONV th t1’) tb

handle HOL_ERR _ => hol_err "REWR_CONV failed" "BddApthm"

end;

(*****************************************************************************)

(* ass vm t |--> b *)

(* ---------------- *)

(* ass vm tm |--> b’ *)

(* *)

(* where boolean variables in t can be renamed to get tm and b’ is *)

(* the corresponding replacement of BDD variables in b *)

(*****************************************************************************)

exception BddApReplaceError;

BddApReplace : term_bdd -> term -> term_bdd

(*****************************************************************************)

(* ass vm t |--> b *)

(* ----------------- *)

(* ass vm tm |--> b’ *)

(* *)

(* Generates the BDD of a supplied term if it can be obtained by restricting *)

(* a given term_bdd *)

(*****************************************************************************)
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exception BddApRestrictError;

BddApRestrict : term_bdd -> term -> term_bdd

(*****************************************************************************)

(* BddSubst applies a substitution [(oldtb1,newtb1),...,(oldtni,newtbi)] *)

(* to a term_bdd, where oldtbp (1 <= p <= i) must be of the form *)

(* ass vm vp |--> bp where vp is a variable, and the varmaps are distinct *)

(* *)

(* The preliminary version below separates the substitution into a *)

(* restriction (variables mapped to T or F) followed by a variable *)

(* renaming (replacement). A more elaborate scheme will be implemented *)

(* using BuDDy’s bdd_veccompose. *)

(*****************************************************************************)

(*****************************************************************************)

(* Split a substitution [(oldtb1,newtb1),...,(oldtni,newtbi)] *)

(* into a restriction and variable renaming, failing if this isn’t possible *)

(*****************************************************************************)

val split_subst =

List.partition

(fn (tb,tb’)=> let val tm’ = getTerm tb’

in (tm’=T) orelse (tm’=F) end);

(*****************************************************************************)

(* [(ass1 vm v1 |--> b1 , ass1’ vm tm1 |--> b1’), *)

(* . *)

(* . *)

(* . *)

(* (assi vm vi |--> bi , assi’ vm tmi |--> bi’)] *)

(* ass vm tm |--> b *)

(* ------------------------------------------------------------------------ *)

(* (as1 U ass1’ U ... U assi U assi’ U ass) *)

(* vm *)

(* (subst[v1 |-> tm1, ... , vi |-> tmi]tm) *)

(* |--> *)

(* <BDD resulting from restrict followed by replace> *)

(*****************************************************************************)

fun BddSubst tbl tb =

let val (res,rep) = split_subst tbl

in BddReplace rep (BddRestrict res tb) end;
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(*****************************************************************************)

(* ass vm t |--> b *)

(* ----------------- *)

(* ass vm tm |--> b’ *)

(* *)

(* where boolean variables in t can be instantiated to get tm and b’ is *)

(* the corresponding replacement of BDD variables in b *)

(*****************************************************************************)

exception BddApSubstError;

BddApSubst = fn : term_bdd -> term -> term_bdd

(*****************************************************************************)

(* asl |- t1 = t2 *)

(* ------------------------------ *)

(* (addList ass []) vm t1 |--> b *)

(* *)

(* Fails if t2 is not built from variables using bddops *)

(*****************************************************************************)

fun eqToTermBdd leaffn vm th =

let val th’ = SPEC_ALL th

val tm = rhs(concl th’)

in BddEqMp (SYM th’) (GenTermToTermBdd leaffn vm tm) end;

(*****************************************************************************)

(* Convert an ml positive integer to a HOL numeral *)

(*****************************************************************************)

fun intToTerm n = numSyntax.mk_numeral(Arbnum.fromInt n);

(*****************************************************************************)

(* ass vm tm |--> b conv tm = asl |- tm = tm’ *)

(* ---------------------------------------------- *)

(* (addList ass asl) vm tm’ |--> b *)

(*****************************************************************************)

fun BddApConv conv tb = BddEqMp (conv(getTerm tb)) tb;
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(*****************************************************************************)

(* |- t1 = t2 *)

(* ---------- *)

(* |- t1 *)

(* *)

(* if the BDD of t2 (using GenTermToTermBdd) is TRUE *)

(*****************************************************************************)

BddRhsOracle : (term -> term_bdd) -> varmap -> thm -> thm

(*****************************************************************************)

(* Iterate a function f : int -> ’a -> ’a *)

