Theory: pred_set

Parents


Types


Constants


Definitions

BIGUNION
|- !P. BIGUNION P = {x | ?p. p IN P /\ x IN p}
BIJ_DEF
|- !f s t. BIJ f s t = INJ f s t /\ SURJ f s t
CARD_DEF
|- (CARD {} = 0) /\
   !s.
     FINITE s ==>
     !x. CARD (x INSERT s) = (if x IN s then CARD s else SUC (CARD s))
CHOICE_DEF
|- !s. ~(s = {}) ==> CHOICE s IN s
CROSS_DEF
|- !P Q. P CROSS Q = {p | FST p IN P /\ SND p IN Q}
DELETE_DEF
|- !s x. s DELETE x = s DIFF {x}
DIFF_DEF
|- !s t. s DIFF t = {x | x IN s /\ ~(x IN t)}
DISJOINT_DEF
|- !s t. DISJOINT s t = (s INTER t = {})
EMPTY_DEF
|- {} = (\x. F)
FINITE_DEF
|- !s. FINITE s = !P. P {} /\ (!s. P s ==> !e. P (e INSERT s)) ==> P s
GSPECIFICATION
|- !f v. v IN GSPEC f = ?x. (v,T) = f x
IMAGE_DEF
|- !f s. IMAGE f s = {f x | x IN s}
INFINITE_DEF
|- !s. INFINITE s = ~FINITE s
INJ_DEF
|- !f s t.
     INJ f s t =
     (!x. x IN s ==> f x IN t) /\
     !x y. x IN s /\ y IN s ==> (f x = f y) ==> (x = y)
INSERT_DEF
|- !x s. x INSERT s = {y | (y = x) \/ y IN s}
INTER_DEF
|- !s t. s INTER t = {x | x IN s /\ x IN t}
ITSET_arg_munge_def
|- !f x x1. ITSET f x x1 = ITSET_tupled f (x,x1)
ITSET_tupled_primitive_def
|- !f.
     ITSET_tupled f =
     WFREC
       (@R.
          WF R /\
          !b s. FINITE s /\ ~(s = {}) ==> R (REST s,f (CHOICE s) b) (s,b))
       (\ITSET_tupled' a.
          pair_case
            (\v v1.
               (if FINITE v then
                  (if v = {} then
                     v1
                   else
                     ITSET_tupled' (REST v,f (CHOICE v) v1))
                else
                  ARB)) a)
LINV_DEF
|- !f s t. INJ f s t ==> !x. x IN s ==> (LINV f s (f x) = x)
PSUBSET_DEF
|- !s t. s PSUBSET t = s SUBSET t /\ ~(s = t)
REST_DEF
|- !s. REST s = s DELETE CHOICE s
RINV_DEF
|- !f s t. SURJ f s t ==> !x. x IN t ==> (f (RINV f s x) = x)
SING_DEF
|- !s. SING s = ?x. s = {x}
SPECIFICATION
|- !x P. x IN P = P x
SUBSET_DEF
|- !s t. s SUBSET t = !x. x IN s ==> x IN t
SURJ_DEF
|- !f s t.
     SURJ f s t =
     (!x. x IN s ==> f x IN t) /\ !x. x IN t ==> ?y. y IN s /\ (f y = x)
UNION_DEF
|- !s t. s UNION t = {x | x IN s \/ x IN t}
UNIV_DEF
|- UNIV = (\x. T)

Theorems

ABSORPTION
|- !x s. x IN s = (x INSERT s = s)
BIGUNION_EMPTY
|- BIGUNION {} = {}
BIGUNION_INSERT
|- !s P. BIGUNION (s INSERT P) = s UNION BIGUNION P
BIGUNION_SING
|- !x. BIGUNION {x} = x
BIGUNION_UNION
|- !s1 s2. BIGUNION (s1 UNION s2) = BIGUNION s1 UNION BIGUNION s2
BIJ_COMPOSE
|- !f g s t u. BIJ f s t /\ BIJ g t u ==> BIJ (g o f) s u
BIJ_EMPTY
|- !f. (!s. BIJ f {} s = (s = {})) /\ !s. BIJ f s {} = (s = {})
BIJ_ID
|- !s. BIJ (\x. x) s s
CARD_CROSS
|- !P Q. FINITE P /\ FINITE Q ==> (CARD (P CROSS Q) = CARD P * CARD Q)
CARD_DELETE
|- !s.
     FINITE s ==>
     !x. CARD (s DELETE x) = (if x IN s then CARD s - 1 else CARD s)
CARD_DIFF
|- !t.
