|- int_interp_p = interp_p (ring int_0 int_1 $+ $* $~)
|- int_polynom_normalize = polynom_normalize (ring int_0 int_1 $+ $* $~)
|- int_polynom_simplify = polynom_simplify (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_merge = r_canonical_sum_merge (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_prod = r_canonical_sum_prod (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_scalar2 = r_canonical_sum_scalar2 (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_scalar3 = r_canonical_sum_scalar3 (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_scalar = r_canonical_sum_scalar (ring int_0 int_1 $+ $* $~)
|- int_r_canonical_sum_simplify = r_canonical_sum_simplify (ring int_0 int_1 $+ $* $~)
|- int_r_ics_aux = r_ics_aux (ring int_0 int_1 $+ $* $~)
|- int_r_interp_cs = r_interp_cs (ring int_0 int_1 $+ $* $~)
|- int_r_interp_m = r_interp_m (ring int_0 int_1 $+ $* $~)
|- int_r_interp_sp = r_interp_sp (ring int_0 int_1 $+ $* $~)
|- int_r_interp_vl = r_interp_vl (ring int_0 int_1 $+ $* $~)
|- int_r_ivl_aux = r_ivl_aux (ring int_0 int_1 $+ $* $~)
|- int_r_monom_insert = r_monom_insert (ring int_0 int_1 $+ $* $~)
|- int_r_spolynom_normalize = r_spolynom_normalize (ring int_0 int_1 $+ $* $~)
|- int_r_spolynom_simplify = r_spolynom_simplify (ring int_0 int_1 $+ $* $~)
|- int_r_varlist_insert = r_varlist_insert (ring int_0 int_1 $+ $* $~)
|- (& n + & m = & (n + m)) /\ (~& n + & m = (if n <= m then & (m - n) else ~& (n - m))) /\ (& n + ~& m = (if m <= n then & (n - m) else ~& (m - n))) /\ (~& n + ~& m = ~& (n + m)) /\ (& n * & m = & (n * m)) /\ (~& n * & m = ~& (n * m)) /\ (& n * ~& m = ~& (n * m)) /\ (~& n * ~& m = & (n * m)) /\ ((& n = & m) = (n = m)) /\ ((& n = ~& m) = (n = 0) /\ (m = 0)) /\ ((~& n = & m) = (n = 0) /\ (m = 0)) /\ ((~& n = ~& m) = (n = m)) /\ (~~x = x) /\ (~0 = 0)
|- is_ring (ring int_0 int_1 $+ $* $~)
|- ((& n + & m = & (n + m)) /\
(~& n + & m = (if n <= m then & (m - n) else ~& (n - m))) /\
(& n + ~& m = (if m <= n then & (n - m) else ~& (m - n))) /\
(~& n + ~& m = ~& (n + m)) /\ (& n * & m = & (n * m)) /\
(~& n * & m = ~& (n * m)) /\ (& n * ~& m = ~& (n * m)) /\
(~& n * ~& m = & (n * m)) /\ ((& n = & m) = (n = m)) /\
((& n = ~& m) = (n = 0) /\ (m = 0)) /\
((~& n = & m) = (n = 0) /\ (m = 0)) /\ ((~& n = ~& m) = (n = m)) /\
(~~x = x) /\ (~0 = 0)) /\ (int_0 = 0) /\ (int_1 = 1) /\
(!n m.
(ALT_ZERO < NUMERAL_BIT1 n = T) /\ (ALT_ZERO < NUMERAL_BIT2 n = T) /\
(n < ALT_ZERO = F) /\ (NUMERAL_BIT1 n < NUMERAL_BIT1 m = n < m) /\
(NUMERAL_BIT2 n < NUMERAL_BIT2 m = n < m) /\
(NUMERAL_BIT1 n < NUMERAL_BIT2 m = ~(m < n)) /\
(NUMERAL_BIT2 n < NUMERAL_BIT1 m = n < m)) /\
(!n m.