(* from an initial value, applying it successively to 0,1,2,... until *)

(* *)

(* p : ’a -> bool *)

(* *)

(* is true (at least one iteration is always performed) *)

(*****************************************************************************)

fun iterate p f =

let fun iter n x =

let val x’ = f n x

in if p x’ then x’ else iter (n+1) x’ end

in iter 0 end;

(*****************************************************************************)

(* |- f 0 s = ... s ... |- !n. f (SUC n) s = ... f n ... s ... *)

(* --------------------------------------------------------------- *)

(* (vm ‘‘f i s‘‘ |--> bi, vm ‘‘f (SUC i) s‘‘ |--> bsuci) *)

(* *)

(* where i is the first number such that |- f (SUC i) s = f i s *)

(* and the function report is applied to the iteration level and current *)

(* term_bdd and can be used for tracing. *)

(* *)

(* A state of the iteration is a pair (tb,tb’) consisting of the *)

(* previous term_bdd tb and the current one tb’. The initial state *)

(* is (somewhat arbitarily) taken to be (tb0,tb0). *)

(*****************************************************************************)

exception computeFixedpointError;

computeFixedpoint : (int -> term_bdd -> ’a) -> varmap -> thm * thm -> term_bdd
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(*****************************************************************************)

(* ass vm tm |--> b *)

(* ---------------------------------------------- *)

(* [((ass1 vm v1 |--> b1),(ass1’ vm c1 |--> b1’)), *)

(* . *)

(* . *)

(* . *)

(* ((assi vm vi |--> bi),(assi’ vm ci |--> bi’)] *)

(* *)

(* with the property that *)

(* *)

(* BddRestrict [((ass1 vm v1 |--> b1),(ass1’ vm c1 |--> b1’)), *)

(* . *)

(* . *)

(* . , *)

(* ((assi vm vi |--> bi),(assi’ vm ci |--> bi’))] *)

(* (ass vm tm |--> b) *)

(* = *)

(* (ass1 U ass1’ U ... U assi U assi’ U ass) *)

(* vm *)

(* (subst[v1|->ci,...,vi|->ci]tm) *)

(* |--> TRUE *)

(*****************************************************************************)

exception BddSatoneError;

BddSatone : term_bdd -> (term_bdd * term_bdd) list

(*****************************************************************************)

(* |- p s = ... s ... *)

(* |- f 0 s = ... s ... *)

(* |- f (SUC n) s = ... f n ... s ... *)

(* --------------------------------------------------------- *)

(* [{} vm ‘‘f i s‘‘ |--> bi, ... , {} vm ‘‘f 0 s‘‘ |--> b0] *)

(* *)

(* where i is the first number such that |- f i s ==> p s *)

(*****************************************************************************)

exception computeTraceError;

computeTrace : (int->term_bdd->’a) -> varmap -> thm -> thm*thm -> term_bdd list
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(*****************************************************************************)

(* traceBack vm *)

(* [{} vm ‘‘f i s‘‘ |--> bi, ... , {} vm ‘‘f 0 s‘‘ |--> b0] *)

(* (|- p s = ... s ...) *)

(* (|- R((v1,...,vn),(v1’,...,vn’)) = ...) *)

(* *)

(* computes a list of pairs of the form (with j = 0,1,...,i-1) *)

(* *)

(* ((vm ‘‘ReachIn R B j s_vec /\ Prev R (Eq c_vec) (v1,...,vn)‘‘ |--> bdd), *)

(* [((vm v1 |--> b1),(vm c1 |--> b1’)), *)

(* . *)

(* . *)

(* . , *)

(* ((vm vn |--> bn),(vm cn |--> bn’))]) *)

(* *)

(* where s_vec = (v1,...,vn) and c_vec = (c1,...,cn) where ci is T or F *)

(* and the second element specifies a state satisfying the first element *)

(* and in which state variable vj has value cj (0 <= j <= n). *)

(* The last element of the list has the form *)

(* (({} vm ‘‘ReachIn R B j s_vec /\ p(v1,...,vn)‘‘ |--> bdd), *)

(* [(({} vm v1 |--> b1),{} vm c1 |--> b1’)), *)

(* . *)

(* . *)

(* . , *)

(* (({} vm vn |--> bn),({} vm cn |--> bn’))]) *)

(* *)

(* If [s0,...,si] is the sequence of states, then *)

(* R(s0,s1), R(s1,s2),...,R(s(i-1),sj) and sj satisfies bj and p si *)