     FINITE t ==>
     !s. FINITE s ==> (CARD (s DIFF t) = CARD s - CARD (s INTER t))
CARD_EMPTY
|- CARD {} = 0
CARD_EQ_0
|- !s. FINITE s ==> ((CARD s = 0) = (s = {}))
CARD_INSERT
|- !s.
     FINITE s ==>
     !x. CARD (x INSERT s) = (if x IN s then CARD s else SUC (CARD s))
CARD_INTER_LESS_EQ
|- !s. FINITE s ==> !t. CARD (s INTER t) <= CARD s
CARD_PSUBSET
|- !s. FINITE s ==> !t. t PSUBSET s ==> CARD t < CARD s
CARD_SING
|- !x. CARD {x} = 1
CARD_SING_CROSS
|- !x P. FINITE P ==> (CARD ({x} CROSS P) = CARD P)
CARD_SUBSET
|- !s. FINITE s ==> !t. t SUBSET s ==> CARD t <= CARD s
CARD_UNION
|- !s.
     FINITE s ==>
     !t. FINITE t ==> (CARD (s UNION t) + CARD (s INTER t) = CARD s + CARD t)
CHOICE_INSERT_REST
|- !s. ~(s = {}) ==> (CHOICE s INSERT REST s = s)
CHOICE_NOT_IN_REST
|- !s. ~(CHOICE s IN REST s)
CHOICE_SING
|- !x. CHOICE {x} = x
COMPONENT
|- !x s. x IN x INSERT s
CROSS_EMPTY
|- !P. (P CROSS {} = {}) /\ ({} CROSS P = {})
CROSS_INSERT_LEFT
|- !P Q x. (x INSERT P) CROSS Q = {x} CROSS Q UNION P CROSS Q
CROSS_INSERT_RIGHT
|- !P Q x. P CROSS (x INSERT Q) = P CROSS {x} UNION P CROSS Q
CROSS_SINGS
|- !x y. {x} CROSS {y} = {(x,y)}
CROSS_SUBSET
|- !P Q P0 Q0.
     P0 CROSS Q0 SUBSET P CROSS Q =
     (P0 = {}) \/ (Q0 = {}) \/ P0 SUBSET P /\ Q0 SUBSET Q
DECOMPOSITION
|- !s x. x IN s = ?t. (s = x INSERT t) /\ ~(x IN t)
DELETE_COMM
|- !x y s. s DELETE x DELETE y = s DELETE y DELETE x
DELETE_DELETE
|- !x s. s DELETE x DELETE x = s DELETE x
DELETE_EQ_SING
|- !s x. x IN s ==> ((s DELETE x = {}) = (s = {x}))
DELETE_INSERT
|- !x y s.
     (x INSERT s) DELETE y =
     (if x = y then s DELETE y else x INSERT s DELETE y)
DELETE_INTER
|- !s t x. (s DELETE x) INTER t = s INTER t DELETE x
DELETE_NON_ELEMENT
|- !x s. ~(x IN s) = (s DELETE x = s)
DELETE_SUBSET
|- !x s. s DELETE x SUBSET s
DIFF_DIFF
|- !s t. s DIFF t DIFF t = s DIFF t
DIFF_EMPTY
|- !s. s DIFF {} = s
DIFF_EQ_EMPTY
|- !s. s DIFF s = {}
DIFF_INSERT
|- !s t x. s DIFF (x INSERT t) = s DELETE x DIFF t
DIFF_UNIV
|- !s. s DIFF UNIV = {}
DISJOINT_BIGUNION
|- (!s t. DISJOINT (BIGUNION s) t = !s'. s' IN s ==> DISJOINT s' t) /\
   !s t. DISJOINT t (BIGUNION s) = !s'. s' IN s ==> DISJOINT t s'
DISJOINT_DELETE_SYM
|- !s t x. DISJOINT (s DELETE x) t = DISJOINT (t DELETE x) s
DISJOINT_EMPTY
|- !s. DISJOINT {} s /\ DISJOINT s {}
DISJOINT_EMPTY_REFL
|- !s. (s = {}) = DISJOINT s s
DISJOINT_INSERT
|- !x s t. DISJOINT (x INSERT s) t = DISJOINT s t /\ ~(x IN t)
DISJOINT_SING_EMPTY
|- !x. DISJOINT {x} {}
DISJOINT_SYM
|- !s t. DISJOINT s t = DISJOINT t s
DISJOINT_UNION
|- !s t u. DISJOINT (s UNION t) u = DISJOINT s u /\ DISJOINT t u
EMPTY_DELETE
|- !x. {} DELETE x = {}
EMPTY_DIFF
|- !s. {} DIFF s = {}
EMPTY_NOT_UNIV
|- ~({} = UNIV)
EMPTY_SUBSET
|- !s. {} SUBSET s
EMPTY_UNION
|- !s t. (s UNION t = {}) = (s = {}) /\ (t = {})
EQ_UNIV
|- (!x. x IN s) = (s = UNIV)
EQUAL_SING
|- !x y. ({x} = {y}) = (x = y)
EXTENSION
|- !s t. (s = t) = !x. x IN s = x IN t
FINITE_BIGUNION
|- !P. FINITE P /\ (!s. s IN P ==> FINITE s) ==> FINITE (BIGUNION P)
FINITE_COMPLETE_INDUCTION
|- !P.
