Theory: poly

Parents


Types


Constants


Definitions

degree
|- !p. degree p = PRE (LENGTH (normalize p))
normalize
|- (normalize [] = []) /\
   !h t.
     normalize (h::t) =
     (if normalize t = [] then
        (if h = 0 then [] else [h])
      else
        h::normalize t)
poly_add_def
|- (!l2. [] + l2 = l2) /\
   !h t l2. (h::t) + l2 = (if l2 = [] then h::t else h + HD l2::t + TL l2)
poly_cmul_def
|- (!c. c ## [] = []) /\ !c h t. c ## (h::t) = c * h::c ## t
poly_def
|- (!x. poly [] x = 0) /\ !h t x. poly (h::t) x = h + x * poly t x
poly_diff_aux_def
|- (!n. poly_diff_aux n [] = []) /\
   !n h t. poly_diff_aux n (h::t) = & n * h::poly_diff_aux (SUC n) t
poly_diff_def
|- !l. diff l = (if l = [] then [] else poly_diff_aux 1 (TL l))
poly_divides
|- !p1 p2. p1 poly_divides p2 = ?q. poly p2 = poly (p1 * q)
poly_exp_def
|- (!p. p poly_exp 0 = [1]) /\ !p n. p poly_exp SUC n = p * p poly_exp n
poly_mul_def
|- (!l2. [] * l2 = []) /\
   !h t l2. (h::t) * l2 = (if t = [] then h ## l2 else h ## l2 + (0::t * l2))
poly_neg_def
|- $~ = $## ~1
rsquarefree
|- !p.
     rsquarefree p =
     ~(poly p = poly []) /\ !a. (poly_order a p = 0) \/ (poly_order a p = 1)

