- EQ_SUB_THM
-
|- !A B. (A = B) = A SUBSET B /\ B SUBSET A
- REFL_PROCESS_ORDER
-
|- !P. P << P
- TRANS_PROCESS_ORDER
-
|- !P Q R. P << Q /\ Q << R ==> P << R
- ANTISYM_PROCESS_ORDER
-
|- !P Q. P << Q /\ Q << P ==> (P = Q)
- CHAIN_EQ_ALPHA
-
|- !P. CHAIN P ==> (!n m. ALPHA (P n) = ALPHA (P m))
- LIM_PROC_THM
-
|- !P.
CHAIN P ==>
(LIM_PROC P = ABS_process (ALPHA (P 0),IT_UNION (\n. TRACES (P n))))
- IS_PROCESS_LIMIT
-
|- !P. CHAIN P ==> IS_PROCESS (ALPHA (P 0),IT_UNION (\n. TRACES (P n)))
- ALPHA_LIMIT
-
|- CHAIN P ==> (ALPHA (LIM_PROC P) = ALPHA (P 0))
- TRACES_LIMIT
-
|- CHAIN P ==> (TRACES (LIM_PROC P) = IT_UNION (\n. TRACES (P n)))
- LEAST_PROCESS
-
|- !A P. (A = ALPHA P) ==> STOP A << P
- LUB_CHAIN1
-
|- !P. CHAIN P ==> (!n. P n << LIM_PROC P)
- LUB_CHAIN2
-
|- !P Q. CHAIN P /\ (!n. P n << Q) ==> LIM_PROC P << Q