========================================================================= Theory CPO Definitions -- REFL |- !r. REFL r = (!x. r x x) TRANS |- !r. TRANS r = (!x y z. r x y /\ r y z ==> r x z) ANTISYM |- !r. ANTISYM r = (!x y. r x y /\ r y x ==> (x = y)) PO |- !r. PO r = REFL r /\ TRANS r /\ ANTISYM r IS_UB |- !r X b. IS_UB r X b = (!a. a IN X ==> r a b) IS_LB |- !r X a. IS_LB r X a = (!b. b IN X ==> r a b) isCUP |- !r X b. isCUP r X b = IS_UB r X b /\ (!c. IS_UB r X c ==> r b c) isCAP |- !r X c. isCAP r X c = IS_LB r X c /\ (!b. IS_LB r X b ==> r b c) CUP |- !r X. (?a. isCUP r X a) ==> isCUP r X(CUP r X) CAP |- !r X. (?a. isCAP r X a) ==> isCAP r X(CAP r X) Cup |- !r a b. Cup r a b = CUP r{a,b} Cap |- !r a b. Cap r a b = CAP r{a,b} Bot |- !r. Bot r = CUP r{} Top |- !r. Top r = CAP r{} Directed |- !r X. Directed r X = (!a b. a IN X /\ b IN X ==> (?c. isCUP r{a,b}c)) CPO |- !r. CPO r = PO r /\ (?a. isCUP r{}a) /\ (!X. Directed r X ==> (?a. isCUP r X a)) isLFP |- !r fun x. isLFP r fun x = (fun x = x) /\ (!y. (fun y = y) ==> r x y) LFP |- !r f. (?x. isLFP r f x) ==> isLFP r f(LFP r f) ITER |- (!f x. ITER 0 f x = x) /\ (!n f x. ITER(SUC n)f x = f(ITER n f x)) Mono |- !r s f. Mono r s f = (!x y. r x y ==> s(f x)(f y)) Cont |- !r s f. Cont r s f = (!X. ~(X = {}) /\ Directed r X ==> Directed s(IMAGE f X) /\ (f(CUP r X) = CUP s(IMAGE f X))) Theorems -- Low_EXTENSION |- !r x y. REFL r /\ ANTISYM r ==> ((x = y) = (!z. r z x = r z y)) High_EXTENSION |- !r x y. REFL r /\ ANTISYM r ==> ((x = y) = (!z. r x z = r y z)) Bot_THM |- !a. isCUP r{}a ==> (!x. r(Bot r)x) Top_THM |- !a. isCAP r{}a ==> (!x. r x(Top r)) UNIQUE_CUP |- !r X x y. ANTISYM r /\ isCUP r X x /\ isCUP r X y ==> (y = x) UNIQUE_CAP |- !r X x y. ANTISYM r /\ isCAP r X x /\ isCAP r X y ==> (y = x) isCUP_CUP |- !r X a. ANTISYM r /\ isCUP r X a ==> (CUP r X = a) isCAP_CAP |- !r X a. ANTISYM r /\ isCAP r X a ==> (CAP r X = a) CUP_greater |- !r X a x. isCUP r X a /\ x IN X ==> r x(CUP r X) CUP_less |- !r X a x. PO r /\ isCUP r X a ==> (IS_UB r X x = r(CUP r X)x) CAP_less |- !r X a x. isCAP r X a /\ x IN X ==> r(CAP r X)x CAP_greater |- !r X a x. PO r /\ isCAP r X a ==> (IS_LB r X x = r x(CAP r X)) isCUP_ORDER |- !r a b. REFL r ==> (r a b = isCUP r{a,b}b) isCAP_ORDER |- !r a b. REFL r ==> (r a b = isCAP r{a,b}a) CUP_SINGLETON |- !r a. REFL r ==> isCUP r{a}a CAP_SINGLETON |- !r a. REFL r ==> isCAP r{a}a EMPTY_Directed |- !r. Directed r{} CPO_Bot |- !r x. CPO r ==> r(Bot r)x CPO_CUP |- !r X. CPO r /\ Directed r X ==> isCUP r X(CUP r X) UNIQUE_LFP |- !r f x y. ANTISYM r /\ isLFP r f x /\ isLFP r f y ==> (x = y) Mono_o |- !r s t f g. Mono r s f /\ Mono s t g ==> Mono r t(g o f) Cont_o |- !r s t f g. Cont r s f /\ Cont s t g ==> Cont r t(g o f) Cont_IMP_Mono |- !r s f. CPO r /\ CPO s /\ Cont r s f ==> Mono r s f TARSKI_CPO |- !r f. CPO r /\ Cont r r f ==> isLFP r f(CUP r{x | ?n. x = ITER n f(Bot r)}) ========================================================================= Theory Cla Definitions -- CLa |- !r. CLa r = (!X. ~(X = {}) ==> (?a. isCUP