(*****************************************************************************)

traceBack : varmap

-> term_bdd list

-> thm -> thm -> (term_bdd * (term_bdd * term_bdd) list) list

(*****************************************************************************)

(* findTrace *)

(* (|- R((v1,...,vn),(v1’,...,vn’)) = ...) *)

(* (|- P(v1,...,vn) = ...) *)

(* (|- Q(v1,...,vn) = ...) *)

(* = *)

(* ((|- P s_0), [(|- R(s_0,s_1)),...,(|- R(s_(n-1),s_n))], (|- Q s_n)) *)

(*****************************************************************************)

findTrace : varmap -> thm -> thm -> thm -> thm * thm list * thm
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(*****************************************************************************)

(* If t is satifiable (i.e. b is not FALSE) *)

(* *)

(* a vm t |--> b *)

(* -------------------------- *)

(* a U {v1=c1,...,vn=cn} |- t *)

(* *)

(* Similar to BddFindModel followed by BddThmOracle, but checks the *)

(* assignment found by satone using proof, so is pure *)

(* (i.e. result not tagged with HolBdd) *)

(* *)

(*****************************************************************************)

findModel : term_bdd -> thm

19 The structure MachineTransitionTheory

The theory MachineTransitionTheory contained the HOL theoremes used
by the derived rules in DerivedBddRules. The signature file (slightly edited)
is given below.

signature MachineTransitionTheory =

sig

type thm = Thm.thm

(* Definitions *)

val ChoosePath_def : thm

val Eq_def : thm

val FinPath_arg_munge_def : thm

val FinPath_tupled_primitive_def : thm

val FnPair_def : thm

val IsTrace_arg_munge_def : thm

val IsTrace_tupled_primitive_def : thm

val Live_def : thm

val MooreTrans_def : thm

val Moore_def : thm

val Next_def : thm

val Path_def : thm

val Prev_def : thm

val ReachBy_def : thm

val ReachIn_def : thm

val Reachable_def : thm

val Stable_def : thm

37



val Total_def : thm

val Totalise_def : thm

(* Theorems *)

val ABS_EXISTS_THM : thm

val ABS_ONE_ONE : thm

val COND_SIMP : thm

val EQ_COND : thm

val EXISTS_IMP_EQ : thm

val EXISTS_REP : thm

val FORALL_REP : thm

val FinFunEq : thm

val FinPathLemma : thm

val FinPathPathExists : thm

val FinPathThm : thm

val FinPath_def : thm

val FinPath_ind : thm

val FnPairAbs : thm

val FnPairExists : thm

val FnPairForall : thm

val IsTrace_def : thm

val IsTrace_ind : thm

val ModelCheckAlways : thm

val ModelCheckAlwaysCor1 : thm

val ModelCheckAlwaysCor2 : thm

val MoorePath : thm

val MooreReachable : thm

val MooreReachable1 : thm

val MooreReachable2 : thm

val MooreReachableCor1 : thm

val MooreReachableExists : thm

val MooreTransEq : thm

val ReachBy_ReachIn : thm

val ReachBy_fixedpoint : thm

val ReachBy_rec : thm

val ReachInFinPath : thm

val ReachInPath : thm

val ReachIn_rec : thm

val ReachIn_revrec : thm

val ReachableFinPath : thm

val ReachableMooreTrans : thm

val ReachablePath : thm

val ReachablePathThm : thm

val ReachableTotalise : thm

val Reachable_ReachBy : thm
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val Reachable_Stable : thm

val TotalImpTotalise : thm

val TotalImpTotaliseLemma : thm

val TotalMooreTrans : thm

val TotalTotalise : thm

val TotaliseReachBy : thm

val TotalpathExists : thm

val TraceReachIn : thm

val MachineTransition_grammars : type_grammar.grammar * term_grammar.grammar

(*

[list] Parent theory of "MachineTransition"

[option] Parent theory of "MachineTransition"

[ChoosePath_def]

Definition

|- (!R s. ChoosePath R s 0 = s) /\

!R s n. ChoosePath R s (SUC n) = @s’. R (ChoosePath R s n,s’)

[Eq_def]

Definition

|- !state0 state. Eq state0 state = (state0 = state)

[FinPath_arg_munge_def]

Definition

|- !x x1 x2. FinPath x x1 x2 = FinPath_tupled (x,x1,x2)