Theorems

DEGREE_ZERO
|- !p. (poly p = poly []) ==> (degree p = 0)
FINITE_LEMMA
|- !i N P. (!x. P x ==> ?n. n < N /\ (x = i n)) ==> ?a. !x. P x ==> x < a
ORDER
|- !p a n.
     [~a; 1] poly_exp n poly_divides p /\
     ~([~a; 1] poly_exp SUC n poly_divides p) =
     (n = poly_order a p) /\ ~(poly p = poly [])
ORDER_DECOMP
|- !p a.
     ~(poly p = poly []) ==>
     ?q.
       (poly p = poly ([~a; 1] poly_exp poly_order a p * q)) /\
       ~([~a; 1] poly_divides q)
ORDER_DIFF
|- !p a.
     ~(poly (diff p) = poly []) /\ ~(poly_order a p = 0) ==>
     (poly_order a p = SUC (poly_order a (diff p)))
ORDER_DIVIDES
|- !p a n.
     [~a; 1] poly_exp n poly_divides p =
     (poly p = poly []) \/ n <= poly_order a p
ORDER_MUL
|- !a p q.
     ~(poly (p * q) = poly []) ==>
     (poly_order a (p * q) = poly_order a p + poly_order a q)
ORDER_POLY
|- !p q a. (poly p = poly q) ==> (poly_order a p = poly_order a q)
ORDER_ROOT
|- !p a. (poly p a = 0) = (poly p = poly []) \/ ~(poly_order a p = 0)
ORDER_THM
|- !p a.
     ~(poly p = poly []) ==>
     [~a; 1] poly_exp poly_order a p poly_divides p /\
     ~([~a; 1] poly_exp SUC (poly_order a p) poly_divides p)
ORDER_UNIQUE
|- !p a n.
     ~(poly p = poly []) /\ [~a; 1] poly_exp n poly_divides p /\
     ~([~a; 1] poly_exp SUC n poly_divides p) ==>
     (n = poly_order a p)
POLY_ADD
|- !p1 p2 x. poly (p1 + p2) x = poly p1 x + poly p2 x
POLY_ADD_CLAUSES
|- ([] + p2 = p2) /\ (p1 + [] = p1) /\
   ((h1::t1) + (h2::t2) = h1 + h2::t1 + t2)
POLY_ADD_RZERO
|- !p. poly (p + []) = poly p
POLY_CMUL
|- !p c x. poly (c ## p) x = c * poly p x
POLY_CMUL_CLAUSES
|- (c ## [] = []) /\ (c ## (h::t) = c * h::c ## t)
POLY_CONT
|- !l x. (\x. poly l x) contl x
POLY_DIFF
|- !l x. ((\x. poly l x) diffl poly (diff l) x) x
POLY_DIFF_ADD
|- !p1 p2. poly (diff (p1 + p2)) = poly (diff p1 + diff p2)
POLY_DIFF_AUX_ADD
|- !p1 p2 n.
     poly (poly_diff_aux n (p1 + p2)) =
     poly (poly_diff_aux n p1 + poly_diff_aux n p2)
POLY_DIFF_AUX_CMUL
|- !p c n. poly (poly_diff_aux n (c ## p)) = poly (c ## poly_diff_aux n p)
POLY_DIFF_AUX_ISZERO
|- !p n. EVERY (\c. c = 0) (poly_diff_aux (SUC n) p) = EVERY (\c. c = 0) p
POLY_DIFF_AUX_MUL_LEMMA
|- !p n. poly (poly_diff_aux (SUC n) p) = poly (poly_diff_aux n p + p)
POLY_DIFF_AUX_NEG
|- !p n. poly (poly_diff_aux n ~p) = poly ~poly_diff_aux n p
POLY_DIFF_CLAUSES
|- (diff [] = []) /\ (diff [c] = []) /\ (diff (h::t) = poly_diff_aux 1 t)
POLY_DIFF_CMUL
|- !p c. poly (diff (c ## p)) = poly (c ## diff p)
POLY_DIFF_EXP
|- !p n.
     poly (diff (p poly_exp SUC n)) =
     poly (& (SUC n) ## p poly_exp n * diff p)
POLY_DIFF_EXP_PRIME
|- !n a.
     poly (diff ([~a; 1] poly_exp SUC n)) =
     poly (& (SUC n) ## [~a; 1] poly_exp n)
POLY_DIFF_ISZERO
|- !p. (poly (diff p) = poly []) ==> ?h. poly p = poly [h]
POLY_DIFF_LEMMA
|- !l n x.
     ((\x. x pow SUC n * poly l x) diffl
      (x pow n * poly (poly_diff_aux (SUC n) l) x)) x
POLY_DIFF_MUL
|- !p1 p2. poly (diff (p1 * p2)) = poly (p1 * diff p2 + diff p1 * p2)
POLY_DIFF_MUL_LEMMA
|- !t h. poly (diff (h::t)) = poly ((0::diff t) + t)
POLY_DIFF_NEG
|- !p. poly (diff ~p) = poly ~diff p
POLY_DIFF_WELLDEF
|- !p q. (poly p = poly q) ==> (poly (diff p) = poly (diff q))
POLY_DIFF_ZERO
|- !p. (poly p = poly []) ==> (poly (diff p) = poly [])
POLY_DIFFERENTIABLE
|- !l x. (\x. poly l x) differentiable x
POLY_DIVIDES_ADD
|- !p q r. p poly_divides q /\ p poly_divides r ==> p poly_divides q + r
POLY_DIVIDES_EXP
|- !p m n. m <= n ==> p poly_exp m poly_divides p poly_exp n
POLY_DIVIDES_REFL
|- !p. p poly_divides p
POLY_DIVIDES_SUB
|- !p q r. p poly_divides q /\ p poly_divides q + r ==> p poly_divides r
POLY_DIVIDES_SUB2
|- !p q r. p poly_divides r /\ p poly_divides q + r ==> p poly_divides q
POLY_DIVIDES_TRANS