(ALT_ZERO <= n = T) /\ (NUMERAL_BIT1 n <= ALT_ZERO = F) /\
(NUMERAL_BIT2 n <= ALT_ZERO = F) /\
(NUMERAL_BIT1 n <= NUMERAL_BIT1 m = n <= m) /\
(NUMERAL_BIT1 n <= NUMERAL_BIT2 m = n <= m) /\
(NUMERAL_BIT2 n <= NUMERAL_BIT1 m = ~(m <= n)) /\
(NUMERAL_BIT2 n <= NUMERAL_BIT2 m = n <= m)) /\
(!n m. NUMERAL (n - m) = (if m < n then NUMERAL (iSUB T n m) else 0)) /\
(!b n m.
(iSUB b ALT_ZERO x = ALT_ZERO) /\ (iSUB T n ALT_ZERO = n) /\
(iSUB F (NUMERAL_BIT1 n) ALT_ZERO = iDUB n) /\
(iSUB T (NUMERAL_BIT1 n) (NUMERAL_BIT1 m) = iDUB (iSUB T n m)) /\
(iSUB F (NUMERAL_BIT1 n) (NUMERAL_BIT1 m) =
NUMERAL_BIT1 (iSUB F n m)) /\
(iSUB T (NUMERAL_BIT1 n) (NUMERAL_BIT2 m) =
NUMERAL_BIT1 (iSUB F n m)) /\
(iSUB F (NUMERAL_BIT1 n) (NUMERAL_BIT2 m) = iDUB (iSUB F n m)) /\
(iSUB F (NUMERAL_BIT2 n) ALT_ZERO = NUMERAL_BIT1 n) /\
(iSUB T (NUMERAL_BIT2 n) (NUMERAL_BIT1 m) =
NUMERAL_BIT1 (iSUB T n m)) /\
(iSUB F (NUMERAL_BIT2 n) (NUMERAL_BIT1 m) = iDUB (iSUB T n m)) /\
(iSUB T (NUMERAL_BIT2 n) (NUMERAL_BIT2 m) = iDUB (iSUB T n m)) /\
(iSUB F (NUMERAL_BIT2 n) (NUMERAL_BIT2 m) =
NUMERAL_BIT1 (iSUB F n m))) /\
!t.
(T /\ t = t) /\ (t /\ T = t) /\ (F /\ t = F) /\ (t /\ F = F) /\
(t /\ t = t)
|- is_ring (ring int_0 int_1 $+ $* $~) /\
(!vm p. int_interp_p vm p = int_r_interp_cs vm (int_polynom_simplify p)) /\
(((!vm c. int_interp_p vm (Pconst c) = c) /\
(!vm i. int_interp_p vm (Pvar i) = varmap_find i vm) /\
(!vm p1 p2.
int_interp_p vm (Pplus p1 p2) =
int_interp_p vm p1 + int_interp_p vm p2) /\
(!vm p1 p2.