[FinPath_tupled_primitive_def]

Definition

|- FinPath_tupled =

WFREC (@R’. WF R’ /\ !n f s R. R’ ((R,s),f,n) ((R,s),f,SUC n))

(\FinPath_tupled a.

case a of

(v,v1) ->

case v of

(v2,v3) ->

case v1 of

(v4,v5) ->

case v5 of 0 -> v4 0 = v3

|| SUC v6 -> FinPath_tupled ((v2,v3),v4,v6) /\

v2 (v4 v6,v4 (v6 + 1)))

[FnPair_def] Definition |- !f g x. FnPair f g x = (f x,g x)
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[IsTrace_arg_munge_def]

Definition

|- !x x1 x2 x3. IsTrace x x1 x2 x3 = IsTrace_tupled (x,x1,x2,x3)

[IsTrace_tupled_primitive_def]

Definition

|- IsTrace_tupled =

WFREC

(@R’. WF R’ /\ !s0 B tr Q s1 R. R’ (R,Eq s1,Q,s1::tr) (R,B,Q,s0::s1::tr))

(\IsTrace_tupled a.

case a of

(v,v1) ->

case v1 of

(v2,v3) ->

case v3 of

(v4,v5) ->

case v5 of

[] -> F

|| v6::v7 ->

case v7 of

[] -> v2 v6 /\ v4 v6

|| v8::v9 -> v2 v6 /\ v (v6,v8) /\

IsTrace_tupled (v,Eq v8,v4,v8::v9))

[Live_def]

Definition

|- !R. Live R = !state. ?state’. R (state,state’)

[MooreTrans_def]

Definition

|- !nextfn input state input’ state’.

MooreTrans nextfn ((input,state),input’,state’) =

(state’ = nextfn (input,state))

[Moore_def]

Definition

|- !nextfn inputs states.

Moore nextfn (inputs,states) =

!t. states (t + 1) = nextfn (inputs t,states t)

[Next_def]

Definition

|- !R B state. Next R B state = ?state_. B state_ /\ R (state_,state)

[Path_def]
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Definition

|- !R s f. Path (R,s) f = (f 0 = s) /\ !n. R (f n,f (n + 1))

[Prev_def]

Definition

|- !R Q state. Prev R Q state = ?state’. R (state,state’) /\ Q state’

[ReachBy_def]

Definition

|- !R B n state. ReachBy R B n state = ?m. m <= n /\ ReachIn R B m state

[ReachIn_def]

Definition

|- (!R B. ReachIn R B 0 = B) /\

!R B n. ReachIn R B (SUC n) = Next R (ReachIn R B n)

[Reachable_def]

Definition

|- !R B state. Reachable R B state = ?n. ReachIn R B n state

[Stable_def]

Definition

|- !R state. Stable R state = !state’. R (state,state’) ==> (state’ = state)

[Total_def] Definition |- !R. Total R = !s. ?s’. R (s,s’)

[Totalise_def]

Definition

|- !R s s’.

Totalise R (s,s’) = R (s,s’) \/ ~(?s’’. R (s,s’’)) /\ (s = s’)

[ABS_EXISTS_THM]

Theorem

|- !P rep.

TYPE_DEFINITION P rep ==>

?abs. (!a. abs (rep a) = a) /\ !r. P r = (rep (abs r) = r)

[ABS_ONE_ONE]

Theorem

|- !abs rep.

(!a. abs (rep a) = a) /\ (!r. range r = (rep (abs r) = r)) ==>

!r. range r /\ range r’ ==> ((abs r = abs r’) = (r = r’))

[COND_SIMP]

Theorem
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|- ((if b then F else F) = F) /\ ((if b then F else T) = ~b) /\

((if b then T else F) = b) /\ ((if b then T else T) = T) /\

((if b then x else x) = x) /\ ((if b then b’ else ~b’) = (b = b’)) /\

((if b then ~b’ else b’) = (b = ~b’))

[EQ_COND]

Theorem

|- ((x = (if b then y else z)) = (if b then x = y else x = z)) /\

(((if b then y else z) = x) = (if b then y = x else z = x))

[EXISTS_IMP_EQ] Theorem |- (?x. P x) ==> Q = !x. P x ==> Q

[EXISTS_REP]

Theorem

|- !abs rep P Q.

(!a. abs (rep a) = a) /\ (!r. P r = (rep (abs r) = r)) ==>

((?a. Q a) = ?r. P r /\ Q (abs r))

[FORALL_REP]

Theorem

|- !abs rep P Q.

