Theory: realax

Parents


Types


Constants


Definitions

hreal_of_real
|- !T1. hreal_of_real T1 = hreal_of_treal ($@ (dest_real T1))
hreal_of_treal
|- !x y. hreal_of_treal (x,y) = @d. x = y hreal_add d
real_0
|- real_0 = mk_real ($treal_eq treal_0)
real_1
|- real_1 = mk_real ($treal_eq treal_1)
real_add
|- !T1 T2.
     T1 + T2 =
     mk_real ($treal_eq ($@ (dest_real T1) treal_add $@ (dest_real T2)))
real_inv
|- !T1. inv T1 = mk_real ($treal_eq (treal_inv ($@ (dest_real T1))))
real_lt
|- !T1 T2. T1 < T2 = $@ (dest_real T1) treal_lt $@ (dest_real T2)
real_mul
|- !T1 T2.
     T1 * T2 =
     mk_real ($treal_eq ($@ (dest_real T1) treal_mul $@ (dest_real T2)))
real_neg
|- !T1. ~T1 = mk_real ($treal_eq (treal_neg ($@ (dest_real T1))))
real_of_hreal
|- !T1. real_of_hreal T1 = mk_real ($treal_eq (treal_of_hreal T1))
real_TY_DEF
|- ?rep. TYPE_DEFINITION (\c. ?x. c = $treal_eq x) rep
real_tybij
|- (!a. mk_real (dest_real a) = a) /\
   !r. (\c. ?x. c = $treal_eq x) r = (dest_real (mk_real r) = r)
treal_0
|- treal_0 = (hreal_1,hreal_1)
treal_1
|- treal_1 = (hreal_1 hreal_add hreal_1,hreal_1)
treal_add
|- !x1 y1 x2 y2. (x1,y1) treal_add (x2,y2) = (x1 hreal_add x2,y1 hreal_add y2)
treal_eq
|- !x1 y1 x2 y2.
     (x1,y1) treal_eq (x2,y2) = (x1 hreal_add y2 = x2 hreal_add y1)
treal_inv
|- !x y.
     treal_inv (x,y) =
     (if x = y then
        treal_0
      else
        (if y hreal_lt x then
           (hreal_inv (x hreal_sub y) hreal_add hreal_1,hreal_1)
         else
           (hreal_1,hreal_inv (y hreal_sub x) hreal_add hreal_1)))
treal_lt
|- !x1 y1 x2 y2.
     (x1,y1) treal_lt (x2,y2) = x1 hreal_add y2 hreal_lt x2 hreal_add y1
treal_mul
|- !x1 y1 x2 y2.
     (x1,y1) treal_mul (x2,y2) =
     (x1 hreal_mul x2 hreal_add y1 hreal_mul y2,
      x1 hreal_mul y2 hreal_add y1 hreal_mul x2)
treal_neg
|- !x y. treal_neg (x,y) = (y,x)
treal_of_hreal
|- !x. treal_of_hreal x = (x hreal_add hreal_1,hreal_1)