     (!x. (!y. y PSUBSET x ==> P y) ==> FINITE x ==> P x) ==>
     !x. FINITE x ==> P x
FINITE_CROSS
|- !P Q. FINITE P /\ FINITE Q ==> FINITE (P CROSS Q)
FINITE_CROSS_EQ
|- !P Q. FINITE (P CROSS Q) = (P = {}) \/ (Q = {}) \/ FINITE P /\ FINITE Q
FINITE_DELETE
|- !x s. FINITE (s DELETE x) = FINITE s
FINITE_DIFF
|- !s. FINITE s ==> !t. FINITE (s DIFF t)
FINITE_EMPTY
|- FINITE {}
FINITE_INDUCT
|- !P.
     P {} /\ (!s. FINITE s /\ P s ==> !e. ~(e IN s) ==> P (e INSERT s)) ==>
     !s. FINITE s ==> P s
FINITE_INSERT
|- !x s. FINITE (x INSERT s) = FINITE s
FINITE_ISO_NUM
|- !s.
     FINITE s ==>
     ?f.
       (!n m. n < CARD s /\ m < CARD s ==> (f n = f m) ==> (n = m)) /\
       (s = {f n | n < CARD s})
FINITE_PSUBSET_INFINITE
|- !s. INFINITE s = !t. FINITE t ==> t SUBSET s ==> t PSUBSET s
FINITE_PSUBSET_UNIV
|- INFINITE UNIV = !s. FINITE s ==> s PSUBSET UNIV
FINITE_SING
|- !x. FINITE {x}
FINITE_UNION
|- !s t. FINITE (s UNION t) = FINITE s /\ FINITE t
FINITE_WEAK_ENUMERATE
|- !s. FINITE s = ?f b. !e. e IN s = ?n. n < b /\ (e = f n)
IMAGE_11_INFINITE
|- !f.
     (!x y. (f x = f y) ==> (x = y)) ==>
     !s. INFINITE s ==> INFINITE (IMAGE f s)
IMAGE_COMPOSE
|- !f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)
IMAGE_DELETE
|- !f x s. ~(x IN s) ==> (IMAGE f (s DELETE x) = IMAGE f s)
IMAGE_EMPTY
|- !f. IMAGE f {} = {}
IMAGE_EQ_EMPTY
|- !s f. (IMAGE f s = {}) = (s = {})
IMAGE_FINITE
|- !s. FINITE s ==> !f. FINITE (IMAGE f s)
IMAGE_ID
|- !s. IMAGE (\x. x) s = s
IMAGE_IN
|- !x s. x IN s ==> !f. f x IN IMAGE f s
IMAGE_INSERT
|- !f x s. IMAGE f (x INSERT s) = f x INSERT IMAGE f s
IMAGE_INTER
|- !f s t. IMAGE f (s INTER t) SUBSET IMAGE f s INTER IMAGE f t
IMAGE_SUBSET
|- !s t. s SUBSET t ==> !f. IMAGE f s SUBSET IMAGE f t
IMAGE_SURJ
|- !f s t. SURJ f s t = (IMAGE f s = t)
IMAGE_UNION
|- !f s t. IMAGE f (s UNION t) = IMAGE f s UNION IMAGE f t
IN_BIGUNION
|- !x sos. x IN BIGUNION sos = ?s. x IN s /\ s IN sos
IN_CROSS
|- !P Q x. x IN P CROSS Q = FST x IN P /\ SND x IN Q
IN_DELETE
|- !s x y. x IN s DELETE y = x IN s /\ ~(x = y)
IN_DELETE_EQ
|- !s x x'. (x IN s = x' IN s) = (x IN s DELETE x' = x' IN s DELETE x)
IN_DIFF
|- !s t x. x IN s DIFF t = x IN s /\ ~(x IN t)
IN_DISJOINT
