Theory: star

Parents


Type constants


Term constants


Axioms


Definitions

STAR
|- !A. STAR A = {s | RESTRICT s A = s}

Theorems

NIL_IN_STAR
|- !A. [] IN STAR A
SINGLE_STAR
|- !x A. [x] IN STAR A = x IN A
CONS_STAR
|- !a t A. CONS a t IN STAR A = a IN A /\ t IN STAR A
APPEND_STAR
|- !s t A. APPEND s t IN STAR A = s IN STAR A /\ t IN STAR A
STAR_INDUCT
|- !A. STAR A = {t | (t = []) \/ HD t IN A /\ TL t IN STAR A}
SUBSET_STAR
|- !A B. A SUBSET B ==> STAR A SUBSET STAR B