Theorems

HREAL_EQ_ADDL
|- !x y. ~(x = x hreal_add y)
HREAL_EQ_ADDR
|- !x y. ~(x hreal_add y = x)
HREAL_EQ_LADD
|- !x y z. (x hreal_add y = x hreal_add z) = (y = z)
HREAL_LT_ADD2
|- !x1 x2 y1 y2.
     x1 hreal_lt y1 /\ x2 hreal_lt y2 ==>
     x1 hreal_add x2 hreal_lt y1 hreal_add y2
HREAL_LT_ADDL
|- !x y. x hreal_lt x hreal_add y
HREAL_LT_ADDR
|- !x y. ~(x hreal_add y hreal_lt x)
HREAL_LT_GT
|- !x y. x hreal_lt y ==> ~(y hreal_lt x)
HREAL_LT_LADD
|- !x y z. x hreal_add y hreal_lt x hreal_add z = y hreal_lt z
HREAL_LT_NE
|- !x y. x hreal_lt y ==> ~(x = y)
HREAL_LT_REFL
|- !x. ~(x hreal_lt x)
HREAL_RDISTRIB
|- !x y z. (x hreal_add y) hreal_mul z = x hreal_mul z hreal_add y hreal_mul z
REAL_10
|- ~(real_1 = real_0)
REAL_ADD_ASSOC
|- !x y z. x + (y + z) = x + y + z
REAL_ADD_LID
|- !x. real_0 + x = x
REAL_ADD_LINV
|- !x. ~x + x = real_0
REAL_ADD_SYM
|- !x y. x + y = y + x
REAL_INV_0
|- inv real_0 = real_0
REAL_ISO_EQ
|- !h i. h hreal_lt i = real_of_hreal h < real_of_hreal i
REAL_LDISTRIB
|- !x y z. x * (y + z) = x * y + x * z
REAL_LT_IADD
|- !x y z. y < z ==> x + y < x + z
REAL_LT_MUL
|- !x y. real_0 < x /\ real_0 < y ==> real_0 < x * y
REAL_LT_REFL
|- !x. ~(x < x)
REAL_LT_TOTAL
|- !x y. (x = y) \/ x < y \/ y < x
REAL_LT_TRANS
|- !x y z. x < y /\ y < z ==> x < z
REAL_MUL_ASSOC
|- !x y z. x * (y * z) = x * y * z
REAL_MUL_LID
|- !x. real_1 * x = x
REAL_MUL_LINV
|- !x. ~(x = real_0) ==> (inv x * x = real_1)
REAL_MUL_SYM
|- !x y. x * y = y * x
REAL_POS
|- !X. real_0 < real_of_hreal X
REAL_SUP_ALLPOS
|- !P.
     (!x. P x ==> real_0 < x) /\ (?x. P x) /\ (?z. !x. P x ==> x < z) ==>
     ?s. !y. (?x. P x /\ y < x) = y < s
SUP_ALLPOS_LEMMA1
|- !P y.
     (!x. P x ==> real_0 < x) ==>
     ((?x. P x /\ y < x) = ?X. P (real_of_hreal X) /\ y < real_of_hreal X)
SUP_ALLPOS_LEMMA2
|- !P X. P (real_of_hreal X) = (\h. P (real_of_hreal h)) X
SUP_ALLPOS_LEMMA3
|- !P.
     (!x. P x ==> real_0 < x) /\ (?x. P x) /\ (?z. !x. P x ==> x < z) ==>
     (?X. (\h. P (real_of_hreal h)) X) /\
     ?Y. !X. (\h. P (real_of_hreal h)) X ==> X hreal_lt Y
SUP_ALLPOS_LEMMA4
|- !y. ~(real_0 < y) ==> !x. y < real_of_hreal x
TREAL_10
|- ~(treal_1 treal_eq treal_0)
TREAL_ADD_ASSOC
|- !x y z. x treal_add (y treal_add z) = x treal_add y treal_add z
TREAL_ADD_LID
|- !x. treal_0 treal_add x treal_eq x
TREAL_ADD_LINV
|- !x. treal_neg x treal_add x treal_eq treal_0
TREAL_ADD_SYM
|- !x y. x treal_add y = y treal_add x
TREAL_ADD_WELLDEF
|- !x1 x2 y1 y2.
     x1 treal_eq x2 /\ y1 treal_eq y2 ==>
     x1 treal_add y1 treal_eq x2 treal_add y2
TREAL_ADD_WELLDEFR
|- !x1 x2 y. x1 treal_eq x2 ==> x1 treal_add y treal_eq x2 treal_add y
TREAL_BIJ
|- (!h. hreal_of_treal (treal_of_hreal h) = h) /\
   !r. treal_0 treal_lt r = treal_of_hreal (hreal_of_treal r) treal_eq r
TREAL_BIJ_WELLDEF
|- !h i. h treal_eq i ==> (hreal_of_treal h = hreal_of_treal i)
TREAL_EQ_AP
|- !p q. (p = q) ==> p treal_eq q
TREAL_EQ_EQUIV
|- !p q. p treal_eq q = ($treal_eq p = $treal_eq q)
TREAL_EQ_REFL
|- !x. x treal_eq x
TREAL_EQ_SYM
|- !x y. x treal_eq y = y treal_eq x
TREAL_EQ_TRANS
|- !x y z. x treal_eq y /\ y treal_eq z ==> x treal_eq z
TREAL_INV_0
|- treal_inv treal_0 treal_eq treal_0
TREAL_INV_WELLDEF
|- !x1 x2. x1 treal_eq x2 ==> treal_inv x1 treal_eq treal_inv x2
TREAL_ISO
|- !h i. h hreal_lt i ==> treal_of_hreal h treal_lt treal_of_hreal i
TREAL_LDISTRIB
|- !x y z. x treal_mul (y treal_add z) = x treal_mul y treal_add x treal_mul z
TREAL_LT_ADD
|- !x y z. y treal_lt z ==> x treal_add y treal_lt x treal_add z
TREAL_LT_MUL
|- !x y.
     treal_0 treal_lt x /\ treal_0 treal_lt y ==>
     treal_0 treal_lt x treal_mul y
TREAL_LT_REFL
|- !x. ~(x treal_lt x)
TREAL_LT_TOTAL
|- !x y. x treal_eq y \/ x treal_lt y \/ y treal_lt x
TREAL_LT_TRANS
|- !x y z. x treal_lt y /\ y treal_lt z ==> x treal_lt z
TREAL_LT_WELLDEF
|- !x1 x2 y1 y2.
     x1 treal_eq x2 /\ y1 treal_eq y2 ==> (x1 treal_lt y1 = x2 treal_lt y2)
TREAL_LT_WELLDEFL
|- !x y1 y2. y1 treal_eq y2 ==> (x treal_lt y1 = x treal_lt y2)
TREAL_LT_WELLDEFR
|- !x1 x2 y. x1 treal_eq x2 ==> (x1 treal_lt y = x2 treal_lt y)
TREAL_MUL_ASSOC
|- !x y z. x treal_mul (y treal_mul z) = x treal_mul y treal_mul z
TREAL_MUL_LID
|- !x. treal_1 treal_mul x treal_eq x
TREAL_MUL_LINV
|- !x. ~(x treal_eq treal_0) ==> treal_inv x treal_mul x treal_eq treal_1
TREAL_MUL_SYM
|- !x y. x treal_mul y = y treal_mul x
TREAL_MUL_WELLDEF
|- !x1 x2 y1 y2.
     x1 treal_eq x2 /\ y1 treal_eq y2 ==>
     x1 treal_mul y1 treal_eq x2 treal_mul y2
TREAL_MUL_WELLDEFR
|- !x1 x2 y. x1 treal_eq x2 ==> x1 treal_mul y treal_eq x2 treal_mul y
TREAL_NEG_WELLDEF
|- !x1 x2. x1 treal_eq x2 ==> treal_neg x1 treal_eq treal_neg x2