|- !s t. DISJOINT s t = ~?x. x IN s /\ x IN t
IN_IMAGE
|- !y s f. y IN IMAGE f s = ?x. (y = f x) /\ x IN s
IN_INFINITE_NOT_FINITE
|- !s t. INFINITE s /\ FINITE t ==> ?x. x IN s /\ ~(x IN t)
IN_INSERT
|- !x y s. x IN y INSERT s = (x = y) \/ x IN s
IN_INTER
|- !s t x. x IN s INTER t = x IN s /\ x IN t
IN_SING
|- !x y. x IN {y} = (x = y)
IN_UNION
|- !s t x. x IN s UNION t = x IN s \/ x IN t
IN_UNIV
|- !x. x IN UNIV
INFINITE_DIFF_FINITE
|- !s t. INFINITE s /\ FINITE t ==> ~(s DIFF t = {})
INFINITE_INHAB
|- !P. INFINITE P ==> ?x. x IN P
INFINITE_SUBSET
|- !s. INFINITE s ==> !t. s SUBSET t ==> INFINITE t
INFINITE_UNIV
|- INFINITE UNIV = ?f. (!x y. (f x = f y) ==> (x = y)) /\ ?y. !x. ~(f x = y)
INJ_COMPOSE
|- !f g s t u. INJ f s t /\ INJ g t u ==> INJ (g o f) s u
INJ_EMPTY
|- !f. (!s. INJ f {} s) /\ !s. INJ f s {} = (s = {})
INJ_ID
|- !s. INJ (\x. x) s s
INSERT_COMM
|- !x y s. x INSERT y INSERT s = y INSERT x INSERT s
INSERT_DELETE
|- !x s. x IN s ==> (x INSERT s DELETE x = s)
INSERT_DIFF
|- !s t x.
     (x INSERT s) DIFF t = (if x IN t then s DIFF t else x INSERT s DIFF t)
INSERT_INSERT
|- !x s. x INSERT x INSERT s = x INSERT s
INSERT_INTER
|- !x s t.
     (x INSERT s) INTER t = (if x IN t then x INSERT s INTER t else s INTER t)
INSERT_SING_UNION
|- !s x. x INSERT s = {x} UNION s
INSERT_SUBSET
|- !x s t. x INSERT s SUBSET t = x IN t /\ s SUBSET t
INSERT_UNION
|- !x s t.
     (x INSERT s) UNION t = (if x IN t then s UNION t else x INSERT s UNION t)
INSERT_UNION_EQ
|- !x s t. (x INSERT s) UNION t = x INSERT s UNION t
INSERT_UNIV
|- !x. x INSERT UNIV = UNIV
INTER_ASSOC
|- !s t u. s INTER t INTER u = s INTER (t INTER u)
INTER_COMM
|- !s t. s INTER t = t INTER s
INTER_EMPTY
|- (!s. {} INTER s = {}) /\ !s. s INTER {} = {}
INTER_FINITE
|- !s. FINITE s ==> !t. FINITE (s INTER t)
INTER_IDEMPOT
|- !s. s INTER s = s
INTER_OVER_UNION
|- !s t u. s UNION t INTER u = (s UNION t) INTER (s UNION u)
INTER_SUBSET
|- (!s t. s INTER t SUBSET s) /\ !s t. t INTER s SUBSET s
INTER_UNIV
|- (!s. UNIV INTER s = s) /\ !s. s INTER UNIV = s
ITSET_EMPTY
|- !f b. ITSET f {} b = b
ITSET_IND
|- !P.
     (!s b.
        (FINITE s /\ ~(s = {}) ==> P (REST s) (f (CHOICE s) b)) ==> P s b) ==>
     !v v1. P v v1
ITSET_THM
|- !s f b.