r X a) /\ (?b. isCAP r X b)) DLa |- !r. DLa r = (!X. (?a. isCUP r X a) /\ (?b. isCAP r X b)) CUP_Distr |- !r s f. CUP_Distr r s f = (!X. f(CUP r X) = CUP s(IMAGE f X)) CAP_Distr |- !r s f. CAP_Distr r s f = (!X. f(CAP r X) = CAP s(IMAGE f X)) CUP_Junct |- !r s f. CUP_Junct r s f = (!X. ~(X = {}) ==> (f(CUP r X) = CUP s(IMAGE f X))) CAP_Junct |- !r s f. CAP_Junct r s f = (!X. ~(X = {}) ==> (f(CAP r X) = CAP s(IMAGE f X))) Theorems -- DLa_IMP_CLa |- !r. DLa r ==> CLa r CLa_CUP |- !r X. CLa r /\ ~(X = {}) ==> isCUP r X(CUP r X) CLa_CAP |- !r X. CLa r /\ ~(X = {}) ==> isCAP r X(CAP r X) DLa_Bot_THM |- !r x. DLa r ==> r(Bot r)x DLa_Top_THM |- !r x. DLa r ==> r x(Top r) CLa_CUP_less |- !r X x. CLa r /\ PO r /\ ~(X = {}) ==> (IS_UB r X x = r(CUP r X)x) DLa_CUP_less |- !r X x. DLa r /\ PO r ==> (IS_UB r X x = r(CUP r X)x) CLa_CUP_greater |- !r X x. CLa r /\ x IN X ==> r x(CUP r X) CLa_CAP_greater |- !r X x. CLa r /\ PO r /\ ~(X = {}) ==> (IS_LB r X x = r x(CAP r X)) DLa_CAP_greater |- !r X x. DLa r /\ PO r ==> (IS_LB r X x = r x(CAP r X)) CLa_CAP_less |- !r X x. CLa r /\ x IN X ==> r(CAP r X)x CLa_IMP_CPO |- !r. PO r /\ CLa r /\ (?a. isCUP r{}a) ==> CPO r CUP_Distr_IMP_Junct |- !r s f. CUP_Distr r s f ==> CUP_Junct r s f CAP_Distr_IMP_Junct |- !r s f. CAP_Distr r s f ==> CAP_Junct r s f CUP_Distr_Bot |- !r s f. CUP_Distr r s f ==> (f(Bot r) = Bot s) CAP_Distr_Top |- !r s f. CAP_Distr r s f ==> (f(Top r) = Top s) CUP_Junct_IMP_Cont |- !r s f. CLa s /\ CUP_Junct r s f ==> Cont r s f TARSKI_MONO_isLFP |- !r f. DLa r /\ PO r /\ Mono r r f ==> isLFP r f(CAP r{x | r(f x)x}) TARSKI_MONO_LFP |- !r f. DLa r /\ PO r /\ Mono r r f ==> (LFP r f = CAP r{x | r(f x)x}) TARSKI_MONO_equ |- !r f. DLa r /\ PO r /\ Mono r r f ==> (f(LFP r f) = LFP r f) TARSKI_MONO_less |- !r f x. DLa r /\ PO r /\ Mono r r f /\ r(f x)x ==> r(LFP r f)x ROLING_THM |- !r s f g. DLa r /\ PO r /\ Mono r s f /\ DLa s /\ PO s /\ Mono s r g ==> (f(LFP r(g o f)) = LFP s(f o g)) FP_lower_FUSION |- !r s f g h. DLa r /\ PO r /\ Mono r r g /\ DLa s /\ PO s /\ Mono s s h /\ (!x. s((h o f)x)((f o g)x)) ==> s(LFP s h)(f(LFP r g)) ========================================================================= Theory galois Definitions -- GalCon |- !r s f g. GalCon r s f g = (!a b. r(f a)b = s a(g b)) Theorems -- GC_lower_CANCEL |- !r s f g a. PO s /\ GalCon r s f g ==> r((f o g)a)a GC_upper_CANCEL |- !r s f g a. PO r /\ GalCon r s f g ==> s a((g o f)a) GC_DISTR_CUP |- !r s f g. DLa r /\ DLa s /\ PO r /\ PO s /\ GalCon r s f g ==> CUP_Distr s r f GC_DISTR_CAP |- !r s f g. DLa r /\ DLa s /\ PO r /\ PO s /\ GalCon r s f g ==> CAP_Distr r s g FP_upper_FUSION |- !r s f g h. DLa r /\ PO r /\ Mono r r g /\ DLa s /\ PO s /\ Mono s s h /\ (?fu. GalCon s r f fu) /\ (!x. s((f o g)x)((h o f)x)) ==> s(f(LFP r g))(LFP s h) FP_FUSION |- !r s f g h. DLa r /\ PO r /\ Mono r r g /\ DLa s /\ PO s /\ Mono s s h /\ (?fu. GalCon s r f fu) /\ (f o g = h o f) ==> (f(LFP r g) = LFP s h) ==============================================================================