Theory: probAlgebra

Parents


Types


Constants


Definitions

alg_embed_def
|- (!s. alg_embed [] s = T) /\
   !h t s. alg_embed (h::t) s = (h = SHD s) /\ alg_embed t (STL s)
algebra_embed_def
|- (algebra_embed [] = {}) /\
   !h t. algebra_embed (h::t) = alg_embed h UNION algebra_embed t
measurable_def
|- !s. measurable s = ?b. s = algebra_embed b

Theorems

ALG_CANON1_EMBED
|- !l. algebra_embed (alg_canon1 l) = algebra_embed l
ALG_CANON2_EMBED
|- !l. algebra_embed (alg_canon2 l) = algebra_embed l
ALG_CANON_EMBED
|- !l. algebra_embed (alg_canon l) = algebra_embed l
ALG_CANON_FIND_EMBED
|- !l b. algebra_embed (alg_canon_find l b) = algebra_embed (l::b)
ALG_CANON_MERGE_EMBED
|- !l b. algebra_embed (alg_canon_merge l b) = algebra_embed (l::b)
ALG_CANON_PREFS_EMBED
|- !l b. algebra_embed (alg_canon_prefs l b) = algebra_embed (l::b)
ALG_CANON_REP
|- !b c. (alg_canon b = alg_canon c) = (algebra_embed b = algebra_embed c)
ALG_EMBED_BASIC
|- (alg_embed [] = UNIV) /\
   !h t. alg_embed (h::t) = (\x. SHD x = h) INTER alg_embed t o STL
ALG_EMBED_NIL
|- !c. (!x. alg_embed c x) = (c = [])
ALG_EMBED_POPULATED
|- !b. ?x. alg_embed b x
ALG_EMBED_PREFIX
|- !b c s. alg_embed b s /\ alg_embed c s ==> IS_PREFIX b c \/ IS_PREFIX c b
ALG_EMBED_PREFIX_SUBSET
|- !b c. alg_embed b SUBSET alg_embed c = IS_PREFIX b c
ALG_EMBED_TWINS
|- !l. alg_embed (SNOC T l) UNION alg_embed (SNOC F l) = alg_embed l
ALGEBRA_CANON_EMBED_EMPTY
|- !l. algebra_canon l ==> ((!v. ~algebra_embed l v) = (l = []))
ALGEBRA_CANON_EMBED_UNIV
|- !l. algebra_canon l ==> ((!v. algebra_embed l v) = (l = [[]]))
ALGEBRA_CANON_UNIV
|- !l. algebra_canon l ==> (algebra_embed l = UNIV) ==> (l = [[]])
ALGEBRA_EMBED_APPEND
|- !l1 l2.
     algebra_embed (APPEND l1 l2) = algebra_embed l1 UNION algebra_embed l2
ALGEBRA_EMBED_BASIC
|- (algebra_embed [] = {}) /\ (algebra_embed [[]] = UNIV) /\
   !b. algebra_embed [[b]] = (\s. SHD s = b)
ALGEBRA_EMBED_COMPL
|- !l. ?l'. COMPL (algebra_embed l) = algebra_embed l'
ALGEBRA_EMBED_MEM
|- !b x. algebra_embed b x ==> ?l. MEM l b /\ alg_embed l x
ALGEBRA_EMBED_TLS
|- !l b.
     algebra_embed (MAP (CONS b) l) (SCONS h t) = (h = b) /\ algebra_embed l t
COMPL_SHD
|- !b. COMPL (\x. SHD x = b) = (\x. SHD x = ~b)
HALVES_INTER
|- (\x. SHD x = T) INTER (\x. SHD x = F) = {}
INTER_STL
|- !p q. (p INTER q) o STL = p o STL INTER q o STL
MEASURABLE_ALGEBRA
|- !b. measurable (algebra_embed b)
MEASURABLE_BASIC
|- measurable {} /\ measurable UNIV /\ !b. measurable (\s. SHD s = b)
MEASURABLE_COMPL
|- !s. measurable (COMPL s) = measurable s
MEASURABLE_HALVES
|- !p q.
     measurable ((\x. SHD x = T) INTER p UNION (\x. SHD x = F) INTER q) =
     measurable ((\x. SHD x = T) INTER p) /\
     measurable ((\x. SHD x = F) INTER q)
MEASURABLE_INTER
|- !s t. measurable s /\ measurable t ==> measurable (s INTER t)
MEASURABLE_INTER_HALVES
|- !p.
     measurable ((\x. SHD x = T) INTER p) /\
     measurable ((\x. SHD x = F) INTER p) =
     measurable p
MEASURABLE_INTER_SHD
|- !b p. measurable ((\x. SHD x = b) INTER p o STL) = measurable p
MEASURABLE_SDROP
|- !n p. measurable (p o SDROP n) = measurable p
MEASURABLE_SHD
|- !b. measurable (\s. SHD s = b)
MEASURABLE_STL
|- !p. measurable (p o STL) = measurable p
MEASURABLE_UNION
|- !s t. measurable s /\ measurable t ==> measurable (s UNION t)