(!a. abs (rep a) = a) /\ (!r. P r = (rep (abs r) = r)) ==>

((!a. Q a) = !r. P r ==> Q (abs r))

[FinFunEq]

Theorem

|- (!m. m <= n + 1 ==> (f1 m = f2 m)) =

(!m. m <= n ==> (f1 m = f2 m)) /\ (f1 (n + 1) = f2 (n + 1))

[FinPathLemma]

Theorem

|- !f1 f2 n.

(!m. m <= n ==> (f1 m = f2 m)) ==>

(FinPath (R,s) f1 n = FinPath (R,s) f2 n)

[FinPathPathExists]

Theorem

|- !R B f s n.

Total R /\ FinPath (R,s) f n ==>

?g. (!m. m <= n ==> (f m = g m)) /\ Path (R,s) g

[FinPathThm]

Theorem

|- !n. FinPath (R,s) f n = (f 0 = s) /\ !m. m < n ==> R (f m,f (m + 1))
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[FinPath_def]

Theorem

|- (FinPath (R,s) f 0 = (f 0 = s)) /\

(FinPath (R,s) f (SUC n) = FinPath (R,s) f n /\ R (f n,f (n + 1)))

[FinPath_ind]

Theorem

|- !P.

(!R s f. P (R,s) f 0) /\

(!R s f n. P (R,s) f n ==> P (R,s) f (SUC n)) ==>

!v v1 v2 v3. P (v,v1) v2 v3

[FnPairAbs]

Theorem

|- (!tr. FnPair (\n. FST (tr n)) (\n. SND (tr n)) = tr) /\

!tr1 tr2. (\n. (tr1 n,tr2 n)) = FnPair tr1 tr2

[FnPairExists]

Theorem

|- !P. (?tr. P tr) = ?tr1 tr2. P (FnPair tr1 tr2)

[FnPairForall]

Theorem

|- !P. (!tr. P tr) = !tr1 tr2. P (FnPair tr1 tr2)

[IsTrace_def]

Theorem

|- (IsTrace R B Q [] = F) /\ (IsTrace R B Q [s] = B s /\ Q s) /\

(IsTrace R B Q (s0::s1::tr) =

B s0 /\ R (s0,s1) /\ IsTrace R (Eq s1) Q (s1::tr))

[IsTrace_ind]

Theorem

|- !P.

(!R B Q. P R B Q []) /\ (!R B Q s. P R B Q [s]) /\

(!R B Q s0 s1 tr.

P R (Eq s1) Q (s1::tr) ==> P R B Q (s0::s1::tr)) ==>

!v v1 v2 v3. P v v1 v2 v3

[ModelCheckAlways]

Theorem

|- !R B P.

(!s. Reachable R B s ==> P s) ==>
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!tr. B (tr 0) /\ (!t. R (tr t,tr (t + 1))) ==> !t. P (tr t)

[ModelCheckAlwaysCor1]

Theorem

|- (!s1 s2. Reachable R B (s1,s2) ==> P s1) ==>

!tr. B (tr 0) /\ (!t. R (tr t,tr (t + 1))) ==> !t. P (FST (tr t))

[ModelCheckAlwaysCor2]

Theorem

|- !R B P.

(!s1 s2. Reachable R B (s1,s2) ==> P s1) ==>

!tr1.

(?tr2.

B (tr1 0,tr2 0) /\

!t. R ((tr1 t,tr2 t),tr1 (t + 1),tr2 (t + 1))) ==>

!t. P (tr1 t)

[MoorePath]

Theorem

|- Moore nextfn (inputs,states) =

Path (MooreTrans nextfn,inputs 0,states 0) (\t. (inputs t,states t))

[MooreReachable]

Theorem

|- !B nextfn P.

(!inputs states.

B (inputs 0,states 0) /\ Moore nextfn (inputs,states) ==>

!t. P (inputs t,states t)) =

!s. Reachable (MooreTrans nextfn) B s ==> P s

[MooreReachable1]

Theorem

|- (!inputs states.

B (inputs 0,states 0) /\ Moore nextfn (inputs,states) ==>

!t. P (inputs t,states t)) ==>

!s. Reachable (MooreTrans nextfn) B s ==> P s

[MooreReachable2]

Theorem

|- (!s. Reachable (MooreTrans nextfn) B s ==> P s) ==>

!inputs states.
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B (inputs 0,states 0) /\ Moore nextfn (inputs,states) ==>

!t. P (inputs t,states t)

[MooreReachableCor1]

Theorem

|- !B nextfn.