int_interp_p vm (Pmult p1 p2) =
int_interp_p vm p1 * int_interp_p vm p2) /\
!vm p1. int_interp_p vm (Popp p1) = ~int_interp_p vm p1) /\
(varmap_find End_idx (Node_vm x v1 v2) = x) /\
(varmap_find (Right_idx i1) (Node_vm x v1 v2) = varmap_find i1 v2) /\
(varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) /\
(varmap_find End_idx Empty_vm = @x. T) /\
(varmap_find (Right_idx v5) Empty_vm = @x. T) /\
(varmap_find (Left_idx v4) Empty_vm = @x. T)) /\
((int_r_canonical_sum_merge (Cons_monom c1 l1 t1) (Cons_monom c2 l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_monom c1 l1 (int_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2)))
(Cons_monom (c1 + c2) l1 (int_r_canonical_sum_merge t1 t2))
(Cons_monom c2 l2
(int_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2))) /\
(int_r_canonical_sum_merge (Cons_monom c1 l1 t1) (Cons_varlist l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_monom c1 l1 (int_r_canonical_sum_merge t1 (Cons_varlist l2 t2)))
(Cons_monom (c1 + int_1) l1 (int_r_canonical_sum_merge t1 t2))
(Cons_varlist l2
(int_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2))) /\
(int_r_canonical_sum_merge (Cons_varlist l1 t1) (Cons_monom c2 l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_varlist l1 (int_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2)))
(Cons_monom (int_1 + c2) l1 (int_r_canonical_sum_merge t1 t2))
(Cons_monom c2 l2
(int_r_canonical_sum_merge (Cons_varlist l1 t1) t2))) /\
(int_r_canonical_sum_merge (Cons_varlist l1 t1) (Cons_varlist l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_varlist l1 (int_r_canonical_sum_merge t1 (Cons_varlist l2 t2)))
(Cons_monom (int_1 + int_1) l1 (int_r_canonical_sum_merge t1 t2))
(Cons_varlist l2
(int_r_canonical_sum_merge (Cons_varlist l1 t1) t2))) /\
(int_r_canonical_sum_merge (Cons_varlist v7 v8) Nil_monom =
Cons_varlist v7 v8) /\
(int_r_canonical_sum_merge (Cons_monom v4 v5 v6) Nil_monom =
Cons_monom v4 v5 v6) /\
(int_r_canonical_sum_merge Nil_monom Nil_monom = Nil_monom) /\
(int_r_canonical_sum_merge Nil_monom (Cons_varlist v17 v18) =
Cons_varlist v17 v18) /\
(int_r_canonical_sum_merge Nil_monom (Cons_monom v14 v15 v16) =
Cons_monom v14 v15 v16)) /\
((int_r_monom_insert c1 l1 (Cons_monom c2 l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_monom c1 l1 (Cons_monom c2 l2 t2)) (Cons_monom (c1 + c2) l1 t2)
(Cons_monom c2 l2 (int_r_monom_insert c1 l1 t2))) /\
(int_r_monom_insert c1 l1 (Cons_varlist l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_monom c1 l1 (Cons_varlist l2 t2)) (Cons_monom (c1 + int_1) l1 t2)
(Cons_varlist l2 (int_r_monom_insert c1 l1 t2))) /\
(int_r_monom_insert c1 l1 Nil_monom = Cons_monom c1 l1 Nil_monom)) /\
((int_r_varlist_insert l1 (Cons_monom c2 l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_varlist l1 (Cons_monom c2 l2 t2)) (Cons_monom (int_1 + c2) l1 t2)
(Cons_monom c2 l2 (int_r_varlist_insert l1 t2))) /\
(int_r_varlist_insert l1 (Cons_varlist l2 t2) =
compare (list_compare index_compare l1 l2)
(Cons_varlist l1 (Cons_varlist l2 t2))
(Cons_monom (int_1 + int_1) l1 t2)
(Cons_varlist l2 (int_r_varlist_insert l1 t2))) /\
(int_r_varlist_insert l1 Nil_monom = Cons_varlist l1 Nil_monom)) /\
((!c0 c l t.
int_r_canonical_sum_scalar c0 (Cons_monom c l t) =
Cons_monom (c0 * c) l (int_r_canonical_sum_scalar c0 t)) /\
(!c0 l t.
int_r_canonical_sum_scalar c0 (Cons_varlist l t) =
Cons_monom c0 l (int_r_canonical_sum_scalar c0 t)) /\
!c0. int_r_canonical_sum_scalar c0 Nil_monom = Nil_monom) /\
((!l0 c l t.
int_r_canonical_sum_scalar2 l0 (Cons_monom c l t) =
int_r_monom_insert c (list_merge index_lt l0 l)
(int_r_canonical_sum_scalar2 l0 t)) /\
(!l0 l t.
int_r_canonical_sum_scalar2 l0 (Cons_varlist l t) =
int_r_varlist_insert (list_merge index_lt l0 l)
(int_r_canonical_sum_scalar2 l0 t)) /\
!l0. int_r_canonical_sum_scalar2 l0 Nil_monom = Nil_monom) /\
((!c0 l0 c l t.
