Theory: powser

Parents


Types


Constants


Definitions

diffs
|- !c. diffs c = (\n. & (SUC n) * c (SUC n))

Theorems

DIFFS_EQUIV
|- !c x.
     summable (\n. diffs c n * x pow n) ==>
     (\n. & n * (c n * x pow (n - 1))) sums suminf (\n. diffs c n * x pow n)
DIFFS_LEMMA
|- !n c x.
     sum (0,n) (\n. diffs c n * x pow n) =
     sum (0,n) (\n. & n * (c n * x pow (n - 1))) + & n * (c n * x pow (n - 1))
DIFFS_LEMMA2
|- !n c x.
     sum (0,n) (\n. & n * (c n * x pow (n - 1))) =
     sum (0,n) (\n. diffs c n * x pow n) - & n * (c n * x pow (n - 1))
DIFFS_NEG
|- !c. diffs (\n. ~c n) = (\n. ~diffs c n)
POWDIFF
|- !n x y.
     x pow SUC n - y pow SUC n =
     (x - y) * sum (0,SUC n) (\p. x pow p * y pow (n - p))
POWDIFF_LEMMA
|- !n x y.
     sum (0,SUC n) (\p. x pow p * y pow (SUC n - p)) =
     y * sum (0,SUC n) (\p. x pow p * y pow (n - p))
POWREV
|- !n x y.
     sum (0,SUC n) (\p. x pow p * y pow (n - p)) =
     sum (0,SUC n) (\p. x pow (n - p) * y pow p)
POWSER_INSIDE
|- !f x z.
     summable (\n. f n * x pow n) /\ abs z < abs x ==>
     summable (\n. f n * z pow n)
POWSER_INSIDEA
|- !f x z.
     summable (\n. f n * x pow n) /\ abs z < abs x ==>
     summable (\n. abs (f n) * z pow n)
TERMDIFF
|- !c k' x.
     summable (\n. c n * k' pow n) /\ summable (\n. diffs c n * k' pow n) /\
     summable (\n. diffs (diffs c) n * k' pow n) /\ abs x < abs k' ==>
     ((\x. suminf (\n. c n * x pow n)) diffl suminf (\n. diffs c n * x pow n))
       x
TERMDIFF_LEMMA1
|- !m z h.
     sum (0,m) (\p. (z + h) pow (m - p) * z pow p - z pow m) =
     sum (0,m) (\p. z pow p * ((z + h) pow (m - p) - z pow (m - p)))
TERMDIFF_LEMMA2
|- !z h n.
     ~(h = 0) ==>
     (((z + h) pow n - z pow n) / h - & n * z pow (n - 1) =
      h *
      sum (0,n - 1)
        (\p.
           z pow p *
           sum (0,n - 1 - p) (\q. (z + h) pow q * z pow (n - 2 - p - q))))
TERMDIFF_LEMMA3
|- !z h n k'.
     ~(h = 0) /\ abs z <= k' /\ abs (z + h) <= k' ==>
     abs (((z + h) pow n - z pow n) / h - & n * z pow (n - 1)) <=
     & n * (& (n - 1) * (k' pow (n - 2) * abs h))
TERMDIFF_LEMMA4
|- !f k' k.
     0 < k /\ (!h. 0 < abs h /\ abs h < k ==> abs (f h) <= k' * abs h) ==>
     (f -> 0) 0
TERMDIFF_LEMMA5
|- !f g k.
     0 < k /\ summable f /\
     (!h. 0 < abs h /\ abs h < k ==> !n. abs (g h n) <= f n * abs h) ==>
     ((\h. suminf (g h)) -> 0) 0