|- !p q r. p poly_divides q /\ q poly_divides r ==> p poly_divides r
POLY_DIVIDES_ZERO
|- !p q. (poly p = poly []) ==> q poly_divides p
POLY_ENTIRE
|- !p q. (poly (p * q) = poly []) = (poly p = poly []) \/ (poly q = poly [])
POLY_ENTIRE_LEMMA
|- !p q.
     ~(poly p = poly []) /\ ~(poly q = poly []) ==> ~(poly (p * q) = poly [])
POLY_EXP
|- !p n x. poly (p poly_exp n) x = poly p x pow n
POLY_EXP_ADD
|- !d n p. poly (p poly_exp (n + d)) = poly (p poly_exp n * p poly_exp d)
POLY_EXP_DIVIDES
|- !p q m n.
     p poly_exp n poly_divides q /\ m <= n ==> p poly_exp m poly_divides q
POLY_EXP_EQ_0
|- !p n. (poly (p poly_exp n) = poly []) = (poly p = poly []) /\ ~(n = 0)
POLY_EXP_PRIME_EQ_0
|- !a n. ~(poly ([a; 1] poly_exp n) = poly [])
POLY_IVT_NEG
|- !p a b.
     a < b /\ poly p a > 0 /\ poly p b < 0 ==>
     ?x. a < x /\ x < b /\ (poly p x = 0)
POLY_IVT_POS
|- !p a b.
     a < b /\ poly p a < 0 /\ poly p b > 0 ==>
     ?x. a < x /\ x < b /\ (poly p x = 0)
POLY_LENGTH_MUL
|- !q. LENGTH ([~a; 1] * q) = SUC (LENGTH q)
POLY_LINEAR_DIVIDES
|- !a p. (poly p a = 0) = (p = []) \/ ?q. p = [~a; 1] * q
POLY_LINEAR_REM
|- !t h. ?q r. h::t = [r] + [~a; 1] * q
POLY_MONO
|- !x k p. abs x <= k ==> abs (poly p x) <= poly (MAP abs p) k
POLY_MUL
|- !x p1 p2. poly (p1 * p2) x = poly p1 x * poly p2 x
POLY_MUL_ASSOC
|- !p q r. poly (p * (q * r)) = poly (p * q * r)
POLY_MUL_CLAUSES
|- ([] * p2 = []) /\ ([h1] * p2 = h1 ## p2) /\
   ((h1::k1::t1) * p2 = h1 ## p2 + (0::(k1::t1) * p2))
POLY_MUL_LCANCEL
|- !p q r.
     (poly (p * q) = poly (p * r)) = (poly p = poly []) \/ (poly q = poly r)
POLY_MVT
|- !p a b.
     a < b ==>
     ?x. a < x /\ x < b /\ (poly p b - poly p a = (b - a) * poly (diff p) x)
POLY_NEG
|- !p x. poly (~p) x = ~poly p x
POLY_NEG_CLAUSES
|- (~[] = []) /\ (~(h::t) = ~h::~t)
POLY_NORMALIZE
|- !p. poly (normalize p) = poly p
POLY_ORDER
|- !p a.
     ~(poly p = poly []) ==>
     ?!n.
       [~a; 1] poly_exp n poly_divides p /\
       ~([~a; 1] poly_exp SUC n poly_divides p)
POLY_ORDER_EXISTS
|- !a d p.
     (LENGTH p = d) /\ ~(poly p = poly []) ==>
     ?n.
       [~a; 1] poly_exp n poly_divides p /\
       ~([~a; 1] poly_exp SUC n poly_divides p)
POLY_PRIME_EQ_0
|- !a. ~(poly [a; 1] = poly [])
POLY_PRIMES
|- !a p q.
     [a; 1] poly_divides p * q =
     [a; 1] poly_divides p \/ [a; 1] poly_divides q
POLY_ROOTS_FINITE
|- !p.
     ~(poly p = poly []) = ?N i. !x. (poly p x = 0) ==> ?n. n < N /\ (x = i n)
POLY_ROOTS_FINITE_LEMMA
|- !p.
     ~(poly p = poly []) ==>
     ?N i. !x. (poly p x = 0) ==> ?n. n < N /\ (x = i n)
POLY_ROOTS_FINITE_SET
|- !p. ~(poly p = poly []) ==> FINITE {x | poly p x = 0}
POLY_ROOTS_INDEX_LEMMA
|- !n p.
     ~(poly p = poly []) /\ (LENGTH p = n) ==>
     ?i. !x. (poly p x = 0) ==> ?m. m <= n /\ (x = i m)
POLY_ROOTS_INDEX_LENGTH
|- !p.
     ~(poly p = poly []) ==>
     ?i. !x. (poly p x = 0) ==> ?n. n <= LENGTH p /\ (x = i n)
POLY_SQUAREFREE_DECOMP
|- !p q d e r s.
     ~(poly (diff p) = poly []) /\ (poly p = poly (q * d)) /\
     (poly (diff p) = poly (e * d)) /\
     (poly d = poly (r * p + s * diff p)) ==>
     rsquarefree q /\ !a. (poly q a = 0) = (poly p a = 0)
POLY_SQUAREFREE_DECOMP_ORDER
|- !p q d e r s.
     ~(poly (diff p) = poly []) /\ (poly p = poly (q * d)) /\
     (poly (diff p) = poly (e * d)) /\
     (poly d = poly (r * p + s * diff p)) ==>
     !a. poly_order a q = (if poly_order a p = 0 then 0 else 1)
POLY_ZERO
|- !p. (poly p = poly []) = EVERY (\c. c = 0) p
POLY_ZERO_LEMMA
|- !h t. (poly (h::t) = poly []) ==> (h = 0) /\ (poly t = poly [])
RSQUAREFREE_DECOMP
|- !p a.
     rsquarefree p /\ (poly p a = 0) ==>
     ?q. (poly p = poly ([~a; 1] * q)) /\ ~(poly q a = 0)
RSQUAREFREE_ROOTS
|- !p. rsquarefree p = !a. ~((poly p a = 0) /\ (poly (diff p) a = 0))