int_r_canonical_sum_scalar3 c0 l0 (Cons_monom c l t) =
int_r_monom_insert (c0 * c) (list_merge index_lt l0 l)
(int_r_canonical_sum_scalar3 c0 l0 t)) /\
(!c0 l0 l t.
int_r_canonical_sum_scalar3 c0 l0 (Cons_varlist l t) =
int_r_monom_insert c0 (list_merge index_lt l0 l)
(int_r_canonical_sum_scalar3 c0 l0 t)) /\
!c0 l0. int_r_canonical_sum_scalar3 c0 l0 Nil_monom = Nil_monom) /\
((!c1 l1 t1 s2.
int_r_canonical_sum_prod (Cons_monom c1 l1 t1) s2 =
int_r_canonical_sum_merge (int_r_canonical_sum_scalar3 c1 l1 s2)
(int_r_canonical_sum_prod t1 s2)) /\
(!l1 t1 s2.
int_r_canonical_sum_prod (Cons_varlist l1 t1) s2 =
int_r_canonical_sum_merge (int_r_canonical_sum_scalar2 l1 s2)
(int_r_canonical_sum_prod t1 s2)) /\
!s2. int_r_canonical_sum_prod Nil_monom s2 = Nil_monom) /\
((!c l t.
int_r_canonical_sum_simplify (Cons_monom c l t) =
(if c = int_0 then
int_r_canonical_sum_simplify t
else
(if c = int_1 then
Cons_varlist l (int_r_canonical_sum_simplify t)
else
Cons_monom c l (int_r_canonical_sum_simplify t)))) /\
(!l t.
int_r_canonical_sum_simplify (Cons_varlist l t) =
Cons_varlist l (int_r_canonical_sum_simplify t)) /\
(int_r_canonical_sum_simplify Nil_monom = Nil_monom)) /\
((!vm x. int_r_ivl_aux vm x [] = varmap_find x vm) /\
!vm x x' t'.
int_r_ivl_aux vm x (x'::t') =
varmap_find x vm * int_r_ivl_aux vm x' t') /\
((!vm. int_r_interp_vl vm [] = int_1) /\
!vm x t. int_r_interp_vl vm (x::t) = int_r_ivl_aux vm x t) /\
((!vm c. int_r_interp_m vm c [] = c) /\
!vm c x t. int_r_interp_m vm c (x::t) = c * int_r_ivl_aux vm x t) /\
((!vm a. int_r_ics_aux vm a Nil_monom = a) /\
(!vm a l t.
int_r_ics_aux vm a (Cons_varlist l t) =
a + int_r_ics_aux vm (int_r_interp_vl vm l) t) /\
!vm a c l t.
int_r_ics_aux vm a (Cons_monom c l t) =
a + int_r_ics_aux vm (int_r_interp_m vm c l) t) /\
((!vm. int_r_interp_cs vm Nil_monom = int_0) /\
(!vm l t.
int_r_interp_cs vm (Cons_varlist l t) =
int_r_ics_aux vm (int_r_interp_vl vm l) t) /\
!vm c l t.
int_r_interp_cs vm (Cons_monom c l t) =
int_r_ics_aux vm (int_r_interp_m vm c l) t) /\
((!i. int_polynom_normalize (Pvar i) = Cons_varlist [i] Nil_monom) /\
(!c. int_polynom_normalize (Pconst c) = Cons_monom c [] Nil_monom) /\
(!pl pr.
int_polynom_normalize (Pplus pl pr) =
int_r_canonical_sum_merge (int_polynom_normalize pl)
(int_polynom_normalize pr)) /\
(!pl pr.
int_polynom_normalize (Pmult pl pr) =
int_r_canonical_sum_prod (int_polynom_normalize pl)
(int_polynom_normalize pr)) /\
!p.
int_polynom_normalize (Popp p) =
int_r_canonical_sum_scalar3 (~int_1) [] (int_polynom_normalize p)) /\
!x.
int_polynom_simplify x =
int_r_canonical_sum_simplify (int_polynom_normalize x)