(!inputs states.

B (inputs 0,states 0) /\

(!t. states (t + 1) = nextfn (inputs t,states t)) ==>

!t. P (inputs t,states t)) =

!s. Reachable (\((i,s),i’,s’). s’ = nextfn (i,s)) B s ==> P s

[MooreReachableExists]

Theorem

|- (?inputs states.

(B (inputs 0,states 0) /\ Moore nextfn (inputs,states)) /\

?t. P (inputs t,states t)) =

?s. Reachable (MooreTrans nextfn) B s /\ P s

[MooreTransEq]

Theorem

|- MooreTrans nextfn =

(\((input,state),input’,state’). state’ = nextfn (input,state))

[ReachBy_ReachIn]

Theorem

|- (!R B state. ReachBy R B 0 state = B state) /\

!R B n state.

ReachBy R B (SUC n) state =

ReachBy R B n state \/ ReachIn R B (SUC n) state

[ReachBy_fixedpoint]

Theorem

|- !R B n.

(ReachBy R B n = ReachBy R B (SUC n)) ==>

(Reachable R B = ReachBy R B n)

[ReachBy_rec]

Theorem

|- (!R B state. ReachBy R B 0 state = B state) /\

!R B n state.

ReachBy R B (SUC n) state =

ReachBy R B n state \/

?state_. ReachBy R B n state_ /\ R (state_,state)
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[ReachInFinPath]

Theorem

|- !R B n s. ReachIn R B n s = ?f s0. B s0 /\ FinPath (R,s0) f n /\ (s = f n)

[ReachInPath]

Theorem

|- !R B n s.

Total R ==> (ReachIn R B n s = ?f s0. B s0 /\ Path (R,s0) f /\ (s = f n))

[ReachIn_rec]

Theorem

|- (!R B state. ReachIn R B 0 state = B state) /\

!R B n state.

ReachIn R B (SUC n) state =

?state_. ReachIn R B n state_ /\ R (state_,state)

[ReachIn_revrec]

Theorem

|- (!R B state. ReachIn R B 0 state = B state) /\

!R B n state.

ReachIn R B (SUC n) state =

?state1 state2.

B state1 /\ R (state1,state2) /\ ReachIn R (Eq state2) n state

[ReachableFinPath]

Theorem

|- !R B s.

Reachable R B s = ?f s0 n. B s0 /\ FinPath (R,s0) f n /\ (s = f n)

[ReachableMooreTrans]

Theorem

|- !B s.

Reachable (MooreTrans nextfn) B s =

?f s0. B s0 /\ Path (MooreTrans nextfn,s0) f /\ ?n. s = f n

[ReachablePath]

Theorem

|- !R B s.

Total R ==>

(Reachable R B s = ?f s0. B s0 /\ Path (R,s0) f /\ ?n. s = f n)

[ReachablePathThm]

Theorem

|- !R B s.

Reachable R B s =
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?f s0. B s0 /\ Path (Totalise R,s0) f /\ ?n. s = f n

[ReachableTotalise] Theorem |- Reachable (Totalise R) = Reachable R

[Reachable_ReachBy]

Theorem

|- Reachable R B state = ?n. ReachBy R B n state

[Reachable_Stable]

Theorem

|- Live R /\ (!state. ReachIn R B n state ==> Stable R state) ==>

!state. Reachable R B state /\ Stable R state = ReachIn R B n state

[TotalImpTotalise] Theorem |- Total R ==> (Totalise R = R)

[TotalImpTotaliseLemma]

Theorem

|- Total R ==> !s s’. R (s,s’) = Totalise R (s,s’)

[TotalMooreTrans] Theorem |- Total (MooreTrans nextfn)

[TotalTotalise] Theorem |- Total (Totalise R)

[TotaliseReachBy]

Theorem |- !n s. ReachBy (Totalise R) B n s = ReachBy R B n s

[TotalpathExists]

Theorem |- Total R ==> !s. Path (R,s) (ChoosePath R s)

[TraceReachIn]

Theorem

|- !R B tr. B (tr 0) /\ (!n. R (tr n,tr (n + 1))) ==> !n. ReachIn R B n (tr n)

*)

end
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