     FINITE s ==>
     (ITSET f s b = (if s = {} then b else ITSET f (REST s) (f (CHOICE s) b)))
LESS_CARD_DIFF
|- !t. FINITE t ==> !s. FINITE s ==> CARD t < CARD s ==> 0 < CARD (s DIFF t)
MEMBER_NOT_EMPTY
|- !s. (?x. x IN s) = ~(s = {})
NOT_EMPTY_INSERT
|- !x s. ~({} = x INSERT s)
NOT_EMPTY_SING
|- !x. ~({} = {x})
NOT_EQUAL_SETS
|- !s t. ~(s = t) = ?x. x IN t = ~(x IN s)
NOT_IN_EMPTY
|- !x. ~(x IN {})
NOT_IN_FINITE
|- INFINITE UNIV = !s. FINITE s ==> ?x. ~(x IN s)
NOT_INSERT_EMPTY
|- !x s. ~(x INSERT s = {})
NOT_PSUBSET_EMPTY
|- !s. ~(s PSUBSET {})
NOT_SING_EMPTY
|- !x. ~({x} = {})
NOT_UNIV_PSUBSET
|- !s. ~(UNIV PSUBSET s)
NUM_SET_WOP
|- !s. (?n. n IN s) = ?n. n IN s /\ !m. m IN s ==> n <= m
PSUBSET_FINITE
|- !s. FINITE s ==> !t. t PSUBSET s ==> FINITE t
PSUBSET_INSERT_SUBSET
|- !s t. s PSUBSET t = ?x. ~(x IN s) /\ x INSERT s SUBSET t
PSUBSET_IRREFL
|- !s. ~(s PSUBSET s)
PSUBSET_MEMBER
|- !s t. s PSUBSET t = s SUBSET t /\ ?y. y IN t /\ ~(y IN s)
PSUBSET_TRANS
|- !s t u. s PSUBSET t /\ t PSUBSET u ==> s PSUBSET u
PSUBSET_UNIV
|- !s. s PSUBSET UNIV = ?x. ~(x IN s)
REST_PSUBSET
|- !s. ~(s = {}) ==> REST s PSUBSET s
REST_SING
|- !x. REST {x} = {}
REST_SUBSET
|- !s. REST s SUBSET s
SET_CASES
|- !s. (s = {}) \/ ?x t. (s = x INSERT t) /\ ~(x IN t)
SET_MINIMUM
|- !s M. (?x. x IN s) = ?x. x IN s /\ !y. y IN s ==> M x <= M y
SING
|- !x. SING {x}
SING_DELETE
|- !x. {x} DELETE x = {}
SING_FINITE
|- !s. SING s ==> FINITE s
SING_IFF_CARD1
|- !s. SING s = (CARD s = 1) /\ FINITE s
SING_IFF_EMPTY_REST
|- !s. SING s = ~(s = {}) /\ (REST s = {})
SUBSET_ANTISYM
|- !s t. s SUBSET t /\ t SUBSET s ==> (s = t)
SUBSET_DELETE
|- !x s t. s SUBSET t DELETE x = ~(x IN s) /\ s SUBSET t
SUBSET_EMPTY
|- !s. s SUBSET {} = (s = {})
SUBSET_FINITE
|- !s. FINITE s ==> !t. t SUBSET s ==> FINITE t
SUBSET_INSERT
|- !x s. ~(x IN s) ==> !t. s SUBSET x INSERT t = s SUBSET t
SUBSET_INSERT_DELETE
|- !x s t. s SUBSET x INSERT t = s DELETE x SUBSET t
SUBSET_INTER_ABSORPTION
|- !s t. s SUBSET t = (s INTER t = s)
SUBSET_REFL
|- !s. s SUBSET s
SUBSET_TRANS
|- !s t u. s SUBSET t /\ t SUBSET u ==> s SUBSET u
SUBSET_UNION
|- (!s t. s SUBSET s UNION t) /\ !s t. s SUBSET t UNION s
SUBSET_UNION_ABSORPTION
|- !s t. s SUBSET t = (s UNION t = t)
SUBSET_UNIV
|- !s. s SUBSET UNIV
SURJ_COMPOSE
|- !f g s t u. SURJ f s t /\ SURJ g t u ==> SURJ (g o f) s u
SURJ_EMPTY
|- !f. (!s. SURJ f {} s = (s = {})) /\ !s. SURJ f s {} = (s = {})
SURJ_ID
|- !s. SURJ (\x. x) s s
UNION_ASSOC
|- !s t u. s UNION t UNION u = s UNION (t UNION u)
UNION_COMM
|- !s t. s UNION t = t UNION s
UNION_EMPTY
|- (!s. {} UNION s = s) /\ !s. s UNION {} = s
UNION_IDEMPOT
|- !s. s UNION s = s
UNION_OVER_INTER
|- !s t u. s INTER (t UNION u) = s INTER t UNION s INTER u
UNION_UNIV
|- (!s. UNIV UNION s = UNIV) /\ !s. s UNION UNIV = UNIV
UNIV_NOT_EMPTY
|- ~(UNIV = {})
UNIV_SUBSET
|- !s. UNIV SUBSET s = (s = UNIV)