Theory: lim

Parents


Types


Constants


Definitions

contl
|- !f x. f contl x = ((\h. f (x + h)) -> f x) 0
differentiable
|- !f x. f differentiable x = ?l. (f diffl l) x
diffl
|- !f l x. (f diffl l) x = ((\h. (f (x + h) - f x) / h) -> l) 0
tends_real_real
|- !f l x0. (f -> l) x0 = (f tends l) (mtop mr1,tendsto (mr1,x0))

Theorems

CONT_ADD
|- !f g x. f contl x /\ g contl x ==> (\x. f x + g x) contl x
CONT_ATTAINS
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> f x <= M) /\
       ?x. a <= x /\ x <= b /\ (f x = M)
CONT_ATTAINS2
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> M <= f x) /\
       ?x. a <= x /\ x <= b /\ (f x = M)
CONT_ATTAINS_ALL
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?L M.
       L <= M /\
       (!y. L <= y /\ y <= M ==> ?x. a <= x /\ x <= b /\ (f x = y)) /\
       !x. a <= x /\ x <= b ==> L <= f x /\ f x <= M
CONT_BOUNDED
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M. !x. a <= x /\ x <= b ==> f x <= M
CONT_COMPOSE
|- !f g x. f contl x /\ g contl f x ==> (\x. g (f x)) contl x
CONT_CONST
|- !k x. (\x. k) contl x
CONT_DIV
|- !f g x. f contl x /\ g contl x /\ ~(g x = 0) ==> (\x. f x / g x) contl x
CONT_HASSUP
|- !f a b.
     a <= b /\ (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?M.
       (!x. a <= x /\ x <= b ==> f x <= M) /\
       !N. N < M ==> ?x. a <= x /\ x <= b /\ N < f x
CONT_INJ_LEMMA
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ~!z. abs (z - x) <= d ==> f z <= f x
CONT_INJ_LEMMA2
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ~!z. abs (z - x) <= d ==> f x <= f z
CONT_INJ_RANGE
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     ?e. 0 < e /\ !y. abs (y - f x) <= e ==> ?z. abs (z - x) <= d /\ (f z = y)
CONT_INV
|- !f x. f contl x /\ ~(f x = 0) ==> (\x. inv (f x)) contl x
CONT_INVERSE
|- !f g x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) ==>
     g contl f x
CONT_MUL
|- !f g x. f contl x /\ g contl x ==> (\x. f x * g x) contl x
CONT_NEG
|- !f x. f contl x ==> (\x. ~f x) contl x
CONT_SUB
|- !f g x. f contl x /\ g contl x ==> (\x. f x - g x) contl x
CONTL_LIM
|- !f x. f contl x = (f -> f x) x
DIFF_ADD
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==> ((\x. f x + g x) diffl (l + m)) x
DIFF_CARAT
|- !f l x.
     (f diffl l) x =
     ?g. (!z. f z - f x = g z * (z - x)) /\ g contl x /\ (g x = l)
DIFF_CHAIN
|- !f g l m x.
     (f diffl l) (g x) /\ (g diffl m) x ==> ((\x. f (g x)) diffl (l * m)) x
DIFF_CMUL
|- !f c l x. (f diffl l) x ==> ((\x. c * f x) diffl (c * l)) x
DIFF_CONST
|- !k x. ((\x. k) diffl 0) x
DIFF_CONT
|- !f l x. (f diffl l) x ==> f contl x
DIFF_DIV
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x /\ ~(g x = 0) ==>
     ((\x. f x / g x) diffl ((l * g x - m * f x) / g x pow 2)) x
DIFF_INV
|- !f l x.
     (f diffl l) x /\ ~(f x = 0) ==>
     ((\x. inv (f x)) diffl ~(l / f x pow 2)) x
DIFF_INVERSE
|- !f g l x d.
     0 < d /\ (!z. abs (z - x) <= d ==> (g (f z) = z)) /\
     (!z. abs (z - x) <= d ==> f contl z) /\ (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
DIFF_INVERSE_LT
|- !f g l x d.
     0 < d /\ (!z. abs (z - x) < d ==> (g (f z) = z)) /\
     (!z. abs (z - x) < d ==> f contl z) /\ (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
DIFF_INVERSE_OPEN
|- !f g l a x b.
     a < x /\ x < b /\ (!z. a < z /\ z < b ==> (g (f z) = z) /\ f contl z) /\
     (f diffl l) x /\ ~(l = 0) ==>
     (g diffl inv l) (f x)
DIFF_ISCONST
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> (f diffl 0) x) ==>
     !x. a <= x /\ x <= b ==> (f x = f a)
DIFF_ISCONST_ALL
|- !f. (!x. (f diffl 0) x) ==> !x y. f x = f y
DIFF_ISCONST_END
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> (f diffl 0) x) ==>
     (f b = f a)
DIFF_LCONST
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> (f y = f x)) ==>
     (l = 0)
DIFF_LDEC
|- !f x l.
     (f diffl l) x /\ l < 0 ==>
     ?d. 0 < d /\ !h. 0 < h /\ h < d ==> f x < f (x - h)
DIFF_LINC
|- !f x l.
     (f diffl l) x /\ 0 < l ==>
     ?d. 0 < d /\ !h. 0 < h /\ h < d ==> f x < f (x + h)
DIFF_LMAX
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> f y <= f x) ==>
     (l = 0)
DIFF_LMIN
|- !f x l.
     (f diffl l) x /\ (?d. 0 < d /\ !y. abs (x - y) < d ==> f x <= f y) ==>
     (l = 0)
DIFF_MUL
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==>
     ((\x. f x * g x) diffl (l * g x + m * f x)) x
DIFF_NEG
|- !f l x. (f diffl l) x ==> ((\x. ~f x) diffl ~l) x
DIFF_POW
|- !n x. ((\x. x pow n) diffl (& n * x pow (n - 1))) x
DIFF_SUB
|- !f g l m x.
     (f diffl l) x /\ (g diffl m) x ==> ((\x. f x - g x) diffl (l - m)) x
DIFF_SUM
|- !f f' m n x.
     (!r. m <= r /\ r < m + n ==> ((\x. f r x) diffl f' r x) x) ==>
     ((\x. sum (m,n) (\n. f n x)) diffl sum (m,n) (\r. f' r x)) x
DIFF_UNIQ
|- !f l m x. (f diffl l) x /\ (f diffl m) x ==> (l = m)
DIFF_X
|- !x. ((\x. x) diffl 1) x
DIFF_XM1
|- !x. ~(x = 0) ==> ((\x. inv x) diffl ~(inv x pow 2)) x
INTERVAL_ABS
|- !x z d. x - d <= z /\ z <= x + d = abs (z - x) <= d
INTERVAL_CLEMMA
|- !a b x.
     a < x /\ x < b ==> ?d. 0 < d /\ !y. abs (y - x) <= d ==> a < y /\ y < b
INTERVAL_LEMMA
|- !a b x.
     a < x /\ x < b ==> ?d. 0 < d /\ !y. abs (x - y) < d ==> a <= y /\ y <= b
IVT
|- !f a b y.
     a <= b /\ (f a <= y /\ y <= f b) /\
     (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?x. a <= x /\ x <= b /\ (f x = y)
IVT2
|- !f a b y.
     a <= b /\ (f b <= y /\ y <= f a) /\
     (!x. a <= x /\ x <= b ==> f contl x) ==>
     ?x. a <= x /\ x <= b /\ (f x = y)
LIM
|- !f y0 x0.
     (f -> y0) x0 =
     !e.
       0 < e ==>
       ?d.
         0 < d /\
         !x. 0 < abs (x - x0) /\ abs (x - x0) < d ==> abs (f x - y0) < e
LIM_ADD
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x + g x) -> (l + m)) x
LIM_CONST
|- !k x. ((\x. k) -> k) x
LIM_DIV
|- !f g l m x.
     (f -> l) x /\ (g -> m) x /\ ~(m = 0) ==> ((\x. f x / g x) -> (l / m)) x
LIM_EQUAL
|- !f g l x0. (!x. ~(x = x0) ==> (f x = g x)) ==> ((f -> l) x0 = (g -> l) x0)
LIM_INV
|- !f l x. (f -> l) x /\ ~(l = 0) ==> ((\x. inv (f x)) -> inv l) x
LIM_MUL
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x * g x) -> (l * m)) x
LIM_NEG
|- !f l x. (f -> l) x = ((\x. ~f x) -> ~l) x
LIM_NULL
|- !f l x. (f -> l) x = ((\x. f x - l) -> 0) x
LIM_SUB
|- !f g l m x. (f -> l) x /\ (g -> m) x ==> ((\x. f x - g x) -> (l - m)) x
LIM_TRANSFORM
|- !f g x0 l. ((\x. f x - g x) -> 0) x0 /\ (g -> l) x0 ==> (f -> l) x0
LIM_UNIQ
|- !f l m x. (f -> l) x /\ (f -> m) x ==> (l = m)
LIM_X
|- !x0. ((\x. x) -> x0) x0
MVT
|- !f a b.
     a < b /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> f differentiable x) ==>
     ?l z. a < z /\ z < b /\ (f diffl l) z /\ (f b - f a = (b - a) * l)
MVT_LEMMA
|- !f a b.
     (\x. f x - (f b - f a) / (b - a) * x) a =
     (\x. f x - (f b - f a) / (b - a) * x) b
ROLLE
|- !f a b.
     a < b /\ (f a = f b) /\ (!x. a <= x /\ x <= b ==> f contl x) /\
     (!x. a < x /\ x < b ==> f differentiable x) ==>
     ?z. a < z /\ z < b /\ (f diffl 0) z