Theory: prefix

Parents


Type constants


Term constants


Axioms


Definitions

PREFIX
|- !a P.
     a IN ALPHA P ==>
     (ALPHA (a --> P) = ALPHA P) /\
     (TRACES (a --> P) = {[]} UNION {CONS a t | t IN TRACES P})

Theorems

IS_PROCESS_PREFIX
|- !a P.
     a IN ALPHA P ==>
     IS_PROCESS (ALPHA P,{[]} UNION {CONS a t | t IN TRACES P})
ALPHA_PREFIX
|- !P a. a IN ALPHA P ==> (ALPHA (a --> P) = ALPHA P)
TRACES_PREFIX
|- !P a.
     a IN ALPHA P ==>
     (TRACES (a --> P) = {[]} UNION {CONS a t | t